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A water-stable solid electrolyte is a key material without which aqueous lithium–air bat-
teries could not be operated. In this study, we have examined the electrical conductivity 
and mechanical properties of a water-stable lithium-ion-conducting solid electrolyte, 
Li1+xAlxGeyTi2−x−y(PO4)3 with the NASICON-type structure, as a function of the Al and Ge 
content. Li1+xAlxGeyTi2−x−y(PO4)3 was synthesized by the conventional solid-state reaction 
method. The highest lithium-ion conductivity of 1.0  ×  10−3  S  cm−1 at 25°C and the 
highest three-point bending strength of 90 N mm−2 at room temperature were observed 
for a pellet of Li1.45Al0.45Ge0.2Ti1.35(PO4)3 sintered at 900°C.
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inTrODUcTiOn

In the last half century, many types of lithium-ion-conducting solid electrolytes have been 
reported, such as Li3N (Alpen et al., 1977), B2S3–Li2S–LiI glass (Wada et al., 1983), NASICON-type 
Li1+xAxTi2−x(PO4)4 (Aono et al., 1990), perovskite-type La2/3−xLixTiO3 (Inaguma et al., 1993), gar-
net-type Li7La3Zr2O12 (Murugan et al., 2007), and thio-LISICON-type Li10GeP2S12 (Kamaya et al., 
2011). At present, the highest lithium-ion conductivity of 1.2 × 10−2 S cm−1 at room temperature 
is reported in Li10GeP2S12, which is higher than that of conventional liquid electrolytes, because 
its lithium-ion transport number is unity. Lithium-ion-conducting solid electrolytes are generally 
hygroscopic and so are difficult to handle in the open atmosphere, especially the high conductiv-
ity sulfide-based solid electrolytes. NASICON-type Li1+xAxTi2−x(PO4)3 lithium-conducting solid 
electrolytes are less sensitive to moisture and can be prepared in the open air, and are also stable 
in contact with LiCl-saturated aqueous solution (Shimonishi et al., 2011). Aono et al. (1990) has 
reported the electrical conductivity of the Li1+xAxTi2−x(PO4)3 (A = Al, Cr, Ga, Fe, In, La, Sc, and Y) 
system and found the highest electrical conductivity of 7 × 10−4 S cm−1 at 25°C for Li1.3Al0.3Ti1.7

(PO4)3.
Since the report by Aono et al., the NASICON-type lithium-ion-conducting solid electrolytes 

have been extensively examined. The highest electrical conductivity of 4.62 × 10−3 S cm−1 at 27°C 
was reported for the Li1.5Al0.5Ge1.5(PO4)3 glass–ceramic by Thokchom and Kumar (2010). However, 
Fu (1997) studied the Li1−xAlxGe2−x(PO4)3 glass–ceramics and found the electrical conductivity of 
Li1.5Al0.5Ge1.5(PO4)3 was 4.0 × 10−4 S cm−1 at 25°C, and also Xu et al. (2007) found an electrical conduc-
tivity of 7.25 × 10−4 S cm−1 at room temperature for the Li1.5Al0.5Ge1.5(PO4)3–0.05 Li2O glass–ceramic. 
The preparation of glass–ceramics is somewhat complex, and the effect of aging on the electrical 
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conductivity is questionable. The Li1+x+yAlx(Ge, Ti)2−xSiyP4−yO12 
glass–ceramics have been commercialized by Ohara, Ltd., Japan. 
The glass–ceramic is water-permeation free, and the electri-
cal conductivity is 10−4  S  cm−1 at room temperature. Recently, 
Zhang et  al. (2013) reported that the electrical conductivity of 
Li1.4Al0.4Ti1.6(PO4)3 was enhanced by a partial substitution of Ge 
for Ti. The highest electrical conductivity of 1.3 × 10−3 S cm−1 at 
25°C was observed in Li1.4Al0.4Ge0.2Ti1.4(PO4)3, where the content 
of Al was fixed to 0.4, and the Li1.4Al0.4GexTi1.6−x(PO4)3 powders 
were prepared by a sol–gel method using expensive Ti and Ge 
alkoxides. In this study, we have examined the electrical conduc-
tivity and mechanical properties of the Li1+xAlxGeyTi2−x−y(PO4)3 
system in the range of x = 0.30–0.55 and y = 0.1–0.3 using less 
expensive starting materials. Water-stable high lithium-ion-
conducting solid electrolytes have potential applications for 
aqueous lithium–air batteries (Zhang et  al., 2010; Bruce et  al., 
2012) and aqueous lithium batteries with aqueous cathodes (Lu 
et al., 2011; Zhao et al., 2013). These electrolytes have been used 
as a protective layer for the lithium metal electrode to avoid direct 
contact with the aqueous solution, because lithium metal reacts 
vigorously with water.

