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As an attempt to reduce reliance on fossil fuels to satisfy electricity demand, the

penetration of renewable sources like wind or solar power has experienced rapid

growth in recent years. Due to their intermittent nature, the exact contribution of

renewable sources to electricity supply is at least partly unknown. In order to be able to

accommodate this uncertainty in real-time, sufficient capacities in the form of thermal and

hydro power plants must be available. On that account, power system operators solve

the so-called unit commitment problem after bidding in the day-ahead market closes

to derive schedules for their power plants which can ensure system reliability at low

costs. In literature, two approaches have mainly been studied in this context: Robust and

stochastic unit commitment. Being a worst-case formulation, robust unit commitment

puts its focus on reliability. A common drawback of this approach is that it tends to

deliver over-conservative schedules. Stochastic unit commitment on the other hand

creates more cost-effective schedules by preparing for the expected case, but either

fails to guarantee system reliability or puts a high workload on the CPU. The limitations

of known formulations have sparked interest in so-called hybrid approaches, which aim

at combining the ideas of robust and stochastic unit commitment in a favorable way. This

paper reports a novel hybrid approach to solve the unit commitment under uncertainty,

which yields both robust and cost-efficient schedules. The new method respects the

continuous nature of uncertainties and is thus in particular favorable for applications in

power systems with high penetration of volatile renewable sources. By merging the ideas

of robust and stochastic unit commitment, the proposed hybrid formulationminimizes the

expected worst-case dispatch costs. Our method relies on partitioning the continuous

range of the uncertainties into subsets. By means of the number of partitions, the solution

can be adjusted between the conservative robust and the cost-efficient stochastic unit

commitment in a user-friendly manner. A Benders decomposition algorithm is derived to

solve the hybrid unit commitment efficiently. Finally, a case study confirms the superior

performance of the proposed method.
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1. INTRODUCTION

In an attempt to foster competition among different participants,
today’s electricity markets are frequently deregulated. In such
markets, all participants must submit their generation bids at
least one day in advance in the day-ahead market. Once the
bidding window in the day-ahead market closes, power system
operators solve the so-called unit commitment (UC) problem in
order to select the winning bids. Typically, the UC problem is
formulated so that schedules for the thermal and hydro power
plants, which promise to maintain system reliability at the lowest
possible costs, are obtained. On the next day, in the real-time
market, the power outputs of the committed units are then
adjusted in order to meet the demand in a cost-efficient way.

An integral part of UC formulations is proper uncertainty
management. Nowadays, various sources of uncertainty can
be identified in power systems. For instance, in recent years,
the share of electricity generated from renewable sources has
been increasing steadily. Encouraged by lawmakers, this trend
is projected to continue in the near term. Along with this
development, managing uncertainties in electricity generation
issues a challenge to power system operators. Other sources
of uncertainty include for example departures from the load
forecast or equipment failures. Uncertainties affect system
reliability significantly and might require committing additional
expensive fast-start generators or incur penalties for load
shedding. In order to be better prepared for departures from the
expected system condition, it is common practice to schedule
more power plants than actually necessary to meet the forecast
demand. This excess capacity is called reserve and plays a key
role in power systems. Whereas with too few reserves, system
reliability might not be maintained in case of emergencies,
holding too many units in reserve is not an economically sound
strategy.

A traditional approach to handle uncertainties is to introduce
reserve requirements to the UC formulation. Once the required
amount of reserve has been determined, this method is easy
to implement. Despite being current practice in power system
operations, managing uncertainties implicitly by means of
reserve requirements might not be the optimal approach from
an economical point of view. To see this, notice that in order to
keep the power system reliable, operators must be able to respond
to extreme and unlikely events. Thus, reserve requirements are
commonly chosen very conservatively, which in turn leads to a
less cost-efficient operation.

In recent years, in order to enhance the process of decision-
making in UC formulations under uncertainty, great attention
has been given to approaches which take uncertain factors
explicitly into account. Among these approaches, exploring ways
to apply the principles of robust optimization and stochastic
programming to the UC problem has sparked particular interest.
In both cases, the UC is typically formulated as two-stage
minimization problem as this structure reflects the current
market structure with day-ahead and real-time operations best.
In the first stage, commitment decisions determine the ON/OFF
status of power plants. These decisions are made in the day-ahead
market in a here-and-now manner, i.e., before the realization of

uncertain parameters. In the second stage, wait-and-see decisions
determine the economic dispatch amount of each committed unit
as the recourse. These decisions take place in the real-timemarket
after the uncertainties have become known.

Embedding the UC problem into the framework of stochastic
programming gives the so-called Stochastic Unit Commitment
(SUC) as published by Zheng et al. (2015) for example. Here,
uncertain parameters are described by probability distributions
which can for example be learned from historical data. SUC
delivers satisfactory results in terms of costs as it minimizes
the expected dispatch costs in the second stage. In large-scale
power systems, where several uncertain factors come into play,
SUC formulations reach their limit as determining the expected
costs in the second stage becomes numerically intractable. A
common remedy to this problem is to rely on sample average
approximations. Such approximations can help keep numerical
costs within bounds, but lead to reliability concerns since the
solution to the SUC can only guarantee feasibility for the samples,
but not for any realization of the uncertainty. This trade-off
between computational costs and reliability is the culprit of SUC
formulations and limits practical applications.

Approaches which use robust optimization to solve the UC
under uncertainty are known as Robust Unit Commitment
(RUC) in literature (see, An and Zeng, 2015 for example).
Instead of considering a probability distribution to model
uncertain factors, a deterministic set, the so-called uncertainty
set, is employed to capture uncertainties. It is assumed that
all outcomes of the uncertain factors lie within this set. The
objective of RUC is to determine the least-cost schedule for the
worst-case in the uncertainty set. Provided that the uncertainty
set has been selected properly, RUC formulations take all
possible future outcomes of the uncertainty into account and can
thus guarantee system reliability. However, since this approach
completely neglects any underlying probabilistic information,
over-conservative schedules that protect against worst cases,
which rarely happen, are frequently produced.

In order to address the shortcomings of robust optimization
and stochastic programming, various approaches, which merge
the ideas of RUC and SUC in a favorable way, have emerged
in recent years. The resulting formulations are called Hybrid
Unit Commitment (HUC) and aim at delivering low-cost
solutions that can guarantee system reliability at the same time.
In literature, the term HUC is ambiguous since various and
essentially different hybrid formulations can be found. In an
effort to assess their quality, four criteria are envisioned:

1. cost-efficiency: Does the HUC yield economically reasonable
solutions? Since SUC has been shown to perform well from
this point of view, cost-efficiency implies that the HUC must
be able to get close to the SUC.

