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High specific energy and low cost flexible lithium/sulfur batteries have attracted significant
attention as a promising power source to enable future flexible and wearable electronic
devices. Here, we review recent progress in the development of free-standing sulfur com-
posite cathodes, with special emphasis on electrode material selectivity and battery struc-
tural design.The mini-review is organized based on the dimensionality of different scaffold
materials, namely one-dimensional carbon nanotube (CNT), two-dimensional graphene,
and three-dimensional CNT/graphene composite, respectively. Finally, the opportunities
and perspectives of the future research directions are discussed.
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INTRODUCTION
Facing the limited global energy supply and environmental issues,
it is desirable to urgently explore the energy storage systems with
high energy and power density (Zhang et al., 2011). Lithium
rechargeable batteries are the most promising energy storage
devices; however, the current cathode materials, such as those
based on transition metal oxides and phosphates, have the maxi-
mum practically usable capacity limit of 200 mAh g−1 (Song et al.,
2013a; Zhao et al., 2013). On the other hand, the high capacity
anode materials such as transition metal oxides and the IV group
materials (Yu et al., 2013) have been developed in the recent years.
Therefore, the overall energy density of lithium rechargeable bat-
teries is limited by the insufficient capacity of the available cathode
materials.

Sulfur is a very attractive candidate as a cathode material due
to its high theoretical specific capacity of 1672 mAh g−1, assum-
ing complete reaction between Li and S (S+ 2Li++ 2e−↔Li2S)
(Yang et al., 2013; Zhang et al., 2013d).

During an ideal discharge process, illustrated in Figure 1A, two
main plateaus appear in the potential profiles, which are attrib-
uted to two main electrochemical reactions taking place at sulfur
cathode upon cycling in Li/S battery (Yang et al., 2013). The first
reaction, represented by a short discharge plateau at about 2.4 V,
is related to the formation of higher-order lithium polysulfides
(Li2Sn, n≥ 4), which are soluble in most of liquid electrolytes.
The following prolonged plateau around 2.0 V in the discharge
profiles reflects the following electrochemical transition of the

polysulfides into lithium sulfide Li2S, and the system’s discharge
capacity mainly depends on the 2 V plateau.

Other advantages of sulfur include its abundant resources, low
cost, and environmental friendliness. Consequently, it is antici-
pated that Li/S batteries will play an important role in the next
generation energy storage systems (Zhao et al., 2012). However,
wide-scale commercial use is so far limited because of several
challenges that must be addressed.

Among these major problems restricting the use of this cathode,
the insulating nature of sulfur (conductivity ~5× 10−30 S cm−1,
25°C) remains as one of the most challenging, leading to its
low electrochemical utilization and limited rate capability, which
necessitates the use of various conductive additives providing
intimate contact between cathode particles (Bresser et al., 2013).

Another problem relates to the electrochemical processes upon
Li/S battery operation: when elemental sulfur reacts with lithium
ions to form Li2S, the lithium polysulfides are formed, which are
easily dissolved in the majority of organic electrolytes. These inter-
mediates can take part in the “sulfur shuttle mechanism” whereby
the dissolved polysulfides can migrate onto the Li anode and form
on its surface an electrochemically inactive layer consisting mainly
of Li2S2 and Li2S. These issues result in a low utilization of the
active material, poor cycle life, and low system efficiency and neg-
atively affect the anode operation as well (Evers and Nazar, 2013;
Zhang et al., 2013a).

The third problem is related to the volume variation of sulfur
particles during the charge and discharge operations. In this case,
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Zhao et al. Carbon/sulfur cathodes for flexible batteries

FIGURE 1 | (A) The voltage profile and chemistry of sulfur cathode in organic
electrolytes. Reprinted with permission from Yang et al. (2013). Copyright
(2013) Royal Society of Chemistry. (B) Schematics of the fabrication process
of a self-weaving sulfur/MWCNT composite cathode synthesized by an in situ
sulfur deposition method. Three simple steps to synthesize binder/current
collector-free sulfur/MWCNT composite cathodes: (i) dispersion of MWCNTs,
(ii) sulfur nucleation (yellow) onto MWCNTs, and (iii) vacuum filtration,

washing, and then drying. Reprinted with permission from Su et al. (2012).
Copyright (2012) Royal Society of Chemistry. (C) Schematic illustration and
photograph of the flexible self-supporting GS/S paper. Reprinted with
permission from Jin et al. (2013a). Copyright (2012) Royal Society of
Chemistry. (D) Schematics of sulfur cathode with CNT/carbon nanocage as
scaffold. Reprinted with permission from Huang et al. (2014). Copyright (2014)
Royal Society of Chemistry.