MaTerials anD MeThODs

The NASICON-type Li1+xAlxGeyTi2−x−y(PO4)3 lithium-ion-
conducting solid electrolytes were prepared by conventional 
solid-state reaction. Corresponding amounts of chemical reagent 
grade Li2CO3, TiO2, GeO2, Al2O3, and NH4H2PO4 were ball 
milled with zirconia balls in a zirconia vessel for 2 h at 400 rpm 
using high energy mechanical milling (HEMM) with a planetary 
micro mill (Fritsch Pulverisette 7), and the mixed powders were 
then pressed into pellets at 150 MPa and calcined at 600°C for 
4  h. The calcined pellets were reground and again ball milled 
using HEMM. The obtained powders were isostatically pressed 
into pellets at 150  MPa and sintered at various temperatures 
(850–1,000°C) for 7 h. Tape-cast Li1.45Al0.45Ge0.2Ti1.35(PO4)3 films 
were prepared using a previously reported method (Zhang et al., 
2015). Briefly, fine Li1.45Al0.45Ge0.2Ti1.35(PO4)3 powders prepared 
by the solid-state reaction were dispersed in a mixed solution of 
ethanol and toluene (1:1 v/v) using menhaden fish oil [2 wt% to 
Li1.45Al0.45Ge0.2Ti1.35(PO4)3] as a dispersant. The mixed slurry was 
ball milled for 10 h using HEMM. Polyvinyl alcohol [8 wt% to 
Li1.45Al0.45Ge0.2Ti1.35(PO4)3] was then added to the mixed slurry as 
a plasticizer and ball milled for another 12 h. After tape casting, 
the green sheets were kept in a sealed box with a small amount of 
ethanol in a refrigerator to slow the drying process at 5°C for 24 h. 
Several green sheets were hot pressed at 90°C for 10 min and then 
sintered at 900°C for 7 h.

The crystal structures of sintered samples were analyzed by 
X-ray diffraction (XRD) analysis using a Rigaku RINT 2500 
diffractometer with Cu-Kα radiation in the 2θ range from 10° 
to 90° at a scanning step rate of 0.02°s−1. The relative density of 
the sintered samples was estimated from the ratio of the density 
calculated from the lattice constants and that calculated from 
the volume and weight of the sintered body. The electrical con-
ductivity of the sintered pellets (ca. 12 mm diameter and 1 mm 
thick) with gold sputtered electrodes were measured using an 

impedance phase analyzer (Solartron 1260) in the frequency 
range of 0.1  Hz–1  MHz with the bias voltage at 10  mV. Bulk 
and grain boundary conductivities of the sintered samples were 
estimated from complex impedance plots using Zview 2. Three-
point bending strength of the sintered pellets (ca. 0.24 mm thick 
and ca. 15 mm wide) was measured at room temperature using a 
materials tester (Shimadzu EZ-SX 500N).

