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Subcooled boiling flow taking place in the reactor system plays a critical role in the safety

of nuclear power plants. It has been studied by experiments and system codes in the

past decades. Now subcooled boiling can be predicted with CFD code based on the

Eulerian two-fluid model, with the development in the computational technology and

the understanding in the mechanism of two-phase flow. The published works on the

validation of CFD code for two-phase flow were carried out based on the deterministic

analysis by comparing the calculated and experimental nominal inputs and outputs,

which is not sufficient for code validation since it didn’t consider the inevitable uncertainty

in the experiment measurements. In the current work, subcooled boiling was predicted

by using a CFD code, FLUENT, with consideration of the uncertainties of boundary

conditions. The resultant parameters with uncertainties were compared to the experiment

data for validation purpose. Confidence intervals of the two-phase parameters were

predicted. Besides, correlations between the boundary conditions and the outputs were

analyzed.

Keywords: subcooled boiling, uncertainty analysis, boundary conditions, two-phaseCFD, Eulerian two-fluidmodel

INTRODUCTION

In the past two decades, CFD codes based on the Eulerian two-fluid model have been employed
to simulate the two-phase flow in the nuclear reactor system. The predicted results were compared
with the experiment data to validate and assess the performance of codes. Good agreements have
been obtained by tuning the input parameters or by altering the interaction models (Krepper and
Rzehak, 2012). However, tens of parameters have been employed in the two-phase CFD code to
model the boundary conditions and the phasic interactions (Zhang et al., 2015a). The accuracy
and confidence of the two-phase CFD codes are still questionable due to the complexity of the
interactions at heated surface and between liquid and bubbles. Besides, just like the system code,
there might be uncertainties in the prediction of two-phase flow by CFD codes, which should
be taken into consideration during simulation (Bestion et al., 2016). Besides, the accuracy and
reliability of the codes should be assessed with considering the uncertainty introduced into the
codes.

The sources of uncertainties in CFD codes are similar to these in system codes, including the
boundary conditions, the physical models, the model parameters, the numerical methods, the
geometry simplifications, the model simplifications, and the physical phenomena that have not
been considered in the simulation (Bestion et al., 2016). From the point of view of code validation,
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the uncertainties introduced by the boundary conditions should
be analyzed in the first place since the experiment data are
obtained with inevitable uncertainties.

In the process of code validation with considering the inputs
and outputs uncertainties, rather than the nominal values,
multiple sets of data that represent the uncertainties, i.e., the
statistical characteristics of the inputs, are employed as the
inputs of the code. Besides, the statistic of interested results
can be obtained by analyzing the statistical characteristics of
the resultant scatter data. Then, the calculated results with
uncertainties should be compared with the experimental data
with error bands. In general, the principles of uncertainty analysis
for two-phase CFD codes are exactly the same with these for
system codes. However, the uncertainty analysis in the field of
CFD codes is far frommature, which is not like that in the system
codes. Knio and Le Maitre (2006) made a brief review on the
uncertainty analysis in CFD problems with polynomial chaos
methodology and claimed that the combination of polynomial
chaos method and Navier-Stokes equations for CFD uncertainty
analysis was not mature. Badillo et al. (2013, 2014) and Prošek
et al. (2016) modeled the GEMIX experiment for fluid mixing
with consideration of the uncertainties from inlet boundary
conditions by using the traditional uncertainty propagation
method with random sampling. Bestion et al. (2016) summarized
the applications of uncertainty analysis to single phase CFD
simulations in the field of nuclear thermohydraulics and proved
the high applicability and robustness of uncertainty propagation
methodology when coping with CFD problems.

In the current work, a preliminary work to estimate
the uncertainties in the subcooled boiling modeling was
presented. The uncertainties on the two-phase parameters
caused by the input boundary conditions have been investigated
by using an uncertainty propagation method coupled with
an improved Monte-Carlo based sampling method, Latin
Hypercube Sampling (LHS) (Helton and Davis, 2003). The
subcooled boiling experiment in a vertical pipe carried out by
Bartolomei and Chanturiya (1967) was chosen as the benchmark
test. The sources of uncertainties are introduced from the
test boundary conditions, including inlet mass flux, the inlet
temperature, the system pressure, and the wall heat flux. Effects
of input uncertainties on the pressure drop, outlet vapor fraction,
averaged wall temperature, net vapor generation (NVG) location,
and the localized two-phase parameters were analyzed.