2. reliability: Can the solution to the HUC guarantee feasibility
for all possible realizations of the uncertainty?

3. ease of use: Can the solution to the HUC be balanced between
the conservative RUC and the cost-efficient SUC in a user-
friendly manner?

4. tractability: Can the HUC model be solved numerically in a
reasonable amount of time?
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A first HUC formulation was proposed by Zhao and Guan
(2013) with the so-called unified UC. Here, both the expected
operating costs from the SUC and the worst-case operating costs
from the RUC are taken into consideration in the objective
function. Furthermore, a user-defined weight factor is introduced
to balance the two cost terms. This approach can be solved
by Benders decomposition and promises to yield more cost-
efficient results as compared to RUC and more robust results as
compared to SUC. When following this idea, the main challenge
resides in finding a proper weight term to balance the cost
terms. In order to avoid sub-optimal results, the weight term
cannot be adjusted manually by the decision-maker, but must be
determined heuristically.

When applying SUC, perfect knowledge of the underlying
probability distribution is assumed. Contrary, RUC neglects
potentially available distributional information completely.
However, neither assumption reflects reality. As the probability
distribution, which models the uncertainties, is often chosen
as the one which fits historical data best, partial knowledge is
available but it is uncertain itself to some extent. This observation
has paved the way for various so-called distributionally robust
UC formulations (see, Zhao and Guan, 2016; Duan et al., 2018
for example). Here, in order to account for the uncertainty
due to the estimation, a family of possible distributions,
commonly referred to as ambiguity set, is defined. Then, in
the second stage, the expected costs under the worst-case
distribution within the ambiguity set are minimized. As the
computational costs of such formulations exceed the costs of SUC
by far in general, applications in practice are currently greatly
restricted.

More recently, another more user-friendly hybrid approach,
which seeks to minimize the expected worst-case operating costs,
was derived by Blanco and Morales (2017) with the so-called
Robust Stochastic UC. This method relies on partitioning the
uncertainty set into several subsets. By varying the number of
partitions, the focus of this hybrid formulation can intuitively
be shifted more toward reliability or cost-efficiency, depending
on the decision maker’s preferences. Additionally, it can
be solved efficiently by applying the column-and-constraint
generation algorithm as presented by Zeng and Zhao (2013).
The fact that the solution to the robust stochastic UC can
be adjusted manually instead of applying heuristics represents
a clear advantage of this formulation over the unified UC
proposed by Zhao and Guan (2013). The main culprit of the
robust stochastic UC is that it is restricted to discrete sets
as model for uncertainties. However, this assumption does
not reflect reality, where uncertainties like generation from
wind or solar farms in general take values in continuous
sets. As a consequence, reliability cannot be ensured for such
uncertainties.

Overcoming the weaknesses of RUC and SUC has attracted
the attention of many researchers and motivated several HUC
formulations. However, as discussed, existing hybrid approaches
fail to ensure reliability, are not easy to use or suffer from
high computational costs. Thus, no approach can be found
which meets all of our requirements on HUC formulations. On
that account, we seek to propose a novel HUC that can be

handled in a user-friendly manner and leads to cost-efficient and
reliable results in a reasonable amount of time. Our approach
borrows and extends the model derived by Blanco and Morales
(2017) by supporting continuous uncertainties. By partitioning
the continuous range of uncertainties into subsets, our novel
HUC minimizes the expected worst-case dispatch costs in the
second stage. Based upon preferences, the considered number
of partitions can be used to move this hybrid formulation more
toward RUC or SUC. In essence, the main contributions of this
paper read as follows.

1. By merging the ideas of RUC and SUC, the proposed hybrid
formulation minimizes the expected worst-case dispatch
costs. The new method respects the continuous nature
of uncertainties and is thus in particular favorable for
applications in power systems with high penetration of volatile
renewable sources.

2. In comparison to traditional UC formulations, the proposed
approach delivers a more cost-efficient solution than RUC and
a more reliable solution than SUC.

3. In comparison to known HUC formulation, the proposed
approach is more user-friendly than the unified UC by Zhao
and Guan (2013), more reliable than the robust stochastic UC
by Blanco and Morales (2017) and computationally cheaper
than the distributionally robust UC by Zhao and Guan (2016)
and Duan et al. (2018).

4. A modified Benders decomposition algorithm can be applied
to solve the proposed formulation very efficiently. By means
of the number of partitions, the decision maker can control
computation time and balance the solution between RUC and
SUC.

The remainder of this paper is structured as follows. In section
2, traditional RUC and SUC formulations are briefly recapped
and limitations are pointed out to motivate hybrid approaches.
Section 3 is dedicated to our novel HUC. We start off by
introducing the mathematical problem statement. Using this
model, the core benefits of applying our novel HUC are
highlighted. In order to allow for practical implementations,
the novel HUC is embedded into the framework of Benders
decomposition. At the end of the section, an efficient algorithm
is derived to partition the continuous uncertainty set into the
desired number of subsets. In section 4, numerical results
verify the superior performance of the proposed formulation
as compared to previous approaches. Finally, section 5
wraps the paper up by drawing a conclusion of the main
findings. Additionally, possible directions for future research are
explored.

2. REVIEW OF ROBUST AND STOCHASTIC
UNIT COMMITMENT

In order to derive schedules for the optimal operation of power
plants, power system operators rely on the UC problem. In
this paper, the UC is formulated in its traditional form as two-
stage optimization problem with binary first-stage commitment
variables x and continuous non-negative second-stage dispatch
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variables y. The costs incurred by commitment and dispatch
decisions are described by deterministic vectors c and d.

Throughout this paper, a simplified power system, which is
composed of thermal power plants andwind farms, is considered.
In this context, the commitment decisions x describe the day-
ahead scheduling of the thermal power plants and the dispatch
decisions y describe the real-time operation of both thermal
power plants and wind farms. However, it is important to note
that the UC problem is not restricted to this setting. For instance,
UC can as well be applied to hydro-thermal power systems
(compare, Nguyen et al., 2018) and power systems with injection
from solar farms (see, Chakraborty et al., 2011).

