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Core degradation and material migration research is one of the key areas in severe 
accident research. A review of core degradation and melting materials immigration 
research in light-water reactor is important to encourage relevant research. In this paper, 
both relevant experiments and numerical analyses are reviewed. Due to their high cost, 
there have only been a few experiments on severe accidents performed. They focus on 
different aspects of core degradation and material migration, including early stage and 
late stage accidents in both PWRs and BWRs. All the current experimental data should 
be fully utilized due to the limited data available. On the other hand, the data available 
from numerical analyses for severe accidents is very extensive. There are already many 
systemic severe accident codes developed by different organizations. These codes 
provide severe accident sequences analysis, severe accident prediction, and are also 
important in security policy formulation. At the end of this paper, relevant work at Xi’an 
Jiaotong University is introduced.

Keywords: review, core degradation, melting materials immigration, experiment, numerical analysis

iNTRODUCTiON

Since the inception of industrial nuclear power production there have been several severe accidents 
that have brought drastic damage to local populations and slowed down the advancement of the 
nuclear industry all over the world. As a consequence, it is very useful to study severe reactor acci-
dents in order to gain a greater understanding of the processes and mechanisms for accidents, assist 
with relevant nuclear security policy, ensure reactor security, and to protect the public from radiation 
damage (Bromet, 2012). Core degradation and material migration research is one of the key areas in 
severe accident research (Hofmann, 1999). It is a multi-phase, multi-component complex physical 
chemical process, which is hard to accurately predict (Wang et al., 2014a). Due to the huge complex-
ity and uncertainty, severe accident analysis faces a lot of difficulties (Soffer et al., 1995). Thus, a 
review of core degradation and melting material migration research in light-water reactors can be 
very helpful to encourage relevant research. A sample of core melting is shown in Figure 1 (Zhang 
et al., 2015a,b).

In this paper, three nuclear severe accidents are overviewed: Fukushima, Chernobyl, and Three 
Mile Island (Rees, 2009; Morino et al., 2011; Petryna, 2013). These accidents caused a large amount of 
damage to local populations and remind people to respect the severity of their occurrences (Matzke, 
1982; Simmons, 2013). Details of several core degradation and material migration experiments 
are then described (Hofmann et al., 1997; Schwarz et al., 1999). Some of the experiments focus 
directly on core degradation and material migration phenomenon (Hagen et al., 1996; Hofmann 
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FigURe 1 | Core melting of AP1000 (Zhang et al., 2015a,b).
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et al., 1997; Repetto et al., 2003; Van Dorsselaere et al., 2006), 
while other experiments deal with separate effects testing of core 
degradation and material migration phenomenon (Thomsen, 
1998; Steinbrück et  al., 2010). Next, this paper comes to the 
numerical investigation and code development of core degrada-
tion and material migration (Vierow et al., 2004; Van Dorsselaere 
et  al., 2009). The physical models are reviewed and compared 
with provide references for relevant research. Finally, in Section 
“Severe Accident Review at XJTU,” the core degradation and 
material migration research at Xi’an Jiaotong University (XJTU) 
is overviewed (Sugiyama et al., 2005; Su et al., 2006; Zhang et al., 
2011; Chen et al., 2013).

CORe DegRADATiON ACCiDeNT 
ReviewS AND PRiMARY ReSeARCH

In the history of the nuclear industry, several severe accidents 
have brought drastic damage to local populations and slowed 
down the development of nuclear industry all over the world. The 
accidents at TMI-2, Chernobyl, and Fukushima are the founda-
tion of current severe accident research and provide a valuable 
insight into probable accident scenarios as well as effectiveness of 
currently implemented safety systems.

TMi Accident
On March 28, 1979, a core degradation accident occured in 
TMI-2 reactor near Harrisburg, Pennsylvania where half of the 
core melted (Friedman, 2011). This is the first accident that let 
people realize the speed of a core melt accident and the effective-
ness of the implemented safety systems.

