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Intermittent contact alternating current scanning electrochemical microscopy (ic-ac-
SECM) has been used to determine the electrochemical response to an ac signal of 
several types of materials. A conductive gold foil and insulating Teflon sheet were first 
used to demonstrate that the intermittent contact function allows the topography and 
conductivity to be mapped simultaneously and independently in a single experiment. 
Then, a dense pellet of an electronically insulating but Li ion conducting garnet phase, 
Al-substituted Li7La3Zr2O12 (LLZO), was characterized using the same technique. The 
polycrystalline pellet was prepared by classical ceramic sintering techniques and was 
comprised of large (~150  μm) grains. Critical information regarding the contributions 
of grain and grain boundary resistances to the total conductivity of the garnet phase 
was lacking due to ambiguities in the impedance data. In contrast, the use of the ic-ac-
SECM technique allowed spatially resolved information regarding local conductivities to 
be measured directly. Impedance mapping of the pellet showed that the grain boundary 
resistance, while generally higher than that of grains, varied considerably, revealing the 
complex nature of the LLZO sample.

Keywords: intermittent contact alternating current scanning electrochemical microscopy, solid electrolyte, 
lithium lanthanum zirconium oxide, garnet, grain boundaries

inTrODUcTiOn

Solid electrolytes have been proposed for use in a number of battery configurations such as all solid-
state lithium metal batteries (Jones and Akridge, 1993; Bates et al., 2000; Kamaya et al., 2011; Nagao 
et  al., 2013), hybrid systems with aqueous electrolytes in which the metallic lithium electrode is 
protected by a solid electrolyte (Chu et al., 2002), and hybrid flow batteries with aqueous cathodes 
and metallic lithium anodes (Lu and Goodenough, 2011). The use of a solid electrolyte in optimized 
devices suppresses dendrite formation and allows reliable cycling of the lithium electrode, thereby 
potentially enabling higher energy densities than currently available with conventional lithium-ion 
battery designs.
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Several classes of inorganic materials show high Li ion 
conductivities (Knauth, 2009) including glasses, composites, 
and crystalline oxides or sulfides. Some of the most promising 
of these, based both on good transport properties and apparent 
resistance to reduction by lithium metal, are garnet-structured 
phases related to the compound Li7La3Zr2O12 (LLZO) (Murugan 
et al., 2007; Cussen, 2010; Thangadurai et al., 2014; Rettenwander 
et al., 2015). To stabilize the cubic polymorph, which is several 
orders of magnitude more conductive than the tetragonal one, a 
small amount of Al is usually substituted for some of the lithium 
in LLZO compositions (Geiger et al., 2011).

To maximize ionic conductivity and ensure that shorting does 
not occur, very thin but dense layers of the solid electrolyte are 
required in electrochemical devices. The electrochemical char-
acteristics of polycrystalline electrolytes are intimately related to 
details of their microstructures, including grain size, grain ori-
entation, and the nature of the grain boundaries (Verkerk et al., 
1982; Buechele et al., 1983; Ban and Choi, 2001) and profoundly 
affect how devices containing them function. For example, we 
have recently discovered that symmetrical Li/LLZO/Li cells 
containing small-grained samples (~20  μm) of LLZO failed 
later than those with larger-grained ones (~150 μm) and could 
sustain higher critical current densities during cycling (Cheng 
et al., 2015a). The effect was attributed to the presence of more 
low-resistance grain boundaries that could effectively dissipate 
currents in the small-grained samples. In contrast, current focus-
ing at the grain boundaries in the large-grained samples resulted 
in rapid shorting of the symmetrical cells. While impedance 
measurements on the LLZO samples appeared to be consistent 
with this interpretation, quantitative values for grain boundary 
resistances could not be extracted from the data. Methods allow-
ing direct measurements of local conductivities and correlations 
with topographical features would be extremely helpful in deter-
mining which microstructures exhibit the most robust behavior 
during electrochemical cycling in order to design more reliable 
high energy density batteries utilizing solid electrolytes.