The first-stage commitment decisions often need to be made
under uncertainty. In general, it is necessary to distinguish
between discrete and continuous uncertainties. Typical sources
of discrete uncertainties include for example unexpected
equipment failures like outages of lines or generators. Renewable
sources like wind or solar power on the other hand introduce
uncertainties, which are continuous in nature, to the power
system. In this paper, the uncertain factor u corresponds to the
available wind power. This kind of uncertainty is continuous and
keeps on gaining in importance with the penetration of wind
farms increasing.

In this section, the two currently most popular approaches
to handle such uncertainties in power system scheduling are
recapped: RUC and SUC.

2.1. Robust Unit Commitment
In recent years, considerable effort has been made to improve
the quality of wind power forecasts (see, Quan et al., 2013
and references therein for example). However, as no forecast is
absolutely perfect, departures from the forecast wind power can
still occur. As a direct consequence, the available wind power is at
least in parts uncertain when making the commitment decisions
after the day-ahead bidding window closes. RUC seeks to capture
this uncertainty by a deterministic uncertainty set U. A simple
model is the box set, which is defined according to

U =
{

u ∈ R
|W|×|T |

: uw,t ≤ uw,t ≤ uw,t ,∀w ∈ W , t ∈ T

}

. (1)

Here W is the set of wind farms and T is the set of time
periods. By analyzing historical data, the lower bound uw,t and
the upper bound uw,t can be estimated. In order to avoid costly
solutions, finding a tight set to represent the uncertainty is
desirable. However, if the set is chosen too small, coverage
of all possible outcomes of the uncertainty can no longer be
guaranteed. Figure 1 illustrates this dilemma for a random day
in Germany.

Box sets are easy to derive and promise to protect against
uncertainties to a high degree. However, they do not consider
correlations between adjacent nodes or consecutive time periods
and are thus very conservative in general. The conservatism
can be reduced by imposing budget constraints. This gives the
frequently used ellipsoidal and polyhedral uncertainty sets. As
we are going to see, our novel HUC does not require confining

the uncertainty set to control conservatism. On that account, the
discussion in this paper is limited to box sets.

As a matter of course, in the case of available wind
power, strong spatio-temporal dependencies exist. Hence, the
assumption of uncorrelated uncertain factors certainly does not
hold in reality anymore. Nevertheless, in an effort to keep the
following discussion as simple as possible, the correlations are
neglected on purpose and the aforementioned box set (1) is used
as model for uncertainties.

The traditional problem formulation of RUC reads as follows
(e.g., Bertsimas et al., 2013).

Definition 1 (Robust Unit Commitment).

C
R =min

x

{

c⊺x+max
u∈U

min
y

d⊺y(u)

}

(2)

s.t. Fx ≤ f (3)

Hy(u) ≤ h (4)

Ax+ By(u) ≤ g (5)

Suy(u) ≤ u (6)

x ∈ {0, 1} , y ≥ 0. (7)

Constraint (3) contains commitment-related constraints like
minimum up/down times or start-up/shut-down characteristics.
Constraint (4), involving only dispatch variables, ensures load
balance, i.e., that supply matches demand. Additionally,
ramping-up/ramping-down and transmission capacity
restrictions are included. Constraint (5) links commitment
and dispatch variables and reflects generation capacities. Finally,
Constraint (6) enforces that the dispatch of wind farms cannot
exceed the available wind power. The dispatch decisions y are
expressed as function of the uncertainty u, as the output of
the generators depends on the available wind power. Since the
commitment decisions x must be feasible for any realization
in U, RUC can guarantee system reliability. However, as the
most cost-efficient schedule for the worst-case realization is
determined, the resulting schedule tends to be too conservative
and thus too expensive for most real-time outcomes of the
uncertainty.

2.2. Stochastic Unit Commitment
SUC assumes that the uncertainty can be described by a
probability distribution. Recalling that departures from the
forecast are the cause of uncertainty, a probabilistic model
of the uncertain available wind power u can be derived as
follows. First, available historical data are exploited to determine
the empirical distribution of the forecast errors. This is done
by constructing a histogram. In this context, the forecast
errors are given as the difference between forecast and actual
generation. Then, by using maximum likelihood estimation,
the parameters of different probability distributions are fit
to the histogram and the distribution which matches best is
selected as underlying probability distribution of the forecast
errors. Centering this distribution around the forecast then
gives a probabilistic model of the uncertain available wind
power.
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FIGURE 1 | Possible uncertainty sets to model the available wind power: reliable but conservative (Left) and cost-efficient but risky (Right).

FIGURE 2 | Probability distributions fit to histogram of forecast errors in

Germany in 2017.

In literature, several distributions have been suggested to
model forecast errors. Justified by the central limit theorem,
the Gaussian distribution is a popular choice (c.f., Doherty and
O’Malley, 2005) for example. Other distributions including Beta,
hyperbolic and Weibull distribution have been examined as well
(compare, Bludszuweit et al., 2008; Hodge et al., 2012; Osório
et al., 2016). Using above propositions, historical data on forecast
errors, which have been collected in Germany in 2017, have been
analyzed in Figure 2. Since the hyperbolic distribution in essence
corresponds to the Laplace distribution except that it allows
asymmetry between its sides, the simpler Laplace distribution
is taken into account instead of the hyperbolic distribution.
Additionally, note that the support of the Beta distribution
is limited to [0, 1]. Thus, in order to accommodate the Beta
distribution, the forecast errors are normalized by the installed
capacity and centered around 0.5.

Among the considered distributions, the Laplace distribution
is found to fit the data by far best and is thus selected to describe
the wind power forecast error distribution. Shifting right by

the forecast wind power then gives a probabilistic model of the
uncertain available power at wind farm w at time t according to

fuw,t (u) =
1

2bw,t
exp−

∣

∣u− µw,t
∣

∣

bw,t
(8)

with location parameter µw,t ∈ R and scale parameter bw,t > 0.
As correlations are neglected in this paper, the joint probability
distribution of the uncertainties u reads as

fu(u) =
|W|
∏

w = 1

|T |
∏

t = 1

fuw,t (u). (9)

The basic SUC is then given by (e.g., Zhao and Guan, 2016):

Definition 2 (Stochastic Unit Commitment).

