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The environmental benefits of the circular economy (CE) are often taken for granted.

There are, however, reasons to believe that rebound effects may counteract such benefits

by increasing overall consumption or “growing the pie.” In this study, we focus on two

main rebound mechanisms: (1) imperfect substitution between “re-circulated” (recycled,

reused, etc.) and new products and (2) re-spending due to economic savings. We use the

case study of smartphone reuse in the US to quantify, for the first time, rebound effects

from reuse. Using a combination of life cycle assessment, sales statistics, consumer

surveying, consumer demand modeling, and environmentally-extended input-output

analysis, we quantify the magnitude of this rebound effect for life-cycle greenhouse

gas emissions. We find a rebound effect of 29% on average, with a range of 27–46%

for specific smartphone models. Moreover, when exploring how rebound might play

out in other regions and under different consumer behavior patterns, we find that

rebound effects could be higher than 100% (backfire effect). In other words, we estimate

that about one third, and potentially the entirety, of emission savings resulting from

smartphone reuse could be lost due to the rebound effect. Our results thus suggest that

there are grounds to challenge the premise that CE strategies, and reuse in particular,

always reduce environmental burdens.

Keywords: rebound effect, circular economy, reuse, smartphones, life cycle assessment

INTRODUCTION

The circular economy (CE) aims to minimize resource use and emissions by slowing, closing, and
narrowing material and energy flow loops (Bocken et al., 2016). Key CE strategies include green
design, remanufacturing, recycling, and reuse (Geissdoerfer et al., 2017). While some evidence
supports the environmental benefits of the CE (Ghisellini et al., 2016; Cooper and Gutowski, 2017)
concerns have been raised regarding potential undesirable outcomes of a CE. These include the
physical and economic limits of recycling activities (Reck and Graedel, 2012; Allwood, 2014) the
environmental desirability of reused products (Gutowski et al., 2011; Skelton and Allwood, 2013;
Ovchinnikov et al., 2014; Zink et al., 2014), and the so-called rebound effect (Zink and Geyer,
2017). Rebound effects commonly relate to behavioral and systemic responses to technical change,
such as the increased energy demand in response to energy efficiency improvements (Jevons, 1865;
Khazzoom, 1980; Brookes, 1990). More broadly, rebound effects can be associated with changes in
environmental efficiency, such as less resource inputs for delivering a given function (Font Vivanco
et al., 2016b).
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CE strategies can lead to rebound via re-spending effects from
price reductions and/or by failing to effectively compete with
primary production (imperfect substitution) (Zink and Geyer,
2017), the result of both being an overall increase in demand
and environmental burdens. Regarding re-spending effects, CE
strategies, such as recycling and reuse, can lower the costs of
products, parts or materials. For example, prices of used goods
(e.g., second hand or remanufactured) are typically lower than
their new counterparts. This is true across product categories,
and holds even in cases where the used units are functionally
equivalent to the new ones (e.g., refurbished electronics)
(Thomas, 2003; Frota Neto et al., 2016; Makov et al., submitted).
Much like any other economic saving, lower expenditure means
that consumers increase their effective income and thus have
additional spending power. Consumers typically react to this by
purchasing additional goods and services, investments and/or
savings.

CE strategies can also lead to imperfect substitution when
these do not avoid demand and production of new product units
on a 1:1 basis. For example, while it appears that firms and
governments believe that sales of used products cannibalize sales
of new ones, research suggests that such displacement is likely
limited (Thomas, 2003; Guide and Li, 2010; Frota Neto et al.,
2016; Cooper and Gutowski, 2017). As a result, the production
of new units is only partly displaced by CE products and thus
the overall production increases (Thomas, 2003; Ghose et al.,
2006; Geyer and Doctori Blass, 2010; Guide and Li, 2010).
In fact, some studies suggest that reuse may stimulate new
production, for example by allowing consumers to sell their
older products and use the earnings toward the purchase of new
units (Waldman, 2003; Cooper and Gutowski, 2017). While such
surplus consumption might have social benefits (Ovchinnikov
et al., 2014; Raz et al., 2017) it is likely to increase overall
environmental burdens.