resUlTs anD DiscUssiOn

Figure  1 shows XRD patterns of the Li1.5Al0.5Ge0.2Ti1.3(PO4)3 
samples sintered at various temperatures for 7  h with a 
silicon internal standard to measure the lattice constant. 
An impurity phase of AlPO4 was observed for the sample 
sintered at 850°C. At sintering temperatures as low as 850°C, 
the reaction was not completed. All diffraction lines of the 
samples sintered at 900, 950, and 1,000°C could be indexed 
as the NASICON-type structure (Perez-Estebanez et  al., 
2014). Figure 2 shows the relative density of Li1.5Al0.5Ge0.2Ti1.3 
(PO4)3 pellets sintered at various temperatures. The sample 
with the impurity phase that was sintered at 850°C showed 
a low relative density of 87%. The highest relative density of 
95.5% was observed for the sample sintered at 900°C, and the 
relative density decreased with further increase of the sinter-
ing temperature. The decreasing of the relative density may be 
due to the evaporation of lithium compounds at these higher 
temperatures. Figure  3 shows impedance profiles of Li1.5Al0.5 
Ge0.2Ti1.3(PO4)3 samples (ca. 1 mm thick) sintered at various tem-
peratures and measured at 25°C. The impedance profiles showed 
a large semicircle followed by a straight line. The semicircle may 
be attributed to the grain boundary resistance (Bruce and West, 
1983). The intercept of the semicircle on the real axis at high 
frequency represents the bulk resistance, and the diameter of the 
semicircle indicates the grain boundary resistance. The semicir-
cle due to the bulk resistance was out of the frequency range for 
the impedance analyzer used. The samples sintered at 900, 950, 
and 1,000°C showed almost the same bulk conductivity of ca. 
2 × 10−3 S cm−1, while the sample sintered at 850°C showed a low 
bulk conductivity of ca. 10−3 S cm−1. The low bulk conductivity 
may be due to the non-equilibrium phase of Li1.5Al0.5Ge0.2Ti1.3 
(PO4)3 prepared at the lower sintering temperature. The grain 
boundary resistance was dependent on the sintering tempera-
ture, and the sample sintered at 900°C with the highest relative 
density exhibited the lowest grain boundary resistance.

The electrical conductivity, relative density, and three-point 
bending strength for the Li1+xAlxGe0.2Ti1.8−x(PO4)3 system sintered 
at 900°C for 7 h were examined as a function of x. Figure 4 shows 
the XRD patterns of Li1+xAlxGe0.2Ti1.8−x(PO4)3. Almost all the 
diffraction lines for Li1+xAlxGe0.2Ti1.8−x(PO4)3 were indexed with 
the NASICON-type structure. However, Li1+xAlxGe0.2Ti1.8−x(PO4)3 
with x  =  0.45, 0.5, and 0.55 also showed diffraction lines 
due to AlPO4. The changes in the lattice parameter with x in 
Li1+xAlxGe0.2Ti1.8−x(PO4)3 are shown in Figure  5. The a lattice 
parameter of 0.812 at x = 0.30 increased to 0.882 nm at x = 0.40, 
and the c lattice parameter of 2.171 nm decreased to 2.043 nm at 
x = 0.4. Cretin and Fabry (1999) reported that the a parameter 
decreases and the c parameter increases with increasing x in 
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FigUre 2 | relative density of li1.5al0.5ge0.2Ti1.3(PO4)3 sintered at 
various temperatures.

FigUre 1 | XrD patterns of li1.5al0.5ge0.2Ti1.3(PO4)3 sintered at various temperatures.
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Li1+xAlxTi2−x(PO4)3, while Aono et al. (1990) found both the a and 
c parameters decreased with increasing x. The decrease of the c 
parameter can be attributed to the substitution of Al3+ with a small 
ionic radius (0.53 nm) for Ti4+ with a large ionic radius (0.605 nm) 
in the octahedral sites. Several factors play a determinant role in 
the inference of the cation substitution on the structure (Delmas 
et al., 1981). Additional Li+ ions are located in the unoccupied Li 
sites by the substitution of Al3+ for Ti4+ and Ge4+ sites, as observed 
in Na1+xAlxTi2−x(PO4)3 (Maldonado-Manso et al., 2005), to main-
tain charge neutrality. The additional lithium ions in these sites 