C
S =min

x

{

c⊺x+ E

[

min
y

d⊺y(u)

] }

(10)

s.t. Fx ≤ f (11)

Hy(u) ≤ h (12)

Ax+ By(u) ≤ g (13)

Suy(u) ≤ u (14)

x ∈ {0, 1} , y ≥ 0. (15)

Here, the expectation is calculated with respect to u. In
theory, besides yielding cost-efficient solutions by finding the
cheapest schedule for the expected case, SUC determines a
commitment decision which is feasible for any outcome of
the uncertainty. However, assuming continuous uncertainties,
the expectation in the second stage corresponds to a multiple
integral. Thus, in practice, in order to ensure numerical
tractability, evaluating the expectation requires approximations
such as sample averages. Since discrete sample sets can never
represent all possible realizations of continuous uncertainties,
feasibility of the commitment decisions can no longer be
guaranteed. This necessary trade-off between computational
costs and reliability is the major shortcoming of SUC approaches.
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3. NOVEL HYBRID ROBUST/STOCHASTIC
UNIT COMMITMENT

Our novel HUC seeks to bring together reliability of RUC and
cost-efficiency of SUC by taking advantage of both approaches.
To this end, the continuous uncertainty set U (1) is split into
K disjoint subsets according to U = ∪K

k=1Uk. Then, the worst-
case, i.e., the realization which incurs the highest dispatch costs,
is determined in each subset. Finally, the commitment decisions
are made so that the expected costs of these worst cases are at a
minimum.

3.1. Mathematical Formulation
In mathematical terms, our HUC formulation reads as follows.

Definition 3 (Continuous Hybrid Unit Commitment).

C
H =min

x

{

c⊺x+

K
∑

k = 1

pk max
u∈Uk

min
y

d⊺y(u)

}

(16)

s.t. Fx ≤ f (17)

Hy(u) ≤ h (18)

Ax+ By(u) ≤ g (19)

Suy(u) ≤ u (20)

x ∈ {0, 1} , y ≥ 0. (21)

For the sake of brevity, a compact matrix-vector notation is
used. A detailed formulation is presented in the Supplementary
Material. In above definition, K corresponds to the number of
partitions. The weight term pk is equal to the probability, that a
realization of the uncertainty lies in the specific subset Uk:

pk = Pr(u ∈ Uk) =

∫

u∈Uk

fu(u)du. (22)

Since a weighed sum of several worst cases is considered in the
second stage of the objective function, the HUC minimizes the
expected worst-case costs. Definition 3 allows us to highlight
the two most appealing features of our novel HUC. First,
in contrast to the RUC from Definition. 1, our novel HUC
does not focus on one specific worst-case scenario and is thus
expected to deliver less conservative, i.e., more cost-efficient
results. Second, when making the commitment decisions, all
realizations of the uncertainty are taken into consideration in
the HUC. Thus, the solution remains feasible for any possible
future outcome of the uncertainty in the uncertainty set. This
crucial property clearly distinguishes our HUC from the SUC
formulation from Definition. 2, which falls short of guaranteeing
system reliability in the face of continuous uncertainties in
practical implementations.

In terms of total costs, our novel HUC yields a solution that
lies between RUC and SUC, i.e., CS ≤ C

H ≤ C
R. This inequality

is obvious since the costs of covering worst cases from several
subsets are always upper bounded by the costs of protecting
against the worst-case from the entire uncertainty set as proposed
in RUC and lower bounded by the costs of preparing for several
random cases from the uncertainty set as proposed in SUC. With

increasing K, the subsets Uk become smaller and the influence
of the max-operator starts to dwindle, making the HUC less
conservative. Hence, varying the number of partitions allows for
moving the HUC closer to RUC and SUC, respectively. In fact, by
setting K = 1 and K → +∞, the HUC can actually be reduced
to the purely robust and stochastic formulations fromDefinitions
1 and 2. This claim can be proven as follows. First, for K = 1,
the uncertainty set is not split up at all. Thus, the summation
in the objective (16) vanishes and the HUC coincides with the
RUC. Letting the number of partitions approach toward infinity
on the other hand, the max-operator in the objective (16) can be
dropped as the subsets become small enough to approximate the
worst-case in each subset by a random sample. As a result, the
HUC corresponds to the SUC as the second stage in its objective
function boils down to a sample average.

3.2. Benders Decomposition Algorithm
The structure of large-scale two-stage optimization problems
like the UC formulations in Definitions 1–3 in general lends
itself very naturally to solution by decomposition algorithms
such as Benders decomposition (see, Rahmaniani et al.,
2017), and column-and-constraint generation (see, Zeng and
Zhao, 2013). Both approaches seek to derive a solution by
considering a smaller optimization problem which is solved
repeatedly. Despite their common goal, the two decomposition
algorithms differ considerably in how they define the smaller
optimization problem. Whereas in Benders decomposition, the
reduction in size is achieved by taking a smaller constraint set
into account, column-and-constraint generation confines the
uncertainty set. Each reduced constraint and uncertainty set are
iteratively extended until optimality is reached. In literature, both
Benders decomposition and column-and-constraint generation
have been applied to solve HUC formulations (see, Zhao
and Guan, 2013; Blanco and Morales, 2017 for example).
Recent studies suggest that column-and-constraint generation
shows superior performance (compare, Zhao and Zeng, 2012).
Nevertheless, in this paper, we follow the lead of Zhao and
Guan (2013) and develop an algorithm based upon Benders
decomposition to solve our novel HUC. This choice can be
justified by the fact that in the case of continuous uncertainties,
enlarging the uncertainty set until optimality is reached, as
proposed in column-and-constraint generation, is no longer
guaranteed to always be a finite procedure. In contrast,
applying Benders decomposition is going to yield the optimal
solution at latest once the entire constraint set has been
restored, which is achieved in a finite number of iterations for
sure.

The small-scale optimization problem which is solved
recurrently, is called master problem (MP) within the context
of Benders decomposition and can be obtained by replacing the
second stage economic dispatch problems in Definition 3 by
approximating variables θ1, . . . , θK . Thus, the MP is given by

(MP) min
x∈{0,1}

{

c⊺x+

K
∑

k=1

pkθk

}

(23)

s.t. Fx ≤ f (24)
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feasibility cuts (25)

optimality cuts. (26)

As we are going to see, these variables act as lower bounds on
the optimal value of the second stage. By means of feasibility
and optimality cuts, information about the constraint set and
the structure of the second stage in the original optimization
problem from Definition 3 is gradually added to the MP. Note
that these cuts improve the quality of the solutions to the MP,
but lead to a increase in size at the same time and eventually
are going to restore the original optimization problem. Hence,
in order to benefit from Benders decomposition, the cuts need
to be incorporated into the MP in such a way that the optimal
solution to the original optimization problem is obtained after as
few iterations as possible.