The accident began with of the loss of feed water to the steam 
generators which caused drying out of the steam generator’s 
secondary side for approximately 10–15 min (Sehgal, 2012). The 
in-vessel pressure kept increasing, while the turbine stopped 
running and the reactor shut down. However, the pilot operated 
relief valve, used to bring down the vessel’s pressure, did not 
close as it was designed. This caused the coolant to continue 
discharging. The high-pressure emergency-core cooling system 
(ECCS) was also intentionally closed by the operators, leading 
to the uncovering of the core for 130 min. The cladding tempera-
ture kept rising and oxidizing with steam (Moore et al., 1989). 
Finally, about 50% of the core melted down and the blockage 
formed near the bottom. If the operators had not restarted 
the cavitating pumps and filled the vessel with water, the core 
would have probably melted through the vessel and reacted with 
concrete in the containment, making the TMI-2 accident even 
more severe (Toth et al., 1986).
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Chernobyl Disaster
The Chernobyl disaster occurred in one of the four Reaktor 
Bolshoy Moshchnosty Kanalny (RBMK) reactors in Ukraine, 
Soviet Union on April 26, 1986 (Howard, 2008). This accident 
originated from a technology experiment in Chernobyl nuclear 
power plant which tries to test the available length of a spinning 
turbine of the electrical power to certain nuclear power plant 
system (Howieson and Snell, 1987; Sehgal, 2012). Normally, the 
power would have been reduced to about 30% to conduct the test, 
but the operators made a mistake and let the power fell to 1%, 
which is too low to conduct the test. Meanwhile, the absorption 
effects from Xenon and liquid water caused the power to continue 
to decrease. In order to complete the test, operators pulled out 
almost all the control rods and finally raised the power back to 7%. 
When the test began, the turbine was disconnected, so the water 
in the core moved more slowly and began to boil. The reactor 
power rose sharply due to the positive reactivity feedback of the 
RBMK reactor. When the operator tried to drive the emergency 
rods and shut down the reactor, it was too late. The power of the 
reactor increased up to about 100 times of full-loaded power and 
greatly destroyed the reactor. The radioactive pollution directly 
went into atmosphere due to the lack of containment, which 
caused a negative impact on large areas (Howieson and Snell, 
1987; Friedman, 2011).

Fukushima Accident
On March 11, 2011, the Fukushima accident took place in Japan, 
which was caused by the unexpected natural disasters of the 
earthquake and tsunamis. The earthquake caused the loss of 
the reactors’ offsite power and initiated the start of the backup 
diesel generators as designed. However, the subsequent tsunami 
disabled the diesel generators, and most of the alternating cur-
rent power in units 1–4 was lost (Holt et al., 2012; Iida, 2013). 
Thus, the core cooling capabilities were lost and the water levels 
in the reactor vessel dropped. Large amounts of hydrogen were 
generated due to the reaction between steam and the zirconium 
fuel cladding. This caused a large hydrogen explosion in unit 1 on 
March 20, causing widespread damage. As reported by TEPCO, 
all fuel in unit 1 melted to the bottom and most of the fuel even 
went into the primary containment vessel (PCV) (Friedman, 
2011; Holt et  al., 2012; Aoki and Rothwell, 2013). Finally, the 
accident was brought under control as the seawater was injected 
and offsite power was restored.

eXPeRiMeNTAL ReSeARCH ON CORe 
DegRADATiON AND MeLTiNg MATeRiAL 
MigRATiON

Due to the damaging effects of core degradation and material 
migration, it is very important to perform experimental research 
in this area. However, these experiments are very expensive and 
funding limits the number of experiments that can be performed. 
Therefore, we need to take full advantage of all data collected in 
these experiments.

CORA core degradation early stage experiments started in the 
1980s by Germany’s KFK National Lab aiming at International 