EXPERIMENT CASE TO ANALYZE

The boundary conditions employed in the numerical simulation
come from the experimental measurements, such as the pressure,
mass flow rate, and inlet temperature. The measurements in
the experiment will have some uncertainty inevitably. The
uncertainty in the boundary conditions can be transferred to the
whole computation domain by the governing equations and then
introduce uncertainties into the predicted results. In traditional,
the nominal value or the most expected values are chosen
as the boundary condition values specified in the simulation.
However, the specification of definite nominal values without

considering the uncertainty of inputs cannot predict the results
with expectation and probability and cannot estimate the model
accuracy reliably.

In this work, the propagation of uncertainty introduced
by boundary conditions was analyzed based on the subcooled
boiling experiment proposed by Bartolomei and Chanturiya
(1967). In this experiment, subcooled boiling parameters of
water-vapor two-phase flow were measured in a vertical pipe,
including the vapor volume fraction, liquid temperature, and
wall temperature. Besides, the boundary conditions were also
recorded, including the inlet temperature, inlet mass flow
rate, system pressure, and wall heat flux. The error bands of
boundary conditions for inlet mass flux, wall heat flux, system
pressure, and inlet temperature are 2.0, 3.0, 1.0%, and 1K,
respectively. However, the distributions of all the parameters in
the relative error bands were not presented. Given that most of
the distributions follow the normal distribution in the natural
and social sciences, as noted in statistics theory (Chiasson, 2013).
Thus, the distributions can be assumed to be normal if the real
ones are unknown and this assumption works good in statistics
(Chiasson, 2013). Besides, it should be noted that, the distribution
of input parameters will affect the statistical characteristics for
the outputs, such as the standard deviation, the 95% confidence
interval and the error band. However, when compared to the
other distribution profiles, such as uniform distribution, the
normal distribution can give more credible results since it can
present the statistical characteristics of the input parameters.
Along with the statistical characteristics of the outputs, this work
also focuses on the relationships between the inputs and the
outputs, that is the correlation coefficients between inputs and
outputs, which are independent from the distribution profiles of
the inputs. Based on the above considerations, in this work, the
random errors for all the input parameters are assumed to follow
the normal distributions, that is,

X ∼ N(µ, σ )2 (1)

The probability density function (PDF) is:

f (x) =
1

√
2πσ

e
− (x−µ)2

2σ2 (2)

where µ , σ 2, and σ are the expectation, variance and
standard deviation, respectively. The probability that the random
parameters locate in the range of +3σ is larger than 99.73%.
Thus, we can assume that the error band of the measured
parameter is equal to the interval of +3σ for each variable.
Following this assumption, the statistical parameters of all the
boundary parameters can be obtained, as shown in Table 1.

ANALYSIS METHODOLOGY

Brief Introduction on the Uncertainty
Analysis Methodologies
The uncertainty of a simulation can be estimated by uncertainty
propagation method (Badillo et al., 2013), the accuracy
extrapolation method (D’Auria et al., 2012), and comparison
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method (Oberkampf et al., 1998), among which the uncertainty
propagation method is the most mature and common used one
and can be implemented easily. The input uncertainty can be
propagated through the analysis code and then be transferred
to the predicted results. With this method, samples representing
PDFs of input parameters were used as the inputs of the code
to obtain the PDFs of results. As for the samples, they can be
obtained by the random sampling method or the deterministic
sampling methods. The random sampling method is more
reliable but needs numerous samples; while the deterministic one
has not been fully validated and is far frommature (Bestion et al.,
2016).

In the past few decades, most uncertainty analyses associated
to system codes were performed based on the random sampling
methods (Espinosa-Paredes et al., 2010), or the random methods
with surrogate models, such as response surface method (Prošek
et al., 2016) and artificial neural network (Secchi et al., 2008).
Issues related to random samplingmethod have been investigated
thoroughly, such as the determining of sample size (Wilks,

TABLE 1 | Statistical parameters for the measured input variables.

Variable Nominal

value

Relative error

band

Error

band

µ σ

Mass flux (kg/m2/s) 900 ±2% ±18 900 6

Inlet temperature (K) 472.35 – ±1 472.35 1/3

Heat flux (kW/m2) 570 ±3% ±17.1 570 5.7

Pressure (MPa) 4.5 ±1% ±0.045 4.5 0.015

1942) or the improvements on the sampling methods (Helton
and Davis, 2003; Iman, 2008). When it comes to the CFD
applications, the deterministic methods with fewer sample
requirements were employed to obtain the input parameters
due to the increase of computational cost compared to the
system code applications. Hessling (2013) proposed an efficient
deterministic method for sampling. However, the accuracy
and reliability of deterministic method in CFD applications
were not fully validated and far from mature (Thiem and
Schäfer, 2014). Thus, in this work, we employed the random
sampling method to get the input parameters for uncertainty
analysis in spite of the huge computational efforts. The LHS
method, an efficient sampling methodology developed based on
the traditional random sampling and domain decomposition
technology (Helton and Davis, 2003), was used instead of
the traditional Monte Carlo method to improve the sampling
efficiency.