While theoretical and empirical research on rebound effects is
extensive, only few studies have specifically examined CE-related
rebound. Scheepens et al. (2016) analyzed the environmental
implications of CE business models, and discussed the possibility
that such models would also consider re-spending rebound
effects. Zink and Geyer (2017) focused on CE-related rebound
effects, and stressed the importance of economic effects,
such as re-spending and substitution effects, in shaping the
outcome of CE strategies. The authors suggested that, while
increasing the circularity of economic flows might displace
some primary production, CE strategies will most likely result
in increased overall production. Similarly, Ovchinnikov et al.
(2014), demonstrate that, under certain economic conditions,
product reuse could increase overall environmental burdens by
facilitating higher demand for new energy intensive services (in
their case, cloud computing). While these and other studies, such
as those from Korhonen et al. (2018), Thomas (2003), and Ghose
et al. (2006), highlight the possibility that rebound effects may
offset potential benefits of transitioning to a CE, to the best of our
knowledge, no study offers quantitative estimates of the rebound’s
magnitude. In some cases, limitations in method design hamper
capturing such effects, for instance when assuming constant GDP
and 1:1 substitution (Cooper and Gutowski, 2017), or when the
life cycle environmental consequences are ignored (Font Vivanco

and van der Voet, 2014). There is thus a need to holistically
assess whether, and to what extent, rebound effects undermine
the environmental performance of CE strategies.

In this paper, we aim to address this gap by quantifying
rebound effects related to product reuse. We use the case of
reused smartphones sold through second-hand markets in the
United States. According to the Ellen MacArthur Foundation
(2013), reuse that involves little repair, remanufacturing
or alteration of products represents one of the most
environmentally beneficial paths of the CE. Reuse is indeed
a key CE strategy (Bocken et al., 2016), and it is commonly
understood as the extension of an existing product’s life through,
for instance, green design, repair, reconditioning, technical
upgrading, market solutions, and/or a combination of these
(Stahel, 1994; Cooper and Gutowski, 2017; Makov et al.,
submitted). While the environmental benefits from reuse have
been widely praised, such benefits have also been put into
question (Gutowski et al., 2011; Skelton and Allwood, 2013;
Ovchinnikov et al., 2014; Zink et al., 2014). For one, reusing
products might limit the ability to benefit from technological
improvements incorporated into newer models (e.g., improved
energy efficiency). On the other hand, it remains unclear to
what extent pre-owned products (e.g., used and refurbished)
actually displace new products and reduce demand for primary
production. Past work suggests that consumers tend to view pre-
owned products as inferior compared to their new counterparts,
and may even feel strong aversion and disgust toward them
(Abbey et al., 2015, 2017). As a result, for a sizeable segment
of consumers (more than 35% by some estimates) pre-owned
products are not even “non-perfect substitutes” for new products
(Guide and Li, 2010; Abbey et al., 2015). Specifically, in the case
of mobile phones, estimates suggest that, at best, purchase of
pre-owned phones prevents up to 5% of new unit sales (Zink
et al., 2014).

While some consumers would not consider a pre-owned
product at any discount rate, others are more indifferent between
new and pre-owned products and would consider switching
from one to the other for an appropriate discount (Guide and
Li, 2010; Abbey et al., 2015). Indeed, past work demonstrates
that willingness to pay (WTP) for pre-owned products is
typically lower than that of new identical products, with the
discount magnitude varying based on product condition. While
remanufactured products and those described in “like new
condition” are sold at discounts of 15–21%, products in worse
condition may entail a larger discount (Ghose et al., 2006; Guide
and Li, 2010; Frota Neto et al., 2016; Makov et al., submitted).
Abbey et al. (2017) link this lower WTP for pre-owned goods to
the consumers’ belief that used products are more likely to have
functional and/or cosmetic defects. Thus, consumers who are
open to purchasing second-hand goods balance out cost savings
(i.e., discount compared to the price of new goods) with perceived
risk (Abbey et al., 2015). Such cost saving could however lead to
re-spending rebound effects.

Addressing reuse rebound effects is critical for assessing
the full environmental benefits of reuse and CE strategies in
general (Zink and Geyer, 2017). In this paper, we examine some
of the unintended environmental consequences of the CE by
quantifying rebound effects from both imperfect substitution
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and re-spending effects arising from direct market reuse of
smartphones (i.e., resale via a secondary market). We use official
life cycle assessment (LCA) reports as a basis for comparative
environmental assessment. We then use data for over 6,500 sales
of used Apple smartphones on eBay.com to calculate economic
savings based on actual resale prices. The associated re-spending
rebound effects are then calculated using a household demand
model and environmentally-extended input output analysis. We
then combine these results with survey data on the degree of
substitution between new and used smartphones to calculate the
effects of imperfect substitution. The results are presented in
terms of life-cycle greenhouse gas emissions (GHG) or carbon
footprint, a widespread indicator of environmental sustainability
which is highly correlated with other indicators such as ecological
and material footprints (Simas et al., 2017).

MATERIALS AND METHODS

We first describe in section Case Study, Data Collection, and
Modeling Assumptions the case study, modeling assumptions,
and the data sources for the LCA and price data. Following,
section Environmental Rebound Effect presents the method to
calculate the rebound effect from reusing smartphones.