Standard Problem 31. The CORA experiment focused on PWR, 
BWR, WER core degradation and quench situation research 
(Schanz et al., 1992; Hofmann et al., 1997). It includes 19 tests; 
CORA-13 is represented here as a reference case (Firnhaber 
et al., 1993a). CORA-13 started November 15, 1990 at KFK. The 
testing parameters of CORA-13 include experimental boundary 
conditions, fuel temperature, hydrogen generation rate, post-
experiment fuel morphology, and so on. Fuel morphology is 
recorded by pictures, which are not convenient for quantitative 
analysis. The primary and boundary conditions are controlled 
by the experiment input, so there is no need for extra tests for 
primary and boundary conditions. This operation method allows 
for better data in each test (Firnhaber et al., 1993b). The excessive 
high temperature in severe accident conditions, normally higher 
than 1,500 K, will bring severe damages to the reactor core, such 
as the interaction between different chemical materials, melting of 
core materials, relocation, core flow channel blockage, hydrogen 
generation, etc. In the early stage of severe accidents, the tempera-
ture of core is not extremely high. However, to alleviate this situ-
ation before too late, it is very important to learn about the core 
degradation early stage knowledge and make the probabilistic 
forecasting of severe accident sequence. The CORA experiments 
are very useful in helping us understand severe accident early 
stage phenomena and it also promotes the development of other 
severe accident early stage research (Haste et al., 2015).

The power burst facility–severe fuel damage (PBF–SFD) tests 
were performed at the Idaho National Engineering Laboratory, 
during 1982 and 1985. The objectives of these four in-pile experi-
ments were to investigate fuel rod behavior, hydrogen generation, 
and the behavior of fission products in severe accidents (Knipe 
et  al., 1986; Martinson, 1989; Petti et  al., 1989; Hobbins et  al., 
1991). The primary components of the PBF reactor are a fission 
drive core, a central flux trap and an independent pressurized 
water coolant loop (IAEA TECDOC, 2011). The fuel bundle con-
sisted of 32, 0.9-m long, trace-irradiated fuel rods (Knipe et al., 
1986). The test process includes power calibration measurements, 
high-power operation, shutdown, low-power operation, boil-
down of the coolants, a short period of high temperature, shut 
down of the power, bundle storage, as well as the examination 
of the post-test bundle (IAEA TECDOC, 2011). The PBF–SFD 
in-pile fuel damage experiments were the first tests performed 
and they have provided most of the analytical results about the 
degrading of major phenomena.

The PHEBUS experiment aims to solve International Standard 
Problem 46 which are the core degradation and melting materials 
migration problems (Gonnier et al., 1992; Schwarz et al., 1999; 
Clément and Zeyen, 2013; Haste et al., 2015). The research target 
of PHEBUS is to study the key in-vessel physical phenomenon, 
including core degradation, fossil fuel transportation, trans-
formation, and relevant physical chemical phenomenon. The 
PHEBUS-FP test matrix is shown is Table  1. PHEBUS FPT-1 
tested a loss of coolant accident (LOCA) in high-density steam 
condition. This experiment provided scientists a good opportunity 
to understand the mechanism of core degradation and melting 
materials migration. To achieve better experimental results, the 
design of PHEBUS was an exact copy of a light-water reactor. The 
PHEBUS facility includes a core, steam generator, security vessel, 
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TAbLe 1 | PHEBUS-FP test matrix (Clément et al., 2003).

No. Fuel types Fuel bundles Primary circuit Year

FPT-0 Fresh fuel
1 Ag-IN-Cd Rod
9 d. Pre-Irrad

Melt progression and FP release in vapor rich  
environment

FP chemistry and deposits in  
non-condensing steam generator

1993

FPT-1 BR3 Fuel
~23GWd/tU
1 Ag-In-Cd Rod
Pre-Irrad

As FPT-0 with irradiated fuel As FPT-0 1996

FPT-2 As FPT-1 As FPT-1 under steam poor conditions As FPT-1 with effect of boric acid 2000

FPT-3 As FPT-1, but with B4C instead of Ag-In-Cd As FPT-2 As FPT-0 2003

FPT-4 EdF Fuel
~33GWd/tU
No re-irradiation

Low-volatile FP and actinide release from  
UO2-ZrO2 debris bed, up to melting

Integral filters in test device post- 
test studies on samples

1999

FPT-5 Pre-Irrad. As FPT-1 Fuel degradation and FP release in air conditions Deposition and chemistry of FPs  
in air conditions

2004–2005
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and so on. There are 21 bundles in the core, with 1 control bundle 
in the center and 20 surrounding fuel rods. The control rod is 
made up of Ag-In-Cd, while the fuel rods of uranium dioxide. 
These experiments generated results on fission product behavior, 
and provided quantifiable information about the progression of 
the core melts in vessel (Clément et al., 2003).