Implementation of the Uncertainty Analysis
The CFD simulation on subcooled boiling flow was carried out
using the commercial code FLUENT. Eulerian–Eulerian two-
fluid model along with the interphase actions and wall boiling
models used in FLUENT has been validated in our previous work
(Zhang et al., 2015c). Besides, the sensitivities of the turbulence
model, the mesh size and the near wall turbulence treatment have
been studied (Krepper and Rzehak, 2012; Zhang et al., 2015b).
According to previous study on turbulence models (Zhang et al.,
2015b), the subcooled boiling simulations were carried out with
the Realizable k-ε turbulence model and Enhanced wall function
based on the grid with near wall cell Y-plus ranging from 20.2

FIGURE 1 | Geometry and boundary conditions.

FIGURE 2 | Data flow chart for the uncertainty analysis.
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FIGURE 3 | Convergence curve for expectation and standard deviation. (A) Averaged outlet VOF. (B) Averaged wall temperature. (C) Pressure drop. (D) NVG

position. (E) Ratio of max. and avg. VOFs at outlet. (F) Maximum wall VOF.
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to 33.1. Besides, the inlet boundary was set at the location 10
times upstream of the test section inlet with a fully developed
velocity profile to avoid the effects of inlet velocity profile, since
there was a long inducer prior to the inlet of heated section to
ensure a fully developed flow in the experiment (Bartolomei and
Chanturiya, 1967). The geometry and boundary conditions of the
computation domain are illustrated in Figure 1.

The DAKOTA code (Adams et al., 2017), an uncertainty
analysis code developed by the Sandia National Laboratory, was
employed to generate the samples with LHS method, to drive
the FLUENT code and to post-process the results. An interface
was developed to allow the connection between DAKOTA and
FLUENT codes by using Python script and the Internet Inter-
ORB Protocol (IIOP) interface. The data flow chart is shown in
Figure 2. A python subroutine is called by the DAKOTA code
as an interface between DAKOTA code and the IIOP interface,
which is an addon to allow the usage of FLUENT code as a server
session. The physical properties of water may be effected by the
input parameters, such as system pressure. Thus, a User-Defined
Function (UDF) is compiled into standard FLUENT solver to call
the IAPWS dynamics link library for liquid and vapor properties.

As mentioned above, the uncertainty propagation with
random sampling method always needs numerous samples and
runs to capture the statistical characteristics of inputs and
outputs. Then the performance of the code could be evaluated.
However, how many samples are enough from the view of
statistics?Wilks presented an equation to correlate the confidence
level, the coverage rate and the size of samples (Wilks, 1942),
which has been extensively used in literature. Nevertheless, some
other works increase the size of samples until the statistical
parameters converge (Bestion et al., 2016). In our work, the
Wilks’s correlation under the condition of two-sided limits was
employed to estimate the preliminary sample size for the inputs
and then the sample size was increased until the value of
expectation and standard deviation converge.

RESULTS AND DISCUSSIONS

Multiple sets of output can be obtained in the uncertainty analysis
with error propagation method. Three-dimensional variables
should be analyzed to understand the statistical characteristics
of the two-phase flow features. Six variables were chosen among
the numerous data to present the averaged and local two-phase
characteristics, including,

1) the pressure drop between inlet and outlet boundaries to
quantify the flow resistance characteristics;

2) the averaged vapor fraction at the outlet, which is used to
descript the total net vapor generation in the pipe;

3) the averaged wall temperature, which can present the heat
transfer capacity at a boiling surface;

4) the location of net vapor generation, which is significant for
the flow instability;

5) the ratio between maximum and averaged vapor volume
fractions (VOFs) at outlet to represent the non-uniformity of
the VOF distribution;

6) and the maximum wall VOF, which is associated with
the boiling crisis according to the bubble crowding theory
(Weisman and Pei, 1983).

Prior to the simulations, the preliminary size of samples was
determined by using the Wilks’s correlation (Wilks, 1942) and
its variant (Pal and Makai, 2003). For problems with two-sided
tolerance region, Wilks’s correlations with first-order accuracy
and high-order accuracy can be written as Equations (3) and (4),
respectively.