At each iteration, after solving the MP, optimal values for x
and θ1, . . . , θK are received. The obtained values can be used to
check, whether the optimal solution to the HUC from Definition
3 has already been reached. To this end, we attempt to solve the
K second stage economic dispatch problems

(k-th SP) max
u∈Uk

min
y≥0

d⊺y(u) (27)

s.t. Hy(u) ≤ h (28)

Ax+ By (u) ≤ g (29)

Suy(u) ≤ u. (30)

Within the framework of Benders decomposition, the
optimization problem above is referred to as k-th slave
problem (SP). When evaluating the quality of the solution to the
MP by means of the SPs, three possible situations arise:

• x is infeasible
• x is feasible but non-optimal
• x is feasible and optimal

In case of infeasibility or non-optimality, it can be ruled out that
x is the optimal solution to the HUC from Definition 3. Then,
in order to ensure that the same x is not chosen again in future
iterations, additional constraints in the form of cuts are added
to the MP. In the following, the specific design of these cuts is
discussed in detail.

3.2.1. Feasibility Check
In order to be a possible solution to our novel HUC, all SPs must
be feasible for the given MP solution x. Let 1 denote a vector
of ones. Then, the feasibility check problem for the k-th SP and
given u ∈ Uk reads as

fk(x, u) = min
y,y+i ,y

−
i

3
∑

i=1

1⊺( y+i + y−i ) (31)

s.t. Hy(u)+ y+1 − y−1 ≤ h (32)

Ax+ By(u)+ y+2 − y−2 ≤ g (33)

Suy(u)+ y+3 − y−3 ≤ u (34)

y ≥ 0, y+i , y
−
i ≥ 0 for i = 1, 2, 3. (35)

The slack variables y+i and y−i can always be chosen such that the
constraints (28)–(30) in the SPs are satisfied. Since the objective
measures the overall constraint violation, the following equation
is required for feasibility:

fk(x, u) = 0 ∀u ∈ Uk. (36)

Instead of solving (31)–(35) for all u ∈ Uk, feasibility can
equivalently be detected for given x by considering the following
worst-case formulation:

fk(x) = max
u∈Uk

fk(x, u). (37)

We then have fk(x) = 0 for feasible x and fk(x) > 0 for infeasible
x. To proceed, we write out the dual of (31)–(35) according to

fk(x, u) =max
λ̂,µ̂,ν̂

−λ̂
⊺

h+ µ̂
⊺(Ax− g)− ν̂

⊺u (38)

s.t. λ̂
⊺

H+ µ̂
⊺B+ ν̂

⊺Su ≥ 0⊺ (39)

λ̂, µ̂, ν̂ ∈ [0, 1] , (40)

where λ̂, µ̂, ν̂ are the dual variables corresponding to constraints
(32)–(34). Plugging into (37) allows for writing the feasibility
check problem in the form of a single-stage maximization:

fk(x) = max
u,λ̂,µ̂,ν̂

−λ̂
⊺

h+ µ̂
⊺(Ax− g)− ν̂

⊺u (41)

s.t. λ̂
⊺

H+ µ̂
⊺B+ ν̂

⊺Su ≥ 0⊺ (42)

u ∈ Uk (43)

λ̂, µ̂, ν̂ ∈ [0, 1] . (44)

This is a disjointly constrained bilinear program, which is known
to be NP-hard under general settings (see, Matsui, 1996 for
example). Hence, in literature on UC, rather than trying to
solve bilinear programs into optimality, it is common practice
to apply a heuristic approach to obtain an approximate solution
in a reasonable amount of time (compare, Bertsimas et al.,
2013; Zhao and Guan, 2013). We follow this lead by sticking
to the mountain-climbing procedure as presented by Konno
(1976). Being a heuristic, this approach is not guaranteed to
yield the optimal solution (see, Bennett and Mangasarian, 1993).
However, numerical simulations carried out by Ahmed andGuan
(2005) and Jiang et al. (2014) show that the optimality gap is
negligible. In essence, by alternately fixing one of the variables in
the bilinear term, the mountain-climbing approach defines two
linear programs

f
(1)
k

(x, u) =max
λ̂,µ̂,ν̂

−λ̂
⊺

h+ µ̂
⊺(Ax− g)− ν̂

⊺u (45)
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s.t. λ̂
⊺

H+ µ̂
⊺B+ ν̂

⊺Su ≥ 0⊺ (46)

λ̂, µ̂, ν̂ ∈ [0, 1] (47)

and

f
(2)
k

(x, λ̂, µ̂, ν̂) =max
u

−λ̂
⊺

h+ µ̂
⊺(Ax− g)− ν̂

⊺u (48)

s.t. u ∈ Uk. (49)

Letting u∗ and λ̂
∗
, µ̂∗, ν̂∗ denote the optimal solutions, the

two linear programs are solved recurrently until f 1
k
(x, u∗) ≥

f 2
k
(x, λ̂

∗
, µ̂∗, ν̂∗). As f 1

k
(x, u∗) is an approximate solution to the

feasibility check problem (31)–(35), we have f 1
k
(x, u∗) = 0 for

feasible x and f 1
k
(x, u∗) > 0 for infeasible x. To cut off infeasible

solutions in future iterations, the feasibility cut

−λ̂
∗T

h+ µ̂
∗T

(Ax− g)− ν̂
∗T

u∗ ≤ 0 (50)

is added to the MP. The procedure described above is
summarized in Algorithm 1. Since the variables ν̂ and u are not
coupled by any constraint, the optimal solution to the bilinear
program (41)–(44) must lie on a corner point of the constraint
set (cf., Konno, 1976). Hence, the algorithm can be accelerated
by starting out with an arbitrary extreme point in Uk.