Case Study, Data Collection, and Modeling
Assumptions
The case study examines the environmental implications of
smartphone reuse in the US. Specifically, we focus exclusively
on Apple smartphones since it is the only major manufacturer
to publish official LCA reports for specific models (e.g., iPhone
6 128GB). Apple presents results in terms of absolute GHG
emissions for a specific model and capacity, including a
breakdown of relative contribution attributed to each life cycle
stage, namely extraction, production, use, transport, end of
life (EoL, assumed to be recycling). Apple does not, however,
fully disclose its assumptions, life cycle inventory data, nor
information on the environmental impact methods used to
estimated GHG emissions.

To allow for substitution between used and new devices, we
limit our analysis to four iPhone models that were available
for sale directly from the manufacturer during the time of data
collection, namely the iPhone 6, iPhone 6 Plus, iPhone 6s, and
iPhone 6s Plus models. Estimates for GHG emissions related to
each of the four iPhone models were taken from Apple’s official
LCA reports (https://www.apple.com/environment/reports).

Retail price data for the four iPhone models corresponds to
official Apple prices at the time of product launch (www.apple.
com). Price data for used units of the same models was collected
directly from the eBay website (www.ebay.com) using a software
agent over a 10-day period in April 2016. The database contained
all sales of used iPhone 6, iPhone 6 Plus, iPhone 6s, and iPhone
6s Plus, all with a capacity of 128GB, completed through the
platform within US borders, between January and March 2016.
Listings that offered more than one smartphone for sale, or those
that described items as broken, in need of repair, and the like
were excluded, leaving 6,576 units for analysis. For each listing or

sale, the sale price, shipping cost and specific phone model were
extracted from the title, text description, and/or related HTML
file.

To quantify the life cycle GHG emissions associated with
each model, both new and used, we applied the following
assumptions in accordance with the ISO 14040:2006 standard.
First, in accordance with Apple’s LCA reports, we assume
that an iPhone’s overall lifespan is 36 months. Second, for
our comparison, we define the functional unit as owning
and using a specific iPhone model for 12 months. Third, we
estimate resale-related transportation emissions on the basis
of shipping costs, using GHG emissions coefficients from the
“post and telecommunications” sector from EXIOBASE 3 (see
section Re-spending Effect). Fourth, the alternative to a given
used model corresponds to its new counterpart in the case
of perfect substitution, and a mix of alternatives (based on a
consumer survey) in the case of imperfect substitution (see
section Imperfect Substitution Effect). Following the mainstream
approach, we assume that demand for new product is the main
driver for primary production. Under this prism, reuse merely
extends the product’s use phase, yet does not affect any of the
other lifecycle stages, since these would have accrued anyway
(Zink et al., 2014; Frota Neto et al., 2016; Cooper and Gutowski,
2017). Hence, we assume that primary production, transport,
and EoL of each phone is associated with its first use (i.e., to
a new unit sale), and attribute only the burdens related to the
phones’ secondary life (i.e., collection, redistribution, secondary
use phase, and rebound) to reuse. Since our case study focuses
on smartphones sold “as is,” in what sellers define as “used”
condition, we assume these devices did not undergo any major
alterations or remanufacturing prior to resale.

Environmental Rebound Effect
To refer to rebound effects that go beyond direct energy use and
technical efficiency changes relating to the input/output ratio,
we speak of the “environmental rebound effect” (ERE) (Font
Vivanco et al., 2016b). The ERE is a broader interpretation of the
traditional rebound effect, which allows consideration ofmultiple
environmental pressures, the life cycle of products, and broader
changes in environmental efficiency (Font Vivanco and van der
Voet, 2014). The ERE concept is more appropriate for our case
study because (1) the reuse of smartphones goes beyond a simple
technical change in the ratio between inputs (e.g., energy) and
outputs (use of a given smartphone), and (2) we express the
rebound effect in terms of life cycle GHG emissions. We calculate
the ERE through the following formula (Font Vivanco et al.,
2014):

%ERE =

(

PS− AS

|PS|

)

∗100 (1)

Where PS are the potential environmental savings (in our
case, expressed as CO2-equivalent [CO2e] emissions) without
considering systemic and behavioral responses (e.g., re-spending)
and AS are the actual savings when including such responses.
The ERE can thus be understood as the percentage of potential
environmental savings that are offset.
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We further assume that the rebound effect emanates only
from two independent effects: (1) a re-spending effect associated
with the economic savings associated with buying a second-hand
smartphone (described in section Re-spending Effect), and (2)
a substitution effect from the failure of reused smartphones to
fully substitute new smartphones (described in section Imperfect
Substitution Effect). We do not consider other rebound effects,
for instance those from changes in socio-psychological costs
(Santarius and Soland, 2018) or macro-economic variables
(Jenkins et al., 2011).