Herein, we describe a technique, intermittent contact alternat-
ing current scanning electrochemical microscopy (ic-ac-SECM), 
which combines two previously developed methods [ic-SECM 
(McKelvey et  al., 2010; Lazenby et  al., 2013) and ac-SECM 
(Diakowski and Ding, 2007; Eckhard and Schuhmann, 2008; 
Gebala et al., 2011; Trinh et al., 2011)] that allows this correlation 
and demonstrate its effectiveness using several types of samples, 
including a large-grained LLZO pellet. This extends the growing 
trend of using SECM techniques to answer questions pertaining 
to battery materials and to energy applications at micron or 
greater length scales (Bertoncello, 2010; Lai et  al., 2012; Bülter 
et al., 2014; Zampardi et al., 2015a,b). Furthermore, two recent 
papers describe the use of SECM to characterize solid electrolyte 
interfaces in batteries (Bülter et al., 2015; Ventosa et al., 2015).

MaTerials anD MeThODs

sample Preparation and characterization
Li7La3Zr2O12 powders used for preparing dense pellets were 
synthesized from stoichiometric amounts of Li2CO3, La(OH)3, 

ZrO2, and Al2O3, as described in Cheng et  al. (2014). Powders 
were attrition-milled to an average size of about 1 μm and then 
compacted into pellets. These were fired at 1100°C in a fresh LLZO 
powder bed for 12 h to densify them, and then dry-polished to 
remove a 50-μm thick layer from each side. The densified and 
polished pellets were approximately 1.5 mm thick and 8.0 mm 
in diameter.

The image of the pellet surface was obtained by SEM using 
a Hitachi TM-1000 tabletop microscope. Impedance measure-
ments were obtained on dense LLZO pellets between blocking 
electrodes using a VMP3 multichannel potentiostat/galvanostat 
(Bio-Logic Science Instruments). For these experiments, a gold 
layer was sputtered on both sides of the pellet and Pt meshes and 
wires were attached and used as current collectors. Measurements 
were made at frequencies from 1 MHz to 0.1 Hz, and conductivi-
ties were determined from the intercepts of the arcs with the real 

axes in the Nyquist plots, using the equation σ = ×
1
Z

L
A

, where Z 

is the impedance, L is the pellet thickness, and A is the pellet area.

scanning electrochemical Microscopy 
experiments
A model ic-SECM470 scanning probe microscope [Bio-Logic 
Science Instruments (http://www.bio-logic.info/scanning- 
systems-scan-lab/instruments/)] was used to make measure-
ments on LLZO samples immersed in 0.1M tetrabutylammonium 
perchlorate (TBA-ClO4) in propylene carbonate (PC) solutions. 
A 10-μm diameter Pt ultramicroelectrode (glass sheath, ratio of 
glass to Pt at the apex, R/G = 10) was used as the probe, with the 
gold layer on the back of the LLZO sample used as the counter-
electrode, and a Pt sheet electrode as a pseudo-reference. For the 
control experiments using an insulating polytetrafluoroethylene 
(PTFE) blank, a Pt wire was used as the counter-electrode instead. 
For control experiments with the electronically conducting gold 
disk, which was embedded in an insulating plastic resin, experi-
ments were performed in tap water using the Pt probe described 
above with a Pt counter-electrode and a standard calomel elec-
trode (SCE) as reference, because PC dissolves the resin. These 
results are provided in Supplementary Material. All experiments 
were carried out at room temperature.

The concept of ic-SECM is similar to tapping-mode AFM. The 
probe vibration spectrum is recorded, a frequency slightly lower 
than the resonant frequency is selected, then the tip amplitude 
and set point are selected. The approach to the surface is executed 
until the tip oscillation amplitude reaches the predefined set point 
by probe interaction (damping of vibration) with the surface. 
Throughout the mapping, a constant tip amplitude is maintained, 
and the topography is determined through mechanical interac-
tion, while the electrochemical measurement (dc or ac) is run 
independently.

Measurements on the gold disk were performed with a dc-bias 
of 0.0 V vs. OCP, ac-bias of 100 mV, and ac-frequency of 50 kHz. 
ac-SECM approach curves showed these settings allowed for 
noticeably different responses at the insulator and conductor. In 
most cases, an area scan of 150 μm by 150 μm was performed, 
with a step size of 10 μm and scan velocity of 20 μm/s. For the 
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FigUre 1 | seM image of the surface of a large-grained llZO pellet 
used for this study.