PNL conducted the NRU-full-length high temperature 
(FLHT) experiment at the NRU reactor of Atomic Energy of 
Canada Ltd. by the Coolant Boil-away and Damage Progression 
program (CBDP) (Lanning et al., 1988; Lombardo et al., 1988). 
The objective of the CBDP program was to understand the 
impacts of the boiling-away of coolants and get data from the 
damage progress of the core at LWR conditions, as well investi-
gate the severe accidents of full-length bundles. The NRU-FLHT 
hardware for testing includes one NRU reactor and other four 
parts, namely the steam closure cave, effluent control module, test 
train assembly, and a data acquisition and control system (IAEA 
TECDOC, 2011). The FLHT tests made data available on SFD 
behavior.

To explore the core components of the melt progression 
behavior of boiling water reactors, the annular core research reac-
tor–damaged fuel (DF) tests were conducted between 1982 and 
1989 at Sandia National Laboratory (SNL) (Gauntt et al., 1989; 
Gasser et  al., 1990). The DF test bundles were produced from 
9 to 14 half-meter long fresh UO2 fuel rods (IAEA TECDOC, 
2011). According to the experiment, some significant data were 
obtained, including the response of the test bundle components, 
the oxidation of the Zr cladding and canister, and the output of 
H2 from metal oxidation.

In addition to the facilities already mentioned, there are many 
other core degradation and melting material migration integral 
facilities, such as CODEX, which aims at investigating the core 
degradation within the light-water reactors (Hózer et al., 2000; 
Hózer, 2002; Hozer et  al., 2003); LOFT, which aims at investi-
gating the PWR core behavior during LOCA-type sequences 
(Jensen et  al., 1989; Cronenberg, 1992); SANDIA-XR, which 
aims to determine the conditions under which steady lower core 
blockages are formed and those where they cannot be formed; 
SCARABEE, which aims to solve fast reactor security analysis 

and the behavior of fuel pool caused by a sub-assembly melting 
at full power; QUENCH, which is to explicitly investigate the 
effect of re-flooding on bundle degradation (Sepold et al., 2007, 
2009; Stuckert et al., 2010, 2011; Stuckert and Steinbrück, 2014); 
with the tool FARO, researchers are able to conduct large-scale 
experiments in order to gain better knowledge of things including 
structure integration, coolant or molten core with less uncertain-
ties considering relocation and melt progression (Hohmann et al., 
1987; Magallon and Huhtiniemi, 2001); and KROTOS, aiming at 
exploring the problem of steam explosion (Magallon et al., 1996; 
Huhtiniemi et al., 1997; Annunziato et al., 1999; Huhtiniemi and 
Magallon, 2001).

CODe DeveLOPMeNT Review AND 
ReLevANT APPLiCATiONS

The development of severe accident analysis codes (including 
core degradation and melting materials migration phenomenon) 
and numerical simulation are very important parts of severe-core 
melt research. This work can significantly reduce experiment 
research costs, cut down research time, and provide a more guided 
approach to obtaining research results. Several major accident 
analysis codes are described below along with their capabilities.

The Electric Power Research Institute develops the Modular 
Accident Analysis Program (MAAP) (Gabor and Henry, 1983; 
Kenton and Henry, 1983; Plys et  al., 1993; Henry et  al., 1994). 
It can perform fast-running full simulations of severe accidents 
of the light-water and heavy-water reactor. In the aspect of core 
degradation and melting materials migration calculations, MAAP 
mixes outside film flow and inner turbulent flow to calculate the 
mass of melting materials. When there is no contact between rods 
the outside film flow model is used, otherwise the inner turbulent 
flow model is used. Regardless of the flow regime, there is crust 
formation between the outside wall and flow materials. The crust 
formed will remain in the computational nodes, but other melted 
material is still allowed to pass by it and run down stream. This 
is what will remain in the receiving node. Due to the reduced 
conservative equations and the simplified discretized systems, 
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FigURe 2 | Candling process steps in MELCOR (Gauntt et al., 1998).
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MAAP runs much faster than other codes, but still provides 
credible results, thus it can be used in probabilistic safety analysis 
for existing reactors as well as more advanced light-water reactors 
(Petoukhov et al., 2009; Rychkov and Kawahara, 2015).