Re-spending Effect
To calculate the re-spending effect, we use a single re-spending
model which treats all consumption categories equally (Murray,
2013). We therefore do not differentiate between the direct
(additional demand for smartphones) and indirect (additional
demand for other goods and services) effects. We further
assume a fixed individual income and no long-term savings, so
all saved money is spent. Re-spending is approached through
marginal budget shares (w), or the share of total savings that
will be allocated to each consumption category i (e.g., food or
housing). The w are calculated using the linear specification of
the Almost Ideal Demand System (AIDS), a popular consumer
demand model introduced by Deaton and Muellbauer (1980)
with properties that makes it preferable to competing models
(Deaton and Muellbauer, 1980; Chitnis et al., 2012). Using the
AIDS model, the w for a given time period can be calculated as

wi = αi +
∑

j

γji ln pj + βi ln
( x

P

)

(2)

where x is total expenditures, P is defined here as the
Stone’s price index, p is the price of a given category and α

(constant coefficient), β (slope coefficient associated with total
expenditure) and γ (slope coefficient associated with price) are
the unknown parameters. The Stone’s price index is defined as

lnP =
∑

j

wj ln pj (3)

Additionally, and in order to comply with consumer demand
theory, three constraints are imposed: adding-up, homogeneity
and symmetry (Deaton and Muellbauer, 1980).

Data on personal consumption expenditure (PCE) and price
indices for PCE by type of product for the period 1997–2016 and
for the US was obtained via the Bureau of Economic Analysis
(https://www.bea.gov/national/consumer_spending.htm). From
all the reported product categories, 17 were selected for
computational ease (see Table S1 in Supplementary Material).

Once the MBS are calculated, the next step is to determine the
life cycle (footprint) GHG emissions coefficients c (emissions per
economic unit), so that GHG emissions from re-spending (e) are
calculated as

e =
∑

i

wi g ci (4)

where g is the total economic savings from purchasing a
reused smartphone (see section Case Study, Data Collection, and
Modeling Assumptions).

The GHG emission coefficients are calculated using the
standard demand-pull Leontief input-output model as (Miller
and Blair, 2009)

ci =
sLy

∑

n y
=

s(I − A)−1y
∑

n y
(5)

where s is an 1 × n vector of direct GHG emissions per unit
of economic output, being n the number of industries z, A is
an n × n matrix of technical coefficients indicating the inter-
industry inputs required to supply one unit of output, I is an n
× n identity matrix, y is a given n× 1 final demand vector, and L
is the Leontief inverse containing the multipliers for the direct
plus indirect inter-industry inputs required to satisfy one unit
of final demand. In this case, y contains only the final domestic
demand of US households for product i (being i the output of the
corresponding industry z).

All the necessary input-output data was obtained from the
environmentally-extended global multi-regional input-output
database EXIOBASE 3 (Stadler et al., 2018) for the year 2014,
the latest year available. Because of the mismatch between the
BEA’s Personal Consumption Expenditure (PCE) classification
system and EXIOBASE classification, a correspondence was
built between the two when necessary (see Table S2 in
SupplementaryMaterial). For example, BEA’s ‘household utilities’
corresponds in this case to the distribution of electricity,
gas, water, etc. in EXIOBASE. Consequently, y was built by
means of weighting according to final demand shares. GHG
emissions were calculated according to global warming potential
characterisation factors for the time horizon 100 years (GWP100)
described by the IPCC (Pachauri and Reisinger, 2007).

Imperfect Substitution Effect
Used products could, in theory, substitute new products
and reduce demand for primary production. In the case of
smartphones, however, research suggests that it is highly unlikely
that such substitution occurs on a 1:1 basis (Geyer and Doctori
Blass, 2010; Zink et al., 2014; Cooper and Gutowski, 2017).
Specifically, it is suggested that the existence of a secondary
market can lead to an overall increase in consumption resulting
in a consumption surplus, with consumers purchasing used
units in addition to new ones. Therefore, assuming that each
used phone sale displaces the production of one new phone
would result in overestimation of the impact avoided due to
reuse.

Moreover, in practice, consumers might view a mix of
alternative used and new units as reasonable substitutes for
the used smartphone, and not only the exact same model
new. For example, a consumer interested in purchasing a
used iPhone 6s, might not be interested in new devices
at all, but consider both the new iPhone 6s and a used
iPhone 6s Plus as potential alternatives to the preferred
model. Since each of these alternatives incurs different GHG
emissions, the avoided emissions associated with reuse would
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vary based on what the reused smartphone is assumed to
be displacing (e.g., the purchase of a new smartphone, or
the purchase of a different, used smartphone). Similarly, since
each of the alternatives has a different price, the economic
savings (and subsequently the effective income available to
re-spend) would also change depending on the substitution
assumptions.