lead to repulsion along the a axis. The reason for the smaller c and 
larger a parameters for Li1.55Al0.55Ge0.2Ti1.25(PO4)3 compared to 
those for Li1.5Al0.5Ge0.2Ti1.3(PO4)3 is not clear but may be due to the 
formation of AlPO4 impurity phases. These results suggest that 
the solubility limit of Al in Li1+xAlxGe0.2Ti1.8−x(PO4)3 is x = 0.4, as 
observed by Aono et al. (1990) for Li1+xAlxTi2−x(PO4)3. Figure 6 
shows impedance profiles for Li1+xAlxGe0.2Ti1.8−x(PO4)3 measured 
at 25°C as a function of x. The lowest grain boundary resistance 
was observed for Li1.45Al0.45Ge0.2Ti1.35(PO4)3. The equivalent circuit 
in Figure 6 assumes a general model comprising grains and uni-
form grain boundaries that are parallel or perpendicular to the 
current flow. This results in the one with two parallel resistance–
capacitance elements, one for the perpendicular grain boundary 
(Rp1 and CPE1) and one from the parallel grain boundary (Rp2 and 
CPE2) connected in parallel. In microcrystalline ceramics, where 
the effective grain boundary width is negligible compared to 
the grain size, the contribution of the parallel grain boundary can 
be neglected. However, parallel grain boundary contribution must 
be taken into account if the parallel grain boundary conductivity 
becomes significantly larger than that of the grain and/or if the 
effective grain boundary width is no longer negligible with respect 
to the grain size (Bouchet et al., 2003). The change in the grain 
boundary resistance with x could be explained by the change of 
the relative density as shown in Figure 7. Li1.55Al0.55Ge0.2Ti1.25(PO4)3 
with the AlPO4 impurity phase had similar impedance profiles 
to those of Li1.50Al0.5Ge0.2Ti1.3(PO4)3 with the AlPO4 impurity 
phase sintered at 850°C, which revealed a high grain boundary 
resistance and low bulk conductivity. Figure 7 shows the electri-
cal conductivities of total, grain bulk, grain boundary, and the 
relative density of Li1+xAlxGe0.2Ti1.8−x(PO4)3 measured at 25°C that 
are plotted as a function of x. The highest total conductivity of 
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FigUre 4 | XrD patterns of li1+xalxge0.2Ti1.8−x(PO4)3 sintered at 900°c as a function of x.

FigUre 3 | impedance profiles of au/li1.5al0.5ge0.2Ti1.3(PO4)3/au as a function of the sintering temperature.
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FigUre 5 | lattice parameter for li1+xalxge0.2Ti1.8−x(PO4)3 sintered at 900°c as a function of x.

FigUre 6 | impedance profiles for li1+xalxge0.2Ti1.8−x(PO4)3 measured at 25°c as a function of x.
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1.0 × 10−3 S cm−1 and the highest relative density of 95.8% were 
observed for Li1.45Al0.45Ge0.2Ti1.35(PO4)3 at x = 0.45. The grain bulk 
conductivities at x = 0.40 and 0.50 are higher than that at x = 0.45. 

The reason for this tendency is not yet clarified. Aluminum 
composition in the grain bulk may slightly deviate from the 
nominal one by its accumulation at the grain boundary region. 
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FigUre 7 | Total, bulk, and grain boundary electrical conductivity at 25°c, and relative density of li1+xalxge0.2Ti1.8−x(PO4)3 as a function of x.

FigUre 9 | Three-point bending strength of li1+xalxge0.2Ti1.8−x(PO4)3 as 
a function of x.

FigUre 8 | Temperature dependence of the electrical conductivity of 
li1.45al0.45ge0.2Ti1.35(PO4)3.

As another thought, the estimation of the bulk conductivity could 
be influenced by a parallel grain boundary conduction path as 
illustrated in the equivalent circuit in Figure 6, although the grain 
boundary conductivities of Li1+xAlxGe0.2Ti1.8−x(PO4)3 at x = 0.40 
and 0.50 were lower than that for Li1.45Al0.45Ge0.2Ti1.35(PO4)3. 
As a rough tendency, it is possible to state that conductivity 
becomes maximum around x  =  0.45, and as leaving from the 
composition, the bulk and the grain boundary conductivity 
decreases. Figure  8 shows the temperature dependence of the 

total electrical conductivity for Li1.45Al0.45Ge0.2Ti1.35(PO4)3. The 
activation energy for the electrical conduction was calculated 
to be 31 kJ mole−1, which is comparable to that for Li1.4Al0.4Ge0.2 
Ti1.4(PO4)3, as reported previously (Zhang et al., 2013). Figure 9 
shows the dependence of the three-point bending strength on 
the Al content for Li1+xAlxGe0.2Ti1.8−x(PO4)3 sintered at 900°C 
for 7  h. The maximum bending strength of 90  N  mm−2 was 
observed for Li1.45Al0.45Ge0.2Ti1.35(PO4)3 with a relative density of 
95.8%. The bending strength is higher than that of 65 N mm−2 for  
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FigUre 11 | Total electrical conductivity at 25°c and relative density of li1+xalxge0.3Ti1.8−x(PO4)3 as a function of x.