due to the different densities of sulfur (2.07 g cm−3) and final dis-
charge product Li2S (1.66 g cm−3), sulfur experiences a noticeable
volume expansion as large as 80%, causing pulverization of active
material and thus fast capacity fading (Wang et al., 2013).

Extensive efforts have been dedicated to improve the Li/S sys-
tem, and various types of conductive carbon materials (Guo et al.,
2011; Wang et al., 2012a; Zhao et al., 2013; Zhang et al., 2014b,c)
and conductive polymers (Wang et al., 2002, 2012b,c; Zhang et al.,
2012, 2013b,c,d,e,f, 2014a,d) have been used in order to enhance
the electronic conductivity of the cathode composites, limit the
dissolution of polysulfides into the electrolytes and buffer the
volume changes of sulfur during the charge/discharge. To date,
many interesting approaches have been successfully explored to
develop sulfur cathodes with high-specific capacity and good cycle
performance. For example, in Song et al.’s work (Song et al.,
2013b), a novel CTAB-modified sulfur-graphene oxide nanocom-
posite has been developed, demonstrating a high initial discharge
capacity of 1440 mAh g−1 at 0.2 C and an excellent cycling perfor-
mance up to 1500 cycles with a low capacity decay rate of 0.039%
per cycle.

However, the enhancements in the electrochemical perfor-
mance of sulfur cathode materials usually are compromised by
the sulfur content in the sulfur composites or sulfur loading mass
on the electrodes, which greatly reduces the overall energy density
of lithium/sulfur cells. The increase of sulfur content usually leads
to a very low conductivity of the sulfur composite; meanwhile,
the optimal loading of sulfur in the porous structural composite
is a balance between the desire for achieving the higher capacity
and the allowance for the volume change to ensure the cathode
stability (Wang et al., 2013).

Therefore, in the authors’ view, the novel technologies beyond
the traditional sulfur composite electrode could provide the pos-
sibility to maintain both good electrochemical performance and
high sulfur content, which will provide high capacity and sta-
ble energy storage means. Among all possible technologies, the
synthesis of free-standing sulfur cathode may be a promising pro-
moter in improving the sulfur content in the electrodes in the
same time maintaining the good electrochemical performance. In
the common preparation routes for sulfur electrodes, a slurry-
casting method is adopted and binders, such as PVDF and PTFE,
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Zhao et al. Carbon/sulfur cathodes for flexible batteries

are required at the ratio of 10 wt% or above in the whole electrode
loading mass to ensure strong mechanical connections between
active material, conductive additive, and current collector (Hu
and Sun, 2014; Zhou et al., 2014a). Thus, in the free-standing elec-
trodes, elimination of the binder enables high sulfur fractions in
the electrode of 0.90 or even higher, which leads to the higher sul-
fur content in electrode and the larger energy density. On the other
hand, the area density of Al foils is about 5.0 mg cm−2, accounting
for half of the total weight of the electrode. Hence, when metal cur-
rent collector is replaced by a lightweight, flexible counterpart, the
energy density of the battery can be remarkably improved (Gwon
et al., 2014; Zhou et al., 2014a). Moreover, the exclusion of the com-
mon slurry-casting method simplifies the electrode preparation
process, which could reduce the battery cost. The other obvious
advantage of free-standing sulfur electrodes is an opportunity to
facilitate their portability, meeting with the trends and require-
ments in the rechargeable lithium battery development, namely,
light, thin, flexible, and small units (Lee et al., 2013; Zhou et al.,
2014a).

In the process of development of free-standing electrodes,
carbon-based active materials are mainly applied as the scaf-
fold materials, due to their electrochemical activity and mechan-
ical flexibility. Moreover, carbon nanotubes (CNTs), carbon
nanofibers, and graphene exhibit a self-weaving behavior when
being fabricated as a flexible film (Song et al., 2014; Zhou et al.,
2014a).