Methods for estimation of leakages and consequences of 
release (MELCOR) is developed at SNLs. It is a computer code 
modeling light-water severe accident progress integrally (Gauntt 
et al., 1998; Vierow et al., 2004; Wang et al., 2015b). It is a second-
generation means to assess plant risks and it is considered to 
be a substitute of the source term code package (Carbajo, 1993; 
Ashbaugh et  al., 2008). MELCOR can also be used to analyze 
design-basis accidents for advanced plant application (Tills et al., 
2009). To analyze melting materials, MELCOR uses a candling 
flow model. Candling flow model means melting materials move 
down and are then relocated in different positions like a candle. 
Candling models are based on thermal/flow and mechanical the-
ory. In MELCOR’s candling model is shown in Figure 2 (Gauntt 
et al., 1998), the melting materials migrate from top to bottom 
via gravity, until they are condensed on a model component, or 
stopped by another blockage. Those condensing materials are 
called condensed debris and they become part of the model’s solid 
components, which are different from particulate debris.

SCDAP/Reactor Excursion and Leak Analysis Program 
(RELAP) is designed by Idaho National Laboratories to foresee 
the behavior of reactor systems in normal or severe accident situ-
ations (Allison et al., 1983, 1992; Birchley and Stuckert, 2011). 
LIQuefaction-flow-SOLidification (LIQSOL) SCDAP/RELAP is 
used to calculate the clad deformation, the oxidation and heat 
transfer during liquid clad migration (Mladin et al., 2009). The 
melting of fuel rods has a great effect on core damage. In some 
cases, the melting cladding may fall into a low-temperature envi-
ronment, making the oxidation process slower. In other cases, the 
blockage in the flow channels will also slow down the oxidation 
process. Three calculation steps are involved in LIQSOL’s model, 
first, calculating the fuel melting rate around the clad; second, 
calculating the time it takes melting fuel and clad to leave the 
oxidation level; third, calculating the geometry of the melting 
materials migration and oxidation generation.

Xi’an Jiaotong University developed Modular In-vessel 
Degradation Analysis Code (MIDAC) to simulate the process of 

in-vessel severe accidents (Wang et al., 2014b,c; Hu et al., 2015). 
MIDAC includes five modules for calculations: early-behavior, 
core degradation, debris bed, molten-materials-in-vessel reten-
tion (IVR), and connection modules. Those modules can be 
used not only to demonstrate the entire severe accident, but 
also to serve as a link for the conjunction of multiple severe 
accident codes. Furthermore, the primary and transient 
thermal-hydraulic system of MIDAC was used to compare with 
the similar calculations obtained from the module of SCDAP/
RELAP5 and showed good comparison results. MIDAC will 
play a large role in many Chinese nuclear reactors severe acci-
dent analyses.

KESS [Institut Fur Kernenergetik Und Energiesysteme (IKE) 
modular program system to simulate and analysis core melt acci-
dent] is developed by IKE, Germany (Schatz and Hocke, 1995). Its 
intention of designing this program is to easily simulate the physi-
ochemical processes that occur in the reactor core, during heat 
up, and the degradation process. It can simulate large amounts 
of phenomena including: heating up of structures, oxidizing of 
the cladding, production of hydrogen, expanding and collapsing 
of mechanical rods, dissolving of UO2, melting and relocating of 
materials, and releasing and transporting of fission products.

Severe accident analysis code with mechanistic, parallelized 
simulations oriented toward nuclear fields is an integral analysis 
code targeting severe accidents included in the IMPACT pro-
ject (Ujita et  al., 1999, 2002; Naitoh et  al., 2000). It includes a 
mechanistic model that indicates many different phenomena, 
such as the reactor scram and the PCV damage with elaborated 
mathematical characteristics, and can explain physical behaviors 
for analytic results.

ICARE/CATHARE is developed at the French Institute for 
Nuclear Protection and Safety (IPSN), to evaluate severe accidents 
comprehensively under primary systems (Chatelard et al., 2006; 
Seiler et al., 2008). The ICARE/CATHARE code is designed to 
calculate, in a mechanistic way, reactor core damage and primary 
circuit behavior in PWRs. ICARE/CATHARE features a compre-
hensive set of models for late degradation allowing the model to 
follow the materials from their early melting in the core region to 
their later relocation.