Algorithm 1: Feasibility Check for k-th SP

Pick an arbitrary extreme point u∗ ∈ Uk

repeat

Solve f
(1)
k

(x, u∗) and Store optimal solution λ̂
∗
, µ̂∗, ν̂∗

Solve f 2
k
(x, λ̂

∗
, µ̂∗, ν̂∗) and Store the optimal solution u∗

until f 1
k
(x, u∗) ≥ f 2

k
(x, λ̂

∗
, µ̂∗, ν̂∗);

if f 1
k
(x, u∗) = 0 then
x is feasible for k-th SP

else
x is infeasible for k-th SP, generate feasibility cut (50)

end

Terminate Feasibility Check

3.2.2. Optimality Check
After completing the feasibility check, the optimality of the
solution to the MP can be tested. Note that at this point, x is
guaranteed to be feasible for all SPs because otherwise feasibility
cuts would have been generated. In order to check optimality, the
SPs (27)–(30) need to be solved. However, due to their max-min
structure, this is not a trivial task in general. On that account,
we opt to transform the SPs into single-stage maximizations by
taking the dual of the inner minimization. Then, the k-th SP can
equivalently be stated as

Qk(x) = max
u,λ,µ,ν

−λ⊺h+ µ⊺(Ax− g)− ν⊺u (51)

s.t. d⊺ + λ⊺H+ µ⊺B+ ν⊺Su ≥ 0⊺ (52)

u ∈ Uk (53)

λ,µ, ν ≥ 0. (54)

Here, λ,µ, ν are the dual variables on constraints (28)–(30).
Let u∗,λ∗,µ∗, ν∗ denote the optimal solution. Being the point-
wise maximum of affine functions, Qk(x) is piecewise linear and
convex in x (compare, Boyd and Vandenberghe, 2004). Hence, it
holds that

Qk(x) ≥ −λ∗T

h+ µ∗T

(Ax− g)− ν∗
T

u∗. (55)

By placing the same lower bound on the approximation θk
according to

θk ≥ −λ∗T

h+ µ∗T

(Ax− g)− ν∗
T

u∗, (56)

an optimality cut, which can be fed into the MP, is obtained. As
all constraints on θk in the MP have the same form as (56), θk is
a lower bound on Qk(x). By means of the optimality cuts, the MP
gains insight into the shape of the SPs. Hence, the more cuts are
considered, the closer the approximation θk is going to be to the
exact objective value Qk(x) of the SP. As soon as approximation
and exact value coincide, the procedure can stop as x, the solution
to the MP, is optimal in light of the HUC from Definition 3 as
well.

Notice that computing Qk(x) requires optimizing a bilinear
term ν⊺u. Similar to the feasibility check, this issue is
addressed by applying the mountain-climbing approach. Then,
the optimality check problem for given x boils down to two linear
programs—one in terms of λ,µ, ν

Q
(1)
k
(x, u) = max

λ,µ,ν
−λ⊺h+ µ⊺(Ax− g)− ν⊺u (57)

s.t. d⊺ + λ⊺H+ µ⊺B+ ν⊺Su ≥ 0⊺ (58)

λ,µ, ν ≥ 0 (59)

and one in terms of u

Q
(2)
k
(x,λ,µ, ν) = max

u
−λ⊺h+ µ⊺(Ax− g)− ν⊺u (60)

s.t. u ∈ Uk, (61)

which are solved iteratively until convergence is reached. The
proposed scheme is summarized in Algorithm 2.

3.2.3. Overall Algorithm
When speaking of Benders decomposition, we need to
distinguish between uni-cut and multi-cut approaches. In
uni-cut formulations, the MP increases slowly in size and can
quickly be solved, since only one single cut is added at each
iteration. The downside of this procedure is that a lot of iterations
might be required until an optimal solution is obtained. Multi-
cut schemes propose to introduce one cut for each of the SPs at
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Algorithm 2: Optimality Check for k-th SP

Pick arbitrary extreme point u∗ ∈ Uk

repeat

Solve Q
(1)
k
(x, u∗) and Store optimal solution λ∗,µ∗, ν∗

Solve Q
(2)
k
(x,λ∗,µ∗, ν∗) and Store optimal solution u∗

until Q
(1)
k
(x, u∗) ≥ Q

(2)
k
(x,λ∗,µ∗, ν∗);

if Q
(1)
k
(x, u∗) ≤ θk then

x is optimal in light of k-th SP
else

x is non-optimal in light of k-th SP, generate optimality
cut (56)

end

Terminate Optimality Check

each iteration. As a result, less iterations as compared to uni-cut
formulations are necessary. However, since larger MPs need
to be handled, computation time for each iteration increases.
In this paper, we follow the multi-cut approach of Birge and
Louveaux (1988), i.e., multiple optimality cuts are generated
at each iteration. Putting above remarks and the results of
the previous two sections together allows for formulating a
Benders decomposition algorithm tailored to the HUC from
Definition 3. In Figure 3, a flow chart summarizes our proposed
algorithm.

3.3. On the Partitioning of Continuous
Uncertainty Sets
The performance of our novel HUC stands or falls by the
strategy that is employed to partition the continuous uncertainty
set U. Generally speaking, as the considered box uncertainty
set (1) takes the form of a hyperrectangle in R

|W|·|T |, any
space partitioning algorithm can be envisioned to determine
the hyperplanes which divide the uncertainty set. However, as
the partitioning algorithm directly affects the ease of use and
tractability of our formulation, the scheme to partition U needs
to be chosen deliberately.

Exploring ways to derive partitions of uncertainty sets
has been the goal of previous studies as well. Assuming
discrete uncertainty sets, the performance of different clustering
techniques has been analyzed by Blanco and Morales (2017).
Based upon numerical results, the authors conclude that
hierarchical clustering, which determines the partitions by
iteratively splitting the subset with the largest dissimilarity
between two of its elements, yields the best results. Vayanos et al.
(2011) and Büsing and D’Andreagiovanni (2012) have discussed
the benefits of splitting the continuous uncertainty set in robust
optimization and stochastic programming models, respectively.
However, rather than providing a specific partitioning scheme,
the partitions are assumed to be given. The partitioning of
arbitrarily shaped continuous uncertainty sets has been the aim
of the study conducted by Postek and den Hertog (2016). As a
rule of thumb, the authors propose to divide the uncertainty set
in such a way that critical scenarios, which have been identified
beforehand, lie in different subsets. Finally, Bertsimas and

FIGURE 3 | Benders decomposition algorithm to solve HUC from Definition 3.

Dunning (2016) have suggested the possibility to use Voronoi
diagrams to split continuous uncertainty sets.