FigUre 10 | impedance profiles measured at 25°c of li1+xalxge0.3Ti1.7−x(PO4)3 as a function of x.

Li1.4Al0.4Ge0.2Ti1.4(PO4)3 prepared by tape casting using powder 
prepared by the sol–gel method (Zhang et al., 2015) and lower than 
that of 140 N mm−2 for a polished Ohara plate of Li1+x+yAlx(Ti,Ge)
SiyP3−yO12 glass–ceramics, the conductivity of which is as low as 
1 × 10−4 S cm−1 at room temperature. The high bending strength 
of Li1.45Al0.45Ge0.2Ti1.35(PO4)3 prepared by the conventional solid-
state reaction is quite attractive for applications, such as the 
water-stable protective layer in aqueous lithium batteries.

Zhang et  al. (2013) examined the electrical conductivity 
dependence on the Ge content in Li1.4Al0.4GexTi1.6−x(PO4)3, and 
the highest conductivity was observed for Li1.4Al0.4Ge0.2Ti1.4(PO4)3 
prepared by the sol–gel method. We also examined the effect of the 
Ge content in Li1+xAlxGeyTi2−x−y(PO4)3. Figure 10 shows imped-
ance profiles measured at 25°C of Li1+xAlxGe0.3Ti1.7−x(PO4)3 as a 
function of x. The highest bulk conductivity of 1.39 × 10−3 S cm−1 
and total conductivity of 8.95 × 10−4 S cm−2 were observed for 
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lytes for the large size batteries in electric vehicles and stationary 
electricity storage systems. Takahashi et al. (2012) reported the 
electrical conductivity for a tape-cast Li1.4Al0.4Ti1.6(PO4)3–3 wt% 
TiO2 film as 7.6 × 10−4 S cm−1 at 25°C. Zhang et al. (2015) also 
reported an electrical conductivity of 1.22 × 10−3 S cm−1 at 25°C 
for a tape-cast film of Li1.4Al0.4Ge0.2Ti1.4(PO4)3. The powders for 
these tape casting films were prepared by the sol–gel method 

FigUre 12 | impedance profile of the tape cast li1.45al0.45ge0.2Ti1.35(PO4)3 
film measured at 25°c.

using expensive Ti and Ge alkoxides. Here, we prepared 
Li1.45Al0.45Ge0.2Ti1.35(PO4)3 films by the tape casting method using 
powders prepared by the conventional solid-state reaction using 
TiO2 and GeO2. The impedance profile of the film measured at 
25°C is shown in Figure 12. Zhang et al. (2015) reported an aging 
effect on the electrical conductivity of a tape-cast film stored in 
an air atmosphere. Therefore, the impedance was measured for 
a film stored for 1 week in an Ar glove box. The total and bulk 
conductivities at 25°C were estimated to be 1.01  ×  10−3 and 
2.21 × 10−3 S cm−1, respectively, which are comparable to those of 
a sintered plate prepared from a pressed green body.

cOnclUsiOn

The NASICON-type water-stable lithium-ion-conducting 
solid electrolyte of Li1+xAlxGeyTi2−x−y(PO4)3 was prepared using 
conventional solid-state reaction at 900°C for 7  h. The highest 
lithium-ion conductivity of 10−3 S cm−1 at 25°C was found for the 
Li1+xAlxGeyTi2−x−y(PO4)3 composition with x = 0.45 and y = 0.2. 
The relative density of the sintered pellets was as high as 95.8%, 
and the three-point bending strength was 90 N mm−2. Tape cast 
films of Li1.45Al0.45Ge0.2Ti1.35(PO4)3 were prepared using powder 
prepared by solid-state reaction. The total and bulk electrical con-
ductivities of the film were comparable with those of a sintered 
plate prepared from a pressed green body. This water-stable high 
lithium-ion-conducting solid electrolyte has potential applica-
tion as the protective layer of lithium metal electrodes in aqueous 
lithium–air batteries and lithium batteries with aqueous liquid 
cathodes.
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