Therefore, to better estimate avoided emissions, and the re-
spending resulting from smartphone reuse, we conducted an
online survey among consumers who stated they had previously
bought a used smartphone (see Table S4 in Supplementary
Material). Specifically, we asked participants what they would
have done if the used phone they bought had not been available.
The options were: (1) the same model new, (2) another cheaper
new model, (3) another cheaper used model, (4) buy nothing,
and (5) other. A total of 700 participants were recruited via the
crowd sourcing platform Amazon MechanicalTurk, in exchange
for a small monetary compensation. Out of the 700 participants
who took our survey, 50.8% stated they had bought a used phone
in the past. Out of those, all participants who failed an attention
check and those who did not complete the survey were excluded
leaving 341 (Mage = 33.1; Female−46.9%) cases for analysis. We
then built on our survey results to formulate a substitution mix
for each of the four iPhone models examined (see Table S5 in
Supplementary Material).

RESULTS

Our results show that the ERE from both re-spending and
imperfect substitution entails a noteworthy reduction in the life
cycle GHG emission savings resulting from reusing the selected
iPhone models. As shown in Figure 1 (imperfect substitution
results), the magnitude of the ERE is 29% on average (all models
weighted by sales volume), and ranges from 27 to 46% for
specific models. In other words, our results suggest that, in
some cases, the ERE could offset nearly half of the benefits of
smartphone reuse. As expected, the re-spending effect generates
additional GHG emissions. Specifically, the reuse of the four
iPhone models examined entails an average economic saving of
$101, and up to $112 for a single model. Such savings generate
on average about 24 kg CO2e, double the 12 kg CO2e associated
with the smartphone’s use phase. The higher impacts associated
with re-spending are due to the fact that one dollar spent
on marginal consumption entails 0.23 kg CO2e, while a dollar
spent on a used phone entails only 0.02 kg CO2e. As a result,
even such modest economic savings can exceed the relatively
low use phase emissions of used phones. Moreover, a dollar
spent on the mix of alternatives to purchasing a used phone
(i.e., buying a new phone, buying another used phone, and
buying nothing, weighted according to our survey results), is
associated with 0.09 kg CO2e. Therefore, the avoided emissions
of displacing these alternatives with a reused phone are relatively
low, which means re-spending rebound can easily offset the
benefits resulting from reuse. The higher emissions associated
with re-spending are related mostly to purchases of food (6%
from total marginal consumption and 25% from total emissions),

nondurable goods (8 and 24%) and transportation services (3 and
7%) (see Table S3 in Supplementary Material for the complete set
of results).

Our results also suggest that considering a mix of alternative
substitutes (imperfect substitution) instead of a 1:1 substitution
of new phones (perfect substitution) leads to a slight decrease in
the ERE, from 33 to 29% on average. Hence, in this case, following
the common approach of assuming perfect substitution between
new and reused phones slightly overestimates the magnitude of
the ERE. This is true on average but not for all models, as the
iPhone 6 and 6sp result in larger ERE with imperfect substitution.
In the case of the iPhone 6, the difference is striking, going
from 26 (perfect substitution) to 78% (imperfect substitution).
This increase in due to the fact that the re-spending effect is
almost equal while the avoided emissions associated with the
imperfect substitution alternative mix (see Equation 1) decrease
considerably due to the substitution of new for used phones.
These changes are partly explained by the savings associated with
the alternative mix. While substituting a given used model with
its new counterpart entails $114 saved on average, the alternative
mix entails lower savings of $102. Specifically, according to
our survey, only 20% of respondents prefer to buy the same
model new, 38% prefer buying a new phone in the same
price range ($57 saved), 36% prefer buying a cheaper used
model ($37), and 6% would not buy any other model otherwise
($704).

Overall, these findings illustrate that the overall magnitude
of the ERE, and ultimately whether the strategy of reusing
smartphones yields environmental benefits, is largely driven
by two key variables: the GHG emissions per dollar spent on
marginal consumption and the avoided emissions associated with
the alternatives to buying the used phone (e.g., buying new,
buying nothing, etc.) Therefore, in the following subsection we
further examine the sensitivity of the ERE to these two variables.