β = 1− γ
N − N(1− γ)γ(N−1) (3)

β =
N−2n
∑

j=0

(

N
j

)

γ
j(1− γ)N−j (4)

where β , N, n, and γ are the confidence level, sample size, order
of accuracy and coverage probability of the confidence interval,
respectively. The sample size N can be obtained by solve the
correlation with the requirement of 95/95% rule, that is, the
coverage probability of confidence interval is no < 95% with a
confidence level no < 95%. The minimum sample requirements
for first, second and third order accuracy are 93, 153, and 208,
respectively. Liu (2014) investigated the uncertainty of velocity
profile predicted by a CFD code for forced convection in a
cavity with Monte Carlo sample method and found that 153
samples can reach convergence results. However, as pointed out
by Bestion et al. (2016) it may not reach the convergence values
for the expectation and standard deviation when the samples size
determined by thisWilks’s equation was used. Thus, we increased
the sample size until the statistical characteristics converged. The
convergence history is shown in Figure 3. As can be seen, the
convergence results can be obtained when the sample size is
as large as 740, which is the sample size calculated by Wilks’s
equation with fourteenth order of accuracy.

TABLE 2 | Statistical characteristics for the outputs.

Variable Expectation (µ) SD (σ) 95% confidence interval Error band (3σ) Relative error band (3σ/µ) p-value

Pressure drop (Pa) 16951.7 26.7 [16895.9, 17005.1] 80.1 0.47% 1.00

Averaged outlet VOF 0.4613 0.0179 [0.4237, 0.4966] 0.0538 11.66% 0.62

Averaged wall temperature (K) 536.764 0.226 [536.342, 537.201] 0.677 – 0.51

Position of NVG (m) 0.7380 0.0225 [0.6967, 0.7833] 0.0676 9.16% 0.0020

Ratio of max. and avg. VOFs at outlet 1.7412 0.0452 [1.6473, 1.8259] 0.1356 7.79% 0.21

Maximum VOF at wall 0.0423 0.0008 [0.0407, 0.0438] 0.0024 5.58% 1.00
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FIGURE 4 | Value of expectation, 95% confidence interval and +3σ interval.

(A) Cross section averaged VOF. (B) Wall temperature. (C) Cross section

averaged fluid temperature.

After carrying out 740 runs of calculation, we can obtain
the resultant two-phase parameters with consideration of the
input uncertainty, including the averaged parameters and
localized parameters as shown in Table 2. First of all, the
statistical characteristics of the calculated vapor fraction, fluid
temperature, and wall temperature were analyzed and compared

with the experiment data (Bartolomei and Chanturiya, 1967;
Wang et al., 2016)1. The averaged value, 95% confidence
interval and the +3σ interval are presented in Figure 4. It
can be noted that the predicted cross-section averaged VOF
and fluid temperature and their error bands agree quite well
with the experiment data. However, there are slight deviations
between the calculated and measured wall temperature, which
might because the wall heat partition models used to simulate
the boiling process at wall. Besides, the distribution of wall
temperature is rather concentrated and its uncertainty is small.
The effects of input uncertainties on the vapor fraction increase
with the vapor fraction while wall temperature shows fewer
impacts caused by the input uncertainty with increasing the
vapor fraction.

Figure 5 presents the histograms of above mentioned six
representative outputs. As can be seen, the statistical distributions
of these parameters follow the rule of high probability density
in the middle of the interval and low value at the two
ends of the interval, which is consistent with the probability
density of inputs. However, the distribution is diverse from the
normal distribution to some degree. This means, the statistical
characteristics of the inputs change during the propagation of
uncertainty in the FLUENT code.

To quantify the PDF characteristics of these six variables,
the statistical characteristics of these parameters were given
in Figure 5, including expectations, standard deviations, 95%
confidence interval, error bands, relative error bands, and the
p-value for normality test. Here we also use the +3σ as the
error band. As can be noted, the ranges of deviations for the
outputs vary from each other. The uncertainties of the outlet
VOF, NVG position, ratio of maximum and averaged VOFs at
outlet and wall maximum VOF are much larger than the input
uncertainties, while the uncertainties of the pressure drop and
wall averaged temperature are less than the input uncertainties.
That means, the outlet VOF, NVG position, ratio of maximum,
and averaged VOFs at outlet and wall maximum VOF are much
more sensitive to the input uncertainty than the pressure drop
and wall averaged temperature under the calculated condition.
Moreover, the p-values resulted from normal distribution test
show that the pressure drop, averaged outlet VOF, averaged wall
temperature, ratio of maximum and averaged VOFs at outlet and
wall maximumVOF follow the normal distribution well while the
position of NVG doesn’t.