In the context of HUC, a user-friendly approach is
characterized by the property that the conservatism of its solution
can be controlled in a fairly obvious manner. In our novel HUC,
we aim at allowing the decision maker to adjust the solution
by varying the number of partitions of the uncertainty set. In
particular, we seek to establish a one-to-one correspondence
between the number of partitions and total system costs, i.e. an
increase in the number of partitions is always accompanied by a
decrease in total costs and vice versa. The partitioning algorithm
must be able to yield partitions such that the HUC possesses this
property.

In theory, it can be observed that taking an infinite number of
partitions into consideration is necessary to obtain a result, which
compares with SUC in terms of operational costs. Obviously,
having to deal with infinitely many partitions is computationally
challenging and has to be avoided by all means to ensure
numerical tractability. Hence, in order to benefit from our novel
HUC in practice, we strive to develop a partitioning algorithm
such that considerably less partitions are required to approach the
SUC. Moreover, bear in mind that prior to being able to actually
solve the HUC, the partitions of the uncertainty set need to be
determined by running a partitioning algorithm. Due to their
complexity, space partitioning algorithms in general are time and
storage consuming. On that account, the scheme used in our
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novel HUC should be kept as simple as possible in order not to
jeopardize tractability of our HUC.

With the above remarks in mind, the partitioning algorithm
can now be devised. In order to preserve the ease of use of our
HUC, the proposed partitioning scheme establishes a hierarchy
of partitions by dividing the uncertainty set iteratively. At each
iteration, the number of partitions is increased by splitting one
subset up into two subsets. This procedure is repeated until
the desired number of partitions is reached. Adhering to this
rule ensures that increasing the number of partitions provokes
a decrease in total costs and thus moves the solution to the HUC
farther from the RUC and closer to the SUC.

Secondly, it is important to keep an eye on numerical
tractability. This implies that the number of partitions, which is
required to get close to the SUC, has to be kept as low as possible.
For that reason, we opt to use the Euclidian distance to measure
the dissimilarity between two elements u1 and u2 in the same
subset according to

d(u1, u2) = ‖u2 − u1‖2 =

√

∑

w,t

∣

∣u2,w,t − u1,w,t
∣

∣

2
. (62)

The largest possible distance that needs to be covered to get from
one element in a subset Uk to another element in the same subset
is denoted as maximum dissimilarity and given by

dmax,k = max
u1 ,u2∈Uk

d(u1, u2). (63)

In general, an UC solution is called conservative if the system
conditions, which are assumed to derive the solution, differ
significantly from normal operating conditions. Consequently,
the worst-case of the subset with the largest maximum
dissimilarity is expected to be particularly conservative. Splitting
this set up into two subsets in a way such that the dissimilarity
in the new subsets is smaller, promises a significant decrease in
total system costs and limits the required number of partitions to
approach the SUC. Since determining themaximum dissimilarity
in subsets of random shape may be cumbersome, the subsets are
restricted to boxes. Then, the maximum dissimilarity in a subset
corresponds to the distance between two corner points that are
not on the same face of the box. Recalling (1), this observation
gives

dmax,k = ‖uk − uk‖2. (64)

In the following, assume that the subset with the largest
maximum dissimilarity has been identified. Let Iw,t =

[

uw,t , uw,t
]

denote the interval that defines this subset along the (w, t)-th
dimension. Furthermore, let

ℓw,t = uw,t − uw,t (65)

be its length. As we aim at reducing the maximum dissimilarity
in the new subsets, but are restricted to box sets at the same time,

it is necessary to split the longest interval. Using (65), this interval
can be identified very easily. Finally, Figure 4 illustrates the basic
procedure to derive partitions of the continuous uncertainty
set (1).

In an effort to reduce the dissimilarity in the two new subsets
to the greatest possible extent, we propose to split the box set
with the largest maximum dissimilarity at the midpoint of its
longest interval. However, this implicates that neither the subset
with the largest maximum dissimilarity nor the longest interval
of the selected subset are always uniquely identifiable. Taking
the probabilistic knowledge of the uncertainty into account can
remedy these problems. We first focus on selecting a subset
when more than one subset exhibits the largest maximum
dissimilarity. Revisiting the objective function (16) of the novel
HUC formulation reveals that the worst-case costs of each
subset are weighted with the probability that a realization of
the uncertainty actually falls into this subset. Consequently, a
subset that is linked to a small probability has little influence
on the objective value. With regard to our objective to control
the conservatism of the novel HUC with as few partitions as
possible, splitting such a subset is of limited value. Hence, out of
the subsets with the largest maximum dissimilarity, we propose
to divide the subset that is most likely contain a realization
of uncertainty, i.e., the subset with the largest weight term
pk (22).

Once the subset with the largest maximum dissimilarity has
been detected, we aim at deriving two subsets by dividing the
longest interval into two parts of equal length. If the longest
interval cannot clearly be identified, it is necessary to come up
with another way to select an appropriate interval. To this end,
the probabilistic knowledge is exploited once more. Again, let
Iw,t =

[

uw,t , uw,t
]

denote the interval of the subset that needs
to be divided. Apart from its length (65), the probability that a
realization of the uncertainty uw,t lies in this interval, i.e.,

ρw,t = Pr(uw,t ∈ Iw,t) =

∫

u∈Iw,t

fuw,t (u)du, (66)

is another possibility to characterize Iw,t . Using (66), the remarks
from above paragraph apply and the interval which a realization
of the uncertainty is most likely to lie in is chosen, i.e., the interval
with the maximum ρw,t . Finally, our proposed partitioning
scheme is summarized in Algorithm 3.

4. NUMERICAL CASE STUDY

In this section, numerical results are reported to evaluate
the performance of our proposed novel HUC formulation. A
simple one-node model is considered which consists of two
thermal power plants, one wind farm and one consumer.
The uncertain available wind power is modeled as Laplacian-
distributed random variable with location parameter µ =

120MW and scale parameter b = 2MW. Choosing the support
of this random variable as deterministic uncertainty set gives
U = [106MW, 134MW]. In accordance with Bertsimas et al.
(2013), the penalty costs for constraint violations are set to be
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FIGURE 4 | Sketch of proposed partitioning algorithm.