Sensitivity to Emissions From Marginal
Consumption
Because our case study is based on data of used smartphones sold
within US borders, we assumed that additional spending from
economic savings corresponds to goods and services purchased
within the US. It merits noting, however, that the GHG emissions
per dollar spent on marginal consumption in the US (0.23 kg
of CO2e) are significantly lower than the global average of
0.39 kg CO2e for marginal consumption from households. Thus,
assessing re-spending rebound in another geographical context
could yield significantly different results. To test this hypothesis,
we replicate our analysis with imperfect substitution, using the
marginal consumption emissions factor for the global economy
(0.39 kg CO2e per economic unit) and China (0.19 kg CO2e),
which is second only to the US in terms of iPhone sales (Richter,
2017). For China, we estimate the marginal expenditure through
the average expenditure from the latest year available (i.e., 2016)
(NBSC, 2018) due to the unavailability of the necessary data
to run the proposed AIDS model. For the global economy,
and also due to unavailability of data, we use US expenditure
patterns.
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FIGURE 1 | Life cycle greenhouse gas (GHG) emissions (in CO2e, left axis) and environmental rebound effect (in %, right axis) for smartphone reuse, by iPhone model

and substitution scenario (perfect vs. imperfect). Perfect substitution scenario assumes 1:1 substitution ratio between used and new phones of identical model and

make. Imperfect substitution assumes a mix of alternative substitutes (including new and used smartphones as well as avoided purchases) weighted by our survey

results. “Reuse” emissions are those associated with reusing a smartphone, whereas “avoided” emissions are those associated with its alternative(s). GHG emissions

are broken down according to the production, transport, recycling, and use phases. Re-spending corresponds to emissions resulting from the economic savings of

purchasing a used smartphone instead of its corresponding alternative(s). The “average” model represents a weighted average of all four iPhone models by their eBay

sales volume. The rebound effect is expressed as the % of GHG emission savings that are offset due to re-spending.

The results of our sensitivity analysis demonstrate
that the previously estimated ERE would change notably
in response to changes in the marginal consumption
GHG emissions factor used. As Figure 2 illustrates, the
ERE would be about 50% for average global marginal
spending and about 24% for China, namely a 68% increase
and a 18% decrease, respectively, compared to the US-
specific ERE. More importantly, the ERE for some models
would be almost 80% (e.g., iPhone 6s for the global
economy) and thus close to offset any benefits of avoided
emissions.

Sensitivity to the Mix of Alternatives
The composition of the alternative mix plays a key role in
determining the magnitude of the ERE, since it affects both
the amount of economic savings and the reference for avoided
emissions. On the one hand, the amount of economic savings
determines the additional emissions from re-spending and so
the actual (i.e., considering consumer behavior) emission savings
(numerator in Equation 1). That is, the less the actual savings,
the higher the ERE. On the other hand, the reference of avoided
emissions represents the baseline to which the ERE is measured
against (denominator in Equation 1). That is, the lower the
reference, the higher the ERE. To test the effects of changes in
the mix of alternatives, we construct two scenarios and calculate
the ERE for each. The scenarios are the following:

• 5% Displacement:

According to Zink et al. (2014), the purchase of used phones
displaces production of new units only 5% of the time. In this
context, we set the alternatives “cheaper new” and “same new” to
a maximum of 5% from the total, keeping their original relative
proportions. The remaining displacement is allocated to “cheaper

used.” The new mix is thus: “cheaper new” (3%), “same new”
(2%), “nothing” (6%), and “cheaper used” (89%).

• No Surplus Consumption:

As mentioned previously, research has shown that trade in
used goods can result in an overall increase in consumption
(Thomas, 2003; Ghose et al., 2006; Raz et al., 2017). Such surplus
consumption suggests that, if prices and transaction costs in
secondary markets were to become unattractive (i.e., as a result
of the platform charging excessive commissions, or following
regulatory changes), some consumers would refrain of buying the
used good. Indeed, according to our survey, 18% of respondents
bought a used smartphone not to be utilized as their main
phone but as a secondary or “spare” phone (see Table S5 in
SupplementaryMaterial). In this scenario, we simulate a situation
in which there is no surplus consumption. Consequently, no
spare phones are bought, and the 18% of respondents that only
bought the used phone as a spare, now “buy nothing.” The new
mix is thus: “cheaper new” (29%), “same new” (17%), “nothing”
(23%), and “cheaper used” (31%).

The results of our hypothetical scenarios illustrate that
the ERE is very sensitive to the exact alternative mix
chosen to represent consumer behavior and calculate imperfect
substitution. As Figure 3 illustrates, in the “5 % displacement”
scenario, the average ERE is 22% lower, while the “no surplus
consumption” scenario increases the ERE by 108%. In the later,
the increase in the ERE is largely driven by the notable rise in
economic savings, mostly from consumers who avoid purchasing
a used phone altogether and spend that income instead on
marginal consumption. As noted previously, the embedded GHG
emissions per dollar of the studied smartphones are relatively
low, and so the additional marginal consumption can easily offset
avoided emissions.
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FIGURE 2 | Environmental rebound effect (ERE) magnitude of reusing a smartphone for selected iPhone models and economies with imperfect substitution. The

“average” model corresponds to a weighted average of all four iPhone models by their eBay sales volume. The ERE is expressed as the % of avoided GHG emission

that are offset due to re-spending.