Herein, we review recent progress in the development of free-
standing sulfur composite cathodes, and this mini-review is orga-
nized based on the dimensionality of the different scaffold mate-
rials, namely one-dimensional CNT, two-dimensional graphene,
and three-dimensional CNT/graphene composite, respectively.
The synthesis of routes and electrochemical performance of flex-
ible free-standing sulfur cathodes are briefly discussed as well.
Finally, the opportunities and perspectives of future research
directions are discussed.

ONE-DIMENSIONAL CARBON NANOTUBE BASED SULFUR
CATHODE
Carbon nanotubes have been widely used in lithium-ion batter-
ies due to their specific dimensional structure, good electronic
conductivity, large activated surface area, and high flexibility. In
the Li/S battery research, CNTs have been highly recommended
as conductive additives to composite with sulfur, creating an
electronically conductive network and reinforcing the structural
stability (Yin et al., 2011). Moreover, CNT exhibit a self-weaving
behavior when being fabricated as a flexible film (Su et al.,
2012).

Su et al. (2012) presented a self-weaving sulfur/multiwall CNT
(S/MWCNT) composite synthesis by an in situ sulfur deposition
method as shown in Figure 1B. The conductive MWCNTs act
as a structural skeleton and support the integrity of the elec-
trode. Furthermore, the interwoven structure of the composites
could absorb 26 µL cm−2 of electrolyte, preserving the electrolyte
and active materials within the MWCNT matrix. The highly con-
ductive MWCNTs improve the active material utilization and
cycle performance, due to the absorption ability of the cath-
ode framework. The resulting S/MWCNT composite exhibits a

high initial capacity of 1352 mAh g−1, and maintains a reversible
capacity of 915 mAh g−1 at 1 C. Up to 3 C, the discharge capacity of
648 mAh g−1 still could be achieved. However, the large amounts
of CNTs used in this composite to guarantee good electrochemi-
cal performance of the composite have resulted in a relatively low
sulfur content of 40 wt%.

The energy density is expected to be further increased if the
content of CNTs is reduced. Jin et al. (2013b) reported that the
sulfur/CNT composite film with the area density of <5 mg cm−2

had a high sulfur content of 65 wt%. This flexible composite film
was prepared by coating an ultra-thin sulfur nanolayer on a pre-
oxided CNT film through a simple two-step heating process. The
porous and film-like CNT matrices enormously improve the elec-
trical conductivity of sulfur and offer 3D pathways for fast Li ion
diffusion. Moreover, based on the X-ray photoelectron spectra
(XPS) studies, the formation of covalent bonds between sulfur
and CNTs were confirmed, which guaranteed the structural sta-
bility of the composite film during the charge/discharge process.
Consequently, the film electrode delivered an initial capacity of
1100 mAh g−1 and retained a reversible capacity of 740 mAh g−1

after 100 charge/discharge cycles at 0.1 C. It also exhibited a good
rate capability and a reversible capacity of 520 mAh g−1 could be
reached at the rate of 2 C.

Hagen et al. (2012, 2013) reported on a direct synthesis of a
novel vertical-aligned CNT/sulfur (VACNT/S) composite elec-
trode on the current collector without using any binder. The
binder-free CNT cathodes were able to contain the highest total
amount of the electrochemically active sulfur (90 wt%) in the
electrode among all published systems so far in the literature.
The electrode was synthesized by employing a catalyst layer and a
chemical vapor deposition (CVD) process. The CNTs were directly
synthesized on the Ni current collector and sulfur was infiltrated
using different approaches such as sublimation of sulfur, liquefied
sulfur, melting of solid sulfur powder, and sulfurization through
solvent. The sulfur mass in the resulting cathode could be varied
between 3 and 20 mg cm−2 electrode leading to sulfur loads that
are several times higher than that achieved in the slurry prepa-
ration method. The delivered capacities for these extremely high
sulfur loads were reported to be around 900 mAh g−1 (sulfur) at a
current density of 0.64 mA cm−2.