FigUre 2 | nyquist plots of impedance data obtained on an au/llZO/au cell at (a) 25, (B) 48, and (c) 73°c.
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intermittent contact measurements, an oscillation frequency 
of 450 Hz (about 15 Hz below resonance) was applied, with an 
amplitude of 0.1 μm. The set point was 80% of the tip oscilla-
tion. For the height tracking experiments, the topography data 
from the ic-ac-SECM measurement were used to set the z-height 
throughout the ac-SECM experiment. As with the ic-ac-SECM 
measurement, the result is not convoluted by the sample 
topography. As the probe is not vibrating in the height tracking 
measurement, any possible effect of the probe vibration on the 
result is also ruled out.

A 250 μm × 250 μm area of the LLZO sample was mapped 
with a 2.5 μm step size while an ac-bias of 100 mV amplitude 
(sinusoidal wave) with a frequency of 100 kHz was applied to the 
probe. For mapping of larger areas, a 5 μm step size was used. 
Unlike more classical ac-SECM approaches where the impedance 
between the tip and a distant counter electrode is measured and 
the coupling between the two (or three electrodes, if a reference 
is used) is studied, here we are measuring the impedance through 
the sample (1500  μm) and a thin layer of electrolyte above it 
(<1 μm). The tip intermittent contact settings were: 440 Hz oscil-
lation frequency (about 15 Hz below resonance), 100 nm of free 
oscillation amplitude, and 80% set point for contact amplitude. 
The last two parameters define the smallest time-averaged tip-
sample distance of 40 nm, which is two orders of magnitude closer 
than a classical ac-SECM experiment would allow in a study like 
ours. Furthermore, given that the tip oscillation is almost three 
orders of magnitude slower than the ac wave applied to the tip 
(and sample), as well as about two orders of magnitude faster 
than the per-point data acquisition time, we observed no cross-
talk between the topography and electrochemical measurement 
(each impedance measurement is semi-stationary, and they are 
averaged over multiple tip oscillation cycles); see Supplementary 
Material.

Data were processed using Gwyddion 2.40 SPM data analysis 
and visualization tool and presented in 3D using 3DIsoPlot® 
software package by Uniscan Instruments. No degradation of the 
garnet pellet was observed after the experiment, using a Bruker 
D2-Phaser diffractometer with Cu Kα radiation to determine the 
phase purity.

resUlTs

Figure 1 shows scanning electron micrographs of large-grained 
LLZO samples made from powders having the nominal com-
position Li6.1Al0.3La3Zr2O12. Pellets made from attrition-milled 
powders, as described in Cheng et al. (2014) were 92% dense with 
a majority of grains about 150–200 μm across. The X-ray diffrac-
tion data, energy dispersive X-ray spectroscopy (EDS) mapping, 
inductively coupled plasma optical emission spectrometry (ICP-
OES), and laser-induced breakdown spectroscopy (LIBS) results 
reported in that paper were consistent with the interpretation of 
a phase-pure, homogeneous garnet sample, once surface impuri-
ties were polished away. Total conductivity at room temperature 
of 2.3 × 10−4 S/cm was measured prior to polishing. A comparison 
of the ac and dc responses of cells containing LLZO with non-
blocking electrodes (i.e., lithium) indicated that the conductiv-
ity is primarily ionic and is attributable to lithium transport  
( t