The scatter plots between the inputs and outputs are given
in Figure 6 to illustrate the relationships between the boundary
conditions and the interested parameters. As can be found,
the mass flux has a significant linear effect on the pressure
drop, that is, the pressure drop increases with mass flux
linearly. The averaged outlet VOF, averaged wall temperature
and maximum VOF at wall show slight decrease tendency with

1The experiment was performed by Bartolomei and Chanturiya (1967). However,

this work only gave the error band for the input parameters, including the inlet

temperature, heat flux, pressure, and mass flux. The error bands of for the fluid

temperature, vapor fraction and wall temperature were not presented in this work.

The error bands for these parameters were obtained from publication of Wang

et al. (2016).
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FIGURE 5 | Histograms for output parameters. (A) Histogram for pressure drop. (B) Histogram for averaged outlet VOF. (C) Histogram for averaged wall temperature.

(D) Histogram for NVG location. (E) Histogram for ratio of maximum and averaged VOFs at outlet. (F) Histogram for maximum wall VOF.

increasing mass flux. The NVG position and averaged outlet
VOF increase with the mass flux, obviously. The temperature
of fluid at inlet has dramatic impacts on the averaged outlet
VOF, NVG position, and VOF ratio, while has little impacts
on the pressure drop, averaged wall temperature and maximum
wall temperature, which is because of the dependency of inlet
enthalpy on the inlet temperature. The wall heat flux shows

strong correlations with all the outputs except the pressure
drop. The averaged outlet VOF, averaged wall temperature and
maximum wall VOF increase with increasing the wall heat
flux, while position of NVG and VOF ratio decrease. This
is caused by the effects of wall heat flux on the nucleation
process and the generation rate of vapor phase. Besides, the
averaged wall temperature depends on the system pressure, due
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FIGURE 6 | Scatter plots between the boundary conditions and outputs.

to the relationship between saturated temperature and system
pressure.

In the field of statistical analysis, covariance can be used
to descript the dependency or correlation between two sets
of samples. However, the values of covariance are associated
with the absolute values of samples and cannot be used for

the cross-comparison of the dependency between different
sets of samples. The conception of correlation coefficient with
values varying from zero to one was proposed to quantify the
dependency of samples. The Pearson correlation coefficient was
defined to quantify the linear dependency among samples, while
the Spearman correlation coefficient was used to descript the
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FIGURE 7 | Correlation coefficients between boundary conditions and

outputs. (A) Correlation coefficients between pressure drop and boundary

conditions. (B) Correlation coefficients between averaged outlet VOF and

boundary conditions. (C) Correlation coefficients between averaged wall

temperature and boundary conditions. (D) Correlation coefficients between

NVG position and boundary conditions. (E) Correlation coefficients between

VOF ratio and boundary conditions. (F) Correlation coefficients between

maximum wall VOF and boundary conditions.

more complicated dependency among samples, no matter linear
or not (Hauke and Kossowski, 2011). Pearson and Spearman
correlation coefficients are given in Figure 7 to quantify the
relationship between boundary conditions and outputs. As can
be seen, the effects of mass flux and heat flux on the subcooled
boiling flow are much large than these of inlet temperature and
system pressure. The absolute values of correlation coefficients
between heat flux and most outputs, including averaged outlet
VOF, averaged wall temperature, NVG position, and ratio of
maximum and averaged VOFs at outlet, are larger than 0.5, which
means there are strong dependencies among these variables.
Besides, the Spearman and Pearson correlation coefficients
are almost equal, which implies the dependencies between
these parameters are linear. Besides, there is no dependency
between the system pressure and pressure drop or maximum
wall VOF since the absolute values of correlation coefficients
are < 0.1.

CONCLUSIONS

In this work, the subcooled boiling flow was modeled by a
CFD code (ANSYS FLUENT) with considering the uncertainty
of boundary conditions. The uncertainty was analyzed by using
the uncertainty propagation method with Latin Hypercube
Sampling method. Seven hundred and forty sets of samples were
employed as inputs to achieve the convergence results from
the point of view of statistical analysis. Effects of uncertainties
from boundary conditions on the two-phase characteristics were
obtained. Following conclusions can be drawn from the results.

1) The sample size determined by Wilks’s theorem with first
order or second order of accuracy is not sufficient to get
convergence results for complicated subcooled boiling from
the view of statistics. Sample size should be increased until
the statistical characteristics of the outputs converge. In this
work, the sample size is as large as 740, which is the sample
size calculated by Wilks’s equation with fourteenth order of
accuracy.

2) Uncertainties from heat flux and mass flux have more
significant impacts on the subcooled boiling characteristics
than these from inlet temperature and system pressure.
Besides, the maximum wall VOF is affected by the heat flux
uncertainty drastically.
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