TWO-DIMENSIONAL GRAPHENE-BASED SULFUR CATHODE
Graphene is currently a viable carbon matrix material for Li/S
battery applications due to its excellent properties, such as excel-
lent electronic mobility, high specific surface area, high thermal
conductivity, high mechanical strength, etc. (Bi et al., 2013).

Jin et al. (2013a) reported that a flexible self-supporting
graphene–sulfur paper electrode was fabricated by a simple process
with an in situ redox reaction followed by vacuum infiltration as
illustrated in Figure 1C. This electrode showed a reversible dis-
charge capacity of 600 mAh g−1 with 83% capacity retention after
100 cycles. The graphene framework served as both a conduc-
tive network and a supporting carrier for sulfur nanoparticles.
A high capacity retention rate of 83% and an energy density of
804 Wh kg−1 were obtained for GS/S paper after 100 cycles. Fur-
thermore, the thermal analysis results show that the sulfur content
in the GS/S paper electrode was as high as 67 wt%.
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Zhao et al. Carbon/sulfur cathodes for flexible batteries

The assembly of graphene sheets into porous structures can
combine the excellent properties of graphene and the advan-
tages of porous architectures. It was reported (Huang et al.,
2013) that mesoporous graphene paper (MGP) was employed
to immobilize elemental sulfur to obtain free-standing elec-
trodes for high-performance Li/S batteries. Amorphous sulfur
was homogeneously distributed in the mesoporous architectures
of porous graphene paper, in which sulfur was immobilized.
The conductive flexible porous graphene networks could effec-
tively facilitate electron transfer and support enhanced electrolyte
diffusion. The free-standing sulfur/graphene nanocomposite elec-
trodes achieved a high discharge capacity of 1393 mAh g−1 with
an enhanced cycling stability and good rate performance.

A free-standing few-layered graphene (FLG) monolithic net-
work foam was formed as a negative of a Ni metallic foam template
by CVD followed by etching away of Ni, and the sulfur/FLG foam
composite cathode was prepared by infiltrating the sulfur solution
into the FLG foam by drop casting (Xi et al., 2014). The FLG foam
offers excellent electrical conductivity, an appropriate hierarchical
pore structure to store the electro-active sulfur and facilitates the
rapid electron/ion transport. The as-prepared electrode compos-
ite demonstrated excellent high-rate discharge stability as cathode
in a Li/S cell. Compared with the fifth cycle discharge capacity, the
capacity decay was as small as 0.064% per cycle at a high current
density of 3200 mA g−1 and an average coulombic efficiency was
about 96.2% over 400 cycles.

In order to improve the dispersibility of graphene in aque-
ous solution for preparation of cathode materials and prepare
graphene oxide with high surface area, chemical stability, mechani-
cal strength, and flexibility, the oxygen bonds were introduced into
the carbon lattice in the forms of -OH, C-O-C, and C=O. Zhou
et al. (2014b) reported that phenyl sulfonated functional groups
(PhSO3−) were anchored on the graphene surface to increase the
conductivity and water solubility of the carbon matrix. With these
surface modifications, graphene was not only very easily dispersed
in water but also existed as individual carbon sheets exhibiting
excellent electrical conductivity, comparable to that of graphite,
due to the restoration of an extensive conjugated sp2-carbon net-
work. Phenyl sulfonated graphene sheets/sulfur (PhSO3−RG/S)
composite was obtained via an in situ redox reaction in aqueous
solution and applied as the cathode material for lithium/sulfur
battery. The additive-free PhSO3−RG/S electrodes had a high
initial discharge capacity of 900 mAh g−1, a good cycling life
(460 mAh g−1 after 400 cycles) at a current density of 0.2 C, and
an excellent rate capability.

THREE-DIMENSIONAL CARBON
NANOTUBE/GRAPHENE-BASED SULFUR CATHODE
Recently, a 3D conductive network was built by the incorporation
of CNTs and mesoporous graphene-based materials by Huang
et al. (2014) as schematically presented in Figure 1D. These two
components as the building blocks were integrated through car-
bon deposition via high-temperature CVD, which ensured the
high electrical conductivity throughout the electrode as well as
the extraordinary mechanical stability. The graphene-based car-
bon nanocages derived from MgO templates demonstrated a
high intrinsic electrical conductivity and sufficient meso-scale

Table 1 | Comparison of electrochemical performance of different

sulfur composite.