Analysis of thermal-hydraulics of leaks and transients with 
core degradation is developed by Gasellschaft fur Anlagen und 
Reaktorsicherheit (GRS) in cooperation with IKE in Germany 
(Trambauer and Austregesilo, 2003; Austregesilo et  al., 2007; 
Hollands et al., 2007; Repetto et al., 2007). The ATHLET code can 
be used to predict a spectrum of beyond design-basis accidents 
for BWRs and PWRs, but without core degradation. The CD part 
adds functions describing core melting, fission product release, 
and transport processes in the primary system. The code struc-
ture is highly modular so that many models can be included and 
further developments and changes to the models can be made 
easier by the users.

Thermal-hydraulic analysis of loss-of-coolant, emergency-core 
cooling and severe-core damage designed by Japanese Atomic 
Energy Research Institute, aims to predict the progression of the 
core in severe accident conditions of LWRs (Abe et al., 1986; Abe, 
1990; Hashimoto and Soda, 1991; Ishikawa et al., 2002). The code 
was developed for Level 2 PSA and can be used in many assumed 
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TAbLe 2 | Core degradation simulation codes.

Code name Supplier Specialty

MAAP EPRI Fast-running full simulations of severe 
accidents

MELCOR SNL Fully integrated, engineering-level 
computer code

SCDAP/RELAP INL Behavior during normal and accident 
conditions

MIDAC XJTU Process of in-vessel severe accidents

KESS IKE Most relevant physical and chemical 
processes

SAMPSON IMPACT Mechanistic models that indicate various 
phenomena

ICARE/CATHARE IPSN Mechanistic way to determine core 
damage and primary circuit behavior

ATHLET-CD GRS and IKE Design-basis spectrum and beyond-
design-basis accidents

THALES JAERI Wide range of postulated accident 
scenarios

ASTEC IRSN and GRS Possible radiological release of fission 
products
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accidents. It has been applied to serial analyses of experiments, 
severe accident sequences, and evaluation of designs.

The code ASTEC is a joint research product of GRS (Germany) 
and IRSN (France) to simulate severe accidents (Van Dorsselaere 
et  al., 2009; Coindreau et  al., 2010; Dorsselaere et  al., 2012; 
Chatelard et al., 2014). It is a relatively new and integrated code 
designed to predict all the behaviors during severe accidents in 
LWRs, such as any event in the beginning and any event with 
possible radiation related to a certain fission product. ASTEC 
has also been widely used in many applications like European 
pressurized reactor simulating. Table  2 summarizes the codes 
and their features.

SeveRe ACCiDeNT Review AT XJTU

Xi’an Jiaotong University is doing a lot of research on core deg-
radation and melting materials migration. The oxidation of the 
metal core was investigated by Dr. Guanghui Su (Sugiyama et al., 
2005). During his research from 2004 to 2006, he proposed an 
important theory, the “hot spot” during core degradation process 
(Su et  al., 2006). Hot spot is the point which has the highest 
temperature in the core, which affects the performance of reactor 
pressure vessel.

Under severe accident conditions, clad oxidation cannot be 
ignored (Beuzet et  al., 2011) since it always weakens the clad-
ding material (Schanz et al., 2004). With the oxidation of clad-
ding material, the accident process can be accelerated, and the 
integrity of vessel may be threatened by hydrogen generation 
(Volchek et al., 2004). Dr. Jun Wang made a comparison between 
CORA and MELCOR steam-oxidation results and showed that 
the hydrogen generation rate is not predicted as well as expected 
(Wang et al., 2014a,b). The oxidation model of MELCOR seems 
to lack mechanical changes during the quenching process which 
are needed to accurately predict oxidation results. Another model 

developed by Mr. Keyou Mao named Clad solid-phase Oxidation 
Analysis Code (COAC) has shown better results through verifica-
tion with a test from the CORA experiments, specifically CORA-
13. This code COAC is also being used in AP1000 for further 
clad-oxidation calculations (Mao et al., 2015).