Li+
≈1 ). Typical Nyquist plots for an Au/LLZO/Au cell at differ-

ent temperatures are shown in Figure 2. In cases where the grain 
boundary resistance is much higher than that of the bulk, two semi-
circles in the Nyquist plot are frequently observed, with the lower 
frequency one usually assigned to the grain boundaries (Bauerle, 
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FigUre 3 | ic-ac-secM results on a scratched PTFe blank in a 0.1M TBa-clO4 Pc solution. On the left, ac current magnitude, in the middle, impedance, 
and, on the right, topography. Note that the absolute scale of the impedance change is ~5% of the signal measured in Figure 4 (middle) and is dominated by noise 
in this test.
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1969; Fleig, 2002). Their contributions to the total conductivity 
can then be determined based on geometric considerations [i.e., 
the bricklayer model (Verkerk et al., 1982)]. However, when grain 
boundaries are comparable to or more conductive than the bulk, 
the impedance spectra cannot be readily deconvoluted (Bouchet 
et al., 2003). At room temperature, the Nyquist plot of the LLZO 
cell consists of a partial semicircle at high frequency and a spike 
at low frequency. The diameter of the semi-circle was attributed 
to the total impedance of the LLZO pellet. At 48°C, as shown in 
Figure 2B, the semicircle diminishes, and it vanishes completely 
at 73°C (Figure 2C). While total conductivities of 5.4 × 10−4 and 
1.4 ×  10−3  S/cm were determined at 48 and 73°C, respectively, 
from this data, contributions from the grain and grain boundaries 
could not be separated.

Several experiments were performed on control samples to 
verify the capability of the instrumentation to provide meaningful 
data for the intended characterization of the LLZO sample (e.g., 
to rule out the possibility of cross-talk between ac vibration and 
ac measurement channels or tip oscillation affecting the data). 
Experiments in several different modes were conducted to under-
stand if ic-ac-SECM provided new and useful information. These 
include constant height ac-SECM, where the probe is scanned 
in x and y planes only, constant distance ic-ac-SECM, where the 
probe maintains partial contact with the surface by adjusting 
x, y, and z positions, and constant distance ac-SECM by height 
tracking, where the probe follows a prior recorded topography 
and again adjusts x, y, and z positions.

The above was first demonstrated on a conductive gold disk to 
demonstrate the viability of the ic-ac-SECM technique, the results 
of which are presented in Supplementary Material. These results 
confirmed that cross-talk between channels was not occurring 
and that tip oscillation did not influence the output. Additionally, 
ic-ac-SECM experiments were performed on an insulating PTFE 
blank in 0.1M TBA-ClO4 in PC to demonstrate the capability 
of the instrument to obtain topographic data separately from 
impedance. For this experiment, the sample was deliberately 
scratched. Figure 3 shows the ac current magnitude, the imped-
ance magnitude, and the topography of the blank PTFE sample.

Results from ic-ac-SECM experiments over a wide area 
(650  μm  ×  650  μm) were obtained on the LLZO pellet and 

are shown in Figure S8 in Supplementary Material. Figure  4 
shows results obtained on an unpolished pellet, which had 
been exposed to air for a prolonged period, over a smaller area 
(325 μm × 325 μm) in several different modes (ac-SECM, ic-ac-
SECM, and ac-SECM mode with height tracking). In the imped-
ance and topography maps using ic-ac-SECM mode, arrows or 
circles denote areas of interest, which will be discussed in the next 
section. Figure 5 shows the same set of experiments on a sample 
that was polished to remove Li2CO3 from the surface. Finally, 
Figure 6 shows a 250 μm × 250 μm area of the polished LLZO 
pellet, which shows a more detailed view.

DiscUssiOn

The LLZO sample used in this study had a complex microstructure 
consisting primarily of large grains that varied considerably in 
shape and size, as shown in Figure 1. The complexity may explain 
why the impedance data obtained on the large-grained LLZO 
sample could not be readily deconvoluted into separate grain and 
grain boundary contributions at any of the temperatures studied, 
as seen in Figure 2. In fact, there have been conflicting reports as 
to the relative resistances of grains and grain boundaries in LLZO 
samples [see Tenhaeff et al. (2014) for a more complete discussion 
of this topic as well as the challenges of interpreting impedance 
data]. Variations in details of the processing and techniques used 
to produce dense samples may explain the seemingly contradic-
tory evidence. For example, the properties of a large-grained 
LLZO sample similar to one used in this study were unlike those 
of one with smaller (~20 μm) grains, due to possible differences in 
grain boundary chemistry (Cheng et al., 2015b). This observation 
illustrates the importance of deeper understanding of the specific 
nature of the grain and grain boundaries, which may require the 
use of other techniques sensitive to local grain and grain bounda-
ries besides conventional impedance analysis on the overall 
sample (Fleig and Maier, 1999; Fleig et al., 2000; He et al., 2011).