Composite Specific capacity (mAh g−1) C rate Sulfur

content (%)

S-MWCNT [1] 1352 (1st) 915 (100th) 1 40

S-CNT [2] 1100 (1st) 740 (100th) 0.1 65

GS/S [3] 722 (1st) 600 (100th) 0.1 67

MGP-S [4] 1393 (1st) 689 (50th) 0.1 55

S-FLG foam [5] 1008 (1st) 360 (200th) 2 63

S/CNT/carbon

nanocage [6]

950 (5th) 892 (50th) 1 60

CNT-S [7] 1100 (1st) 1000 (40th) 0.076 60

[1] Su et al. (2012); [2] Jin et al. (2013b); [3] Jin et al. (2013a); [4] Huang et al.

(2013); [5] Xi et al. (2014); [6] Huang et al. (2014); [7] Hagen et al. (2012).

space to accommodate sulfur, which is expected to restrain the
polysulfide shuttle. Electrochemical evaluation indicated that the
rationally designed structure endowed the sulfur cathode with a
high-specific capacity and rate performance. The initial discharge
capacity of the electrode reached 1354 mAh g−1 at 0.34 A g−1.
Even at a current density of 8.35 A g−1, a reversible capacity of
750 mAh g−1 could still be preserved, which is about 70% of that
at 0.84 A g−1.

SUMMARY AND PROSPECTS
Recently, lithium/sulfur (Li/S) batteries have received tremendous
attention as high energy density storage devices because sulfur is
a very attractive cathode material due to its low cost, high the-
oretical capacity and theoretical specific energy, abundance of
the resources, and environmental friendliness. This mini-review
presents the state of the art of the flexible Li/S battery research and
technologies, and Table 1 summarizes some properties of some
typical flexible Li/S batteries. Although research and development
of free-standing lithium/sulfur batteries is still nascent, it can be
seen from the Table 1 data that significant progress has been made
in new sulfur cathode material development and in the processes
for cathode preparation.

Mainly, CNT and graphene have been incorporated into the
flexible electrodes as scaffold materials, greatly improving the elec-
trodes performance. In spite of the achievements discussed in
this review, there exists substantial room for the development of
high-performance flexible Li/S batteries:

(1) The majority of the existing studies are based on half-cell
flexible Li/S batteries. Both good performance flexible cath-
ode and anode materials should be considered together for
developing practical flexible full batteries (Zhou et al., 2014a).
Beside this, in traditional batteries, a liquid electrolyte is com-
monly used; however, in case of flexible batteries, there are
serious safety concerns because of a large extent of mechan-
ical deformations are likely to induce internal short-circuit
failures between the electrodes. To solve this problem, devel-
opment of high-performance flexible solid-state electrolytes,
such as gel polymer electrolytes and solid polymer electrolytes
have been one of the key focuses in the flexible batteries field.
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Zhao et al. Carbon/sulfur cathodes for flexible batteries

Furthermore, it is expected that in Li/S battery the solid-state
membrane can act as a physical barrier preventing the direct
contact of the electrode components (Zhao et al., 2013; Zhang
et al., 2014d). This barrier function will also help to control
the dissolution of the sulfide anions from the cathode and to
prevent the attack of the same anions at the anode side.

(2) A basic requirement for a flexible Li/S battery is that the elec-
trochemical performance is not compromised under frequent
mechanical strains for the long-term use (Zhou et al., 2014a).
However, in the current flexible Li/S battery studies, there are
no quantitative measurements to characterize their mechani-
cal behavior except the simple bending tests of the electrodes.
Hence, more in-depth analyses combined with mechanical
studies and safety tests along with the deformation conditions
control are needed to build fully functional free-standing Li/S
batteries.

Although the above-mentioned challenges are still remain, the
recent progress in the development of flexible Li/S batteries has
been significant. We believe that further studies will lead to even
more exciting results and will eventually result in practical flexible
Li/S cells for the flexible electronic devices applications such as roll-
up displays, touch screens, conformable active radio-frequency
identification tags, wearable sensors, and implantable medical
devices.
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