Dr. Ronghua Chen developed a solidified TEXAS-VI code 
model and applied this code into FARO L14 analysis (Chen et al., 
2013). In Chen’s work, a model was put forward that studies 
molten fuel breakup and solidified impacts for the TEXAS-VI 
code (Chen et al., 2012). The model concentrates on the thermal 
stress and the solid crust layer effects on fuel particles or frag-
ments. In this model of solidification, the Fourier heat equation 
was used to study the temporary temperatures and the thickness of 
fuel particles’ crust layers in boundary and initial circumstances. 
TEXAS-VI was compared with the FARO L14 experiment 
(Nilsuwankosit et  al., 1996) to validate quench and mixed fuel 
coolants data. Results show that the FARO L14 pressure history, 
the liquid-water-pool temperature, and the vapor temperature 
were accordance with the revised model simulation results. FCI 
explosion energetics were significantly influenced by the mixing 
performance (Grishchenko et  al., 2014). Researchers are still 
furthering investigating the solidified impacts to study energetics.

It is important to predict the probability, behavior, and the 
influence of core degradation to calculate the risk and corre-
sponding mitigation (Wang et  al., 2014c). However, even until 
now, all the models of severe accidents are not sufficient and 
lack precision (Sehgal, 2012). Thus, it is critical to investigate the 
core degradation mechanisms and to develop solutions for such 
accidents. Dr. Jun Wang made a core degradation and melting 
materials migration model that analyzed PHEBUS FPT-1 in 
MELCOR (Wang et  al., 2015a). Through this work, the core 
degradation parameters, such as pressure, temperature, hydrogen 
generation, and mass distribution were analyzed. In addition, 
several parameters are shown by color maps to visualize the core 
degradation and melting materials migration throughout the 
accident process.

Dr. Y. P. Zhang is studying a possible solution to critical severe-
core accidents, named the IVR of core melts (Zhang et al., 2011). 
Another creative management process named external reactor 
vessel cooling for IVR analysis was recommended to be used in 
predicting the reactor cavity flooding and the depressurization 
process related to severe accidents to determine safety margins of 
IVR in the AP600. IVRASA proved to be applicable and accurate 
according to the results produced by UCSB using the FIBS bench-
marks. It was also found that the thermal reactions of a couple 
molten configurations could be predicted.

In addition to the current work of those above, many others 
are currently pursuing other avenues of severe accident analysis 
including Dr. Xiaoli Wu’s research on loss of pool-cooling 
accidents in PWRs by applying MAAP5 (Wu et al., 2014). This 
research involved two cases where the initial water levels dif-
fered. Dr. Wei Li also used MAAP5 to analyze the lower head of 
PWR RPV small break loss of coolant accident scenarios based 
on high-pressure injection system failures (Li et  al., 2014). Dr. 
Luteng Zhang has performed a MAAP5 estimation of the PWR 
severe accident setting the pressurizer safety valve stuck-open 
as the initiating event (Zhang et al., 2015a,b). Results provide a 
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clarified explanation of the process and such events as coolant 
release, ECCS operation, core exposure, etc. Dr. Liang Hu has 
also investigated the severe accident scenario of PWR reaction to 
LOCA along with SBO (Hu et al., 2015).

Xi’an Jiaotong University developed MIDAC for analysis of 
IVSA to satisfy the domestic requirement for independent sched-
uling of software (Wang et al., 2014c). Compared with SCDAP/
RELAP5, MIDAC demonstrated a high accuracy in the primary 
system thermal-hydraulic transient analysis in the CPR1000 sta-
tion blackout, and the comparison results proved the validity of 
MIDAC code (Wang et al., 2014c).

In this paper, we reviewed core degradation and melting mate-
rials migration research in light-water reactors. The content con-
tains experimental and numerical analyses as well as an overview 
of current work in the field. Based on analysis and discussion, we 
can come to the following conclusions:

 1. The numbers of severe accident experiments are limited, and 
their data should be fully utilized for verification of current 
models and as a guide for future experiments.

 2. The development of numerical analyses is quite extensive, and 
they have the ability to guide the next set of experiments as 

well as being useful for predicating the processes in core melt 
accidents.

 3. The research at XJTU is abundant and can be used for further 
Chinese research.
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