Direct observation of local variations in conductivity with 
simultaneously obtained spatial information can be carried out 
using SECM (Bard et al., 1989), making it ideal for the study of 
polycrystalline samples in which the bulk and grain boundary 
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FigUre 5 | impedance maps obtained on a polished llZO pellet in ac-secM mode (left), ic-ac-secM mode (middle) and ac-secM mode with 
height tracking (right). A topography map obtained from the ic-ac-SECM experiment is also shown below the ic-ac-SECM impedance map in the middle.  
A 325 μm × 325 μm area was studied.
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resistances differ. In SECM, the current response of an ultrami-
croelectrode tip (probe) as a function of its exact position over a 
substrate immersed in solution is recorded. This is a function of 
both the tip-sample distance and the conductivity of the sample. 
In ac mode, changing the conductivity of the solution or the 
frequency of the applied potential further alters the response. In 
intermittent contact (ic) mode, the probe is in intimate proximity 
to the sample, and that distance is kept uniform throughout the 

experiment removing or greatly diminishing the influence of 
sample topography, which is notorious for interfering with SECM 
measurements. Ideally, this allows information about the electro-
chemical response of the sample to be obtained independently of 
the topographical features. There are, however, many technical 
challenges associated with these experiments, such as the pos-
sibility that the vibration of the tip may affect the impedance, or 
that cross talk may occur between impedance and topography 

FigUre 4 | impedance maps obtained on an unpolished llZO pellet in ac-secM mode (left), ic-ac-secM mode (middle), and ac-secM mode with 
height tracking (right). A topography map obtained from the ic-ac-SECM experiment is also shown below the ic-ac-SECM impedance map in the middle. A 
325 μm × 325 μm area was studied. White and black arrows in the ic-ac-SECM impedance and topography maps point to areas of interest as explained in the text.
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B

FigUre 6 | Topographic (a) and impedance (B) maps obtained on an 
llZO pellet using ic-ac-secM over a 250 μm × 250 μm area.
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channels. To rule out such artifacts as an explanation for what was 
observed on the LLZO samples, several types of experiments were 
carried out on a gold disk and are presented in the Supplementary 
Material. Once these were completed, data were collected on an 
insulating PTFE sample, which had been deliberately scratched 
(Figure 3). The scratch is clearly visible in the topography image, 
but the ac current magnitude and impedance responses are not 
affected by the depth change. A noteworthy feature was the ability 
to clearly image topographical features only tens of microns deep 
and less than about 100-μm wide (see upper left of the topography 
image), in spite of the fact that the total size of the probe, including 
the encapsulating glass, is estimated to be about 100 μm across. 
This is possible because the intermittent-contact technique will 
typically use a part of the probe tip to contact the sample, depend-
ing on the exact orientation of the probe relative to the sample. 
The success of these control experiments lends credence to the 
results obtained on LLZO samples described below.

Scans in various modes were taken on unpolished (Figure 4) 
and polished (Figure 5) LLZO samples over 325 μm × 325 μm 
areas to show the different information that is obtained. Impedance 
maps taken in ac-SECM mode (leftmost images in the Figures) are 
a function of both the sample topography and local differences in 
impedance. Using height tracking in ac-SECM mode (rightmost 
images in the Figures) is more informative, but requires that the 
topography be obtained separately. For this type of experiment, 
the probe follows a prior-recorded topography, but may still 
suffer from effects such as sample movement and temperature 
drift. Finally, the data appear to be better resolved in ic-ac-SECM 