FIGURE 3 | Environmental rebound effect (ERE) magnitude of reusing a smartphone for selected iPhone models and scenarios with imperfect substitution. The

“average” model corresponds to a weighted average of all four iPhone models by their eBay sales volume. The ERE is expressed as the % of avoided GHG emission

that are offset due to re-spending.

Specifically, the average second hand cost of the studied
smartphones is about 704$, which entail about 165 kgCO2e of
GHG emissions. This value contrasts with the total emissions
(including those from re-spending) of purchasing a cheaper new
(110 kg), same new (120 kg), and cheaper used (20 kg) unit.
Lastly, the majority of models in the “no surplus consumption”
scenario have an ERE higher than 100%, a case known as
“backfire effect” (Saunders, 2000) where purchasing such models
would have overall negative effects in terms of GHG emissions.
A considerable backfire of 290% is also observed in the “5%
displacement” scenario for the iPhone 6. This result is mostly
explained by the fact that this model had no cheaper used

alternative (iPhone 5 was excluded from our analysis since it
could not be purchased new from Apple), so the same model
was used and this set a low avoided emissions reference point
given the large proportion of “cheaper used” option comprising
the alternative mix.

DISCUSSION

Our results show that, in the context of imperfect substitution,
the average ERE for the studied smartphone models would be
around 30%. To the best of our knowledge, this work presents the
first attempt to quantify the rebound effect resulting from reuse
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of durable consumer goods via secondary markets. Estimated
rebound effects resulting from technical changes in terms of
GHG emissions, report similar results (Font Vivanco et al.,
2016c). For example, rebound effects from energy efficiency
investments in households have been estimated to be 16–20% in
the US (Thomas and Azevedo, 2013), 41–78% in the UK (Chitnis
and Sorrell, 2015), and 22% in China (Lin et al., 2013). In any
case, a 30% ERE suggests that only 70% of the GHG emissions
reductions are effectively achieved. This systemic inefficiency
could have grave implications for reaching GHG emission targets
(Meinshausen et al., 2009), especially if one considers marginal
GHG emission abatement costs (Kuik et al., 2009).

When looking across specific models and regions, and
considering various hypothetical assumptions, our results offer
a wide range of ERE magnitudes, some of which reach the so-
called “backfire effect.” Though here we focused on smartphone
reuse within the US, research suggests that, in many cases, used
phones are sold via secondary markets in developing countries
(Geyer and Doctori Blass, 2010; Zink et al., 2014; Cooper and
Gutowski, 2017). As our sensitivity analysis demonstrates, under
global marginal GHG emissions from consumption, the ERE of
three out of four models examined in this study would be almost
80%. Since re-spending effects tend to be higher in developing
countries, where cleaner technologies have diffused less and
there is unsaturated demand for energy-intensive products (e.g.,
personal transport and heating) (Hymel et al., 2010; Antal and
van den Bergh, 2014; Chitnis et al., 2014), it is likely that
smartphone reuse might lead to backfire. This premise, together
with the fact that smartphone ownership rates have skyrocketed
in recent years in emerging economies (e.g., Turkey, Malaysia
and Brazil) (Poushter, 2016) suggest not only that our current
estimates for rebound from smartphone reuse are conservative,
but also that this rebound can increase in the future.

An often-neglected aspect of the rebound effect is the
importance of considering a life cycle perspective of the studied
product. This means considering not only the environmental
burdens, but also the economic costs of capital, product
expenditures, EoL, etc. Among these, capital and product
expenditures usually play a big role (Mizobuchi, 2008).
Smartphones are a special case because, when considering their
life cycle, their GHG emissions per economic unit are relatively
low compared to other products. Consequently, economic
savings that are shifted toward other products through re-
spending entail high emissions and large rebound effects. Similar
examples can be found in the case of electric cars (Font Vivanco
et al., 2014, 2016c) and clothing (Wood et al., 2017). It remains
to be seen, however, whether and to what extent other reused
products present similar characteristics.

Here we only considered cases where used smartphones
substitute other smartphones. It is possible, however, that the
used market allows consumers who would have otherwise
bought a regular mobile phone to upgrade to a smartphone.
In such cases, the use phase impacts associated with reuse
would be different compared to the buy new option. Specifically,
while before it was only charging, now consumers also use
cloud services, streaming and the like, which come with
their own environmental costs (Ovchinnikov et al., 2014).

In addition, in many cases, secondary markets are in other
countries. This means that use phase impacts might differ
based on the carbon intensity of the local grid. Moreover,
countries where secondary markets are strong might lack
advanced recycling technologies and be equipped to handle
such electronic waste (Osibanjo and Nnorom, 2008). It
remains unclear if such impacts associated with global trend
in used goods would offset the advantages of smartphone
reuse.

CONCLUSIONS

In this paper, we quantified the environmental rebound effect
(ERE) resulting from smartphone reuse via second hand
markets in terms of life cycle GHG emissions. We assumed
that the ERE arose from both re-spending and imperfect
substitution. Departing from life cycle assessment (LCA) and
price data for various iPhone models, we first estimated the
re-spending effect by calculating marginal expenditures with a
household demand model and their associated emissions with
environmentally-extended input-output analysis. To consider
imperfect substitution between new and used smartphones,
we conducted a survey on consumers who had previously
bought a used phone. Our results show that the magnitude
of the ERE is 29% on average, and ranges from 27 to 46%
for specific iPhone models. Moreover, when replicating our
results for different regions and under various hypothetical
assumptions, the ERE shows a wider range of magnitudes,
including above 100% or backfire effect. In other words, we
estimate that about one third, and potentially the entirety,
of emission savings could be lost due to the rebound
effect.

This study is the first of its kind to quantify rebound effects
from reuse, and so our results can shed novel insights into
the environmental performance of reuse and broader circular
economy (CE) strategies. As suggested in the literature (Zink
and Geyer, 2017), re-spending and imperfect substitution effects
can be expected in other CE strategies such as recycling
and refurbishment. For example, when recycled materials offer
similar value at a lower price or when cheaper refurbished
products allow new consumers to enter the market. It seems
clear, both from the literature and from our results, that CE
strategies will increase the “circularity” of economies at the
expense of “growing the pie,” but the real question is how large
is the CE rebound for the global economy. In cases where
the rebound effect is high, for instance when substitutability
between used and new products is low and/or economic
savings are high, CE strategies may not be the best path to
achieve sustainable development goals. In this sense, while
offering a transformative blueprint that could well revolutionize
production and consumption systems, we believe CE strategies
must remain under scrutiny until further research is carried out.

There are various ways tomitigate detrimental rebound effects
(Font Vivanco et al., 2016a), such as taxes (Brännlund et al.,
2007; Small and Van Dender, 2007) and promoting behavioral
change (Griskevicius et al., 2010; Ozkan and Popp, 2011). These
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tools can be applied to mitigate rebound effects from reuse,
recycling, etc. For example, via internalizing environmental
externalities into the prices (e.g., carbon tax) and improving the
social perception of used/recycled products to make them more
functionally comparable to their new counterparts. In the case of
technological products, also by discouraging users to buy spare
products via green design. For example, by allowing multiple
SIM cards in smartphones and facilitating repair (Riisgaard et al.,
2016). In any case, it bears noting that rebound effects can
have social benefits, especially for low-income groups (Ürge-
Vorsatz and Tirado Herrero, 2012; Galvin, 2015), and so such
tools must consider an asymmetrical distribution of economic
burdens/benefits (Font Vivanco, 2016).

While insightful, our work is not short of limitations.
For example, allocating all embedded environmental burdens
to the first user might underestimate the impacts of the
products’ second life. Much like the price and demand for
products in primary markets affect secondary markets, prices
and supply of products in secondary markets might also
play a role in driving primary consumption. For example,
consumers might buy products in anticipation of later selling
them on to secondary consumers. As a result, they might
be less sensitive to upfront purchase costs, or might shift
their preference toward products that have higher demand in
secondary markets. Alternatively, consumers might use prices
and demand in secondary markets as quality assurance signals
to help navigate choices in primary markets. Either way, as
markets for used products grow, more attention is likely to
focus on ways to refine allocation between a products’ different
life cycles. In addition, the survey methodology employed
here targets used smartphone consumers in general, and so
a more personalized and detailed survey, for instance by
gathering responses for each reused smartphone sale just
after the transaction, could allow a more sophisticated and
accurate design of the alternative mix. To carry out such
an analysis, however, the full range of possible alternatives
would need to be described in terms of their associated life
cycle environmental and economic costs. Also, the inclusion of
socio-economic data when approaching marginal consumption,

in particular income levels, would allow to calculate more
accurate patterns of marginal expenditure for each buyer. Lastly,
our study focuses on life-cycle GHG emissions, which are
an imperfect proxy of environmental sustainability (Laurent
et al., 2012). Therefore, expressing the ERE using other
environmental indicators (e.g., water and metal use) could yield
even more extreme rebound magnitudes (Freire-González and
Font Vivanco, 2017).

Despite the limitations of this study, it offers novel insights
into the environmental benefits of reuse and CE strategies
in general. While further research on rebound and other
unintended effects from systemic changes and consumer
behavior is needed, our results suggest that there are grounds
to challenge the premise that a CE would always lead to
environmental benefits. The inceptive stage of CE strategies,
however, presents the opportunity to use this information to
adopt accompanying measures to mitigate such unintended
effects.
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