mode (middle images) as the images show both higher contrast 
and (subjectively) more detail. Maintaining intermittent contact 
with the sample helps to remove the interference of temperature 
drift or sample movement from the measurement as evidenced by 
the better clarity of the data in Figures 4 and 5. Additionally, ic-
ac-SECM mode allows topographical information to be obtained 
simultaneously (bottom images in the middle). In the case of the 
unpolished sample (Figure 4), there is a roughly inverse corre-
spondence between the height and the impedance of the sample 
at any given location; in other words, where there is a rise in the 
topography, the impedance appears to decrease and vice versa. 
For example, the light blue patch embedded in a dark blue area on 
the upper right side of the topography map, indicated by a black 
arrow, corresponds to a locally raised area with lower impedance 
than the surroundings. The correlation would normally raise 
suspicions about cross-talk, but for the fact that the match is not 
perfect. As one example, the raised spot indicated by the white 
arrow on the topography image has higher, not lower, impedance 
than the surroundings. In LLZO samples like this one, grains are 
raised compared to the grain boundaries; thus, the correlation 
of raised areas with lower impedance seems to suggest that the 
grains are more conductive than the grain boundaries, were it 
not for the anomalous feature pointed out by the white arrow. 
This feature is much smaller than the grains shown in Figure 1. 
However, large-grained samples of LLZO are somewhat air sensi-
tive and react to form lithium carbonate (Li2CO3), particularly 
when moisture is present (Cheng et al., 2015b). It is likely that the 
raised spot corresponds to a particle of resistive lithium carbonate 
on the surface of the unpolished LLZO pellet.

When the LLZO sample was polished to remove lithium 
carbonate, a clearer picture emerges from the ic-ac-SECM 
experiment (middle images in Figure 5). The topography (bot-
tom, middle in Figure 5) is reduced by around 65% compared 
to Figure 4, but still indicates that there are several large raised 
areas roughly the size of the grains in Figure 1, separated by lower 
narrow regions in dark blue, which could be grain boundaries. 
Again, there is a rough inverse correspondence between height 
and impedance despite the reduced topography, with the narrow 
low regions showing higher impedance compared to the larger 
higher regions. While the match is not perfect, this suggests that 
the grain boundaries are more resistive than the grains.

For a more detailed view, a smaller area (250 μm × 250 μm) 
of a polished sample was studied using a smaller step size. These 
results are presented in Figure 6. A large raised portion about 
200 μm across is evident in the topographical map, which is most 
likely a large grain. This roughly corresponds to the region of 
lower impedance seen in Figure  6B. This grain is surrounded 
by boundaries of higher impedance. There is, however, signifi-
cant variation in the impedance of these boundaries with some 
regions much higher than in others, where it is close in value to 
that of the grain itself. Several research groups have observed that 
there is Al enrichment at the grain boundaries of LLZO samples 
similar to the one in this study (Jin and McGinn, 2011; Li et al., 
2012, 2014; Cheng et al., 2014; Ren et al., 2015). Grain boundary 
conductivities may also vary in polycrystalline samples due to a 
distribution of grain misorientation angles. Highly mismatched 
grain boundaries are energetically unstable and can lead to large 
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structural and compositional deviations, as has been observed 
recently in samples of lithium lanthanum titanate (LLTO) and 
lithium aluminum titanium phosphate (LATP) (Gellert et  al., 
2012; Ma et al., 2014). In general, ion transport is more favorable 
when mismatches are less severe. Synchrotron microdiffraction 
experiments on the large-grained LLZO sample indicate that 
the grain boundary misorientation angles are distributed with a 
mean value of 39.4° ± 13.6° (Cheng et al., 2015a). Thus, it is not 
unreasonable to observe that the sample contains grain bounda-
ries with different characteristics, a fact that is not revealed using 
macroscopic impedance analysis, which can only provide aver-
aged information.

cOnclUsiOn

Deconvolution of impedance data to determine grain and grain 
boundary contributions to total conductivities of polycrystalline 
solid electrolytes is not always possible. Furthermore, it can only 
give averaged information on these samples, which may be very 
complex in nature (multiple conductive phases and orientation-
dependence). In contrast, ic-ac-SECM allows direct observation 
of both topography and impedance, simultaneously. In this 
work, it was used to characterize a large-grained LLZO pellet, 
which showed significant variation not only between grain and 
grain boundary resistances, but also among the grain bounda-
ries themselves. This is attributed to the distribution of grain 

misorientation angles in the sample, which lead to differences in 
the grain boundary structures and chemistries.
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