Algorithm 3: Partitioning of the Box Uncertainty Set U

Initialize k = 1 (current number of partitions)
K ∈ N (desired number of partitions)
while k < K do

for i = 1 : k do
Calculate maximum dissimilarity dmax,i (64)

end

Determine subsets with largest maximum dissimilarity
81 = argmaxi=1,...,k dmax,i

for i ∈ 81 do
Calculate weight pi (22)

end

Determine subsets with highest weight
82 = argmaxi∈81

pi
Select box set Ui∗ = I1,1 × · · · × I|W|,|T |, where i∗ ∈ 82

for w = 1 : |W| do

for t = 1 : |T | do
Calculate interval lengths ℓ(Iw,t) (65)

end

end

Determine the longest intervals 41 = argmaxw,t ℓw,t
for (w, t) ∈ 41 do

Calculate probability ρw,t (66)
end

Determine intervals with highest probability
42 = argmax(w,t)∈41

ρw,t
Select interval Iw∗ ,t∗ , where (w∗, t∗) ∈ 42

Partition box set Ui∗ by dividing interval Iw∗ ,t∗ at
midpoint
Increase k = k+ 1

end

Terminate Partitioning

5000 $/MW. The implementation is done in Python with GLPK
as MILP solver running on a Windows 7 PC with four 2.3 GHz
Intel cores and 6 GB RAM. In all experiments, both feasibility gap
and optimality gap are set to 10−6. The MIP gap for the master
problem in Benders decomposition is equal to the GLPK default
gap.

4.1. Effects of Considered Number of
Partitions
First, the relationship between the number of partitions K of the
uncertainty set U and the optimal value of the objective (16) is
analyzed. To this end, the HUC from Definition 3 is solved for

FIGURE 5 | Comparison of solution to HUC with solutions to RUC and SUC.

various K. The partitions are obtained by running Algorithm 3.
In Figure 5, the results are depicted.

As expected, it can be observed that with increasing number of
partitions, the optimal objective value decreases since, by taking
more subsets into account, the influence of unlikely worst cases
gradually diminishes. For the sake of comparison, the objective
values of the RUC fromDefinition 1 and the SUC fromDefinition
2 are shown as well. Note that, in order to solve the SUC,
a sample average approximation with 5,000 samples is used.
Comparing the objectives, we first notice that the HUC is able
to nicely fill in the gap between the solutions to RUC and SUC.
In addition, by means of the number of partitions, the HUC can
be adjusted very intuitively so as to approach the purely robust
and stochastic formulations, respectively. Finally, the numerical
results confirm our theoretical findings from section 3.1, where
we have argued that only one partition is required to reduce our
HUC to a traditional RUC formulation. In the same section, we
have shown that, in general, an infinite number of partitions has
to be considered in order to obtain a result that is as cost-efficient
as the SUC solution. Luckily, our numerical simulation reveals
that in practice, way less partitions may in fact be necessary to
come very close to the SUC solution. This observation suggests
that our novel HUC may actually serve as replacement for
SUC formulations since taking a small number of worst cases
instead of a large set of random samples into account promises
considerable savings in computation time.

4.2. Evaluation of Proposed Partitioning
Algorithm
The efficiency of the partitioning algorithm plays a key role in
the overall performance of our novel HUC. To this end, we
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dedicate this section to analyzing our proposed scheme as given
in Algorithm 3. In order to live up to our expectations, a proper
method needs to satisfy two properties. First, increasing the
number of partitions should always result in a decrease in total
costs in order to ensure that the conservatism of the solution
can be controlled in an obvious manner. Second, notice that the
computational costs increase simultaneously with the considered
number of partitions. Hence, the less partitions are required
to balance the solution to the HUC between the respective
solutions to RUC and SUC, the better from a computational
viewpoint.

Keeping these requirements in mind, four different
possibilities to construct partitions of the uncertainty set
are raised. The first method (Max-Diss) corresponds to our
proposed partitioning algorithm. Here, in summary, the
partitions are determined by iteratively splitting the subset with
the largest maximum dissimilarity into two subsets such that
the maximum dissimilarity in the new subsets is at a minimum.
The second scheme (Random) always starts from scratch and
determines the desired K partitions by making K − 1 random
cuts. The third technique (Hierarchy) establishes a hierarchy,
i.e. at each iteration, the number of subsets is increased by
dividing one subset. However, the subset and the split point
are still selected at random. The fourth and final approach
(Max-Diss-Rand) coincides with our proposed partitioning
algorithm (Max-Diss) except the fact that the subset with the
largest maximum dissimilarity is split into two random subsets.
For ease of understanding, Figure 6 summarizes the considered
partitioning techniques.

Employing these partitioning schemes, the optimal objective
value (16) of our HUC formulation is plotted against the number
of considered partitions in Figure 7.

Most importantly, it can be observed that our proposed
partitioning scheme (Max-Diss) clearly performs best since
it yields a monotonically decreasing objective function and
achieves the greatest reduction within the first few partitions.

These two properties are key since they contribute to the ease
of use and the numerical tractability of our HUC formulation.
In contrast, the introduced reference algorithms perform
significantly worse since they either exhibit unpredictable
behavior or require a high number of partitions to remarkably
decrease the optimal objective value (16). The unsatisfactory
performance of the reference algorithms can be exploited to
justify the design of our proposed partitioning scheme.

We start off with the random scheme (Random), where
all partitions are calculated concurrently by making random
splits. Comparing the objective values shows that this scheme
comes close to our partitioning algorithm with increasing
number of partitions. However, its non-hierarchical structure
leads to undesirable peaks within the first few partitions.
Hence, this method does not allow for controlling the objective
value (16) by adjusting the number of partitions. Unlike the
random scheme, the other two reference algorithms produce a
hierarchy of partitions since, at each iteration, the number of
subsets is increased by splitting one of the subsets from the
previous iteration. Except for its hierarchical structure, the first
of these two schemes (Hierarchy) coincides with the random
scheme since both subset and split point are selected randomly
at each iteration. As a result, the objective value decreases
slowly but steadily with increasing number of partitions. The
obvious downside of this approach is that remarkably more
partitions as compared to our proposed partitioning method
are required to control the objective value and thus the
conservatism of the HUC. The second hierarchical reference
algorithm (Max-Diss-Rand) is more sophisticated since it seeks
to split the subset with the largest dissimilarity between two
of its elements. What distinguishes this approach from our
proposed partitioning scheme (Max-Diss) is that the selected
subset is divided at a random point, i.e., the dissimilarity is
only decreased but not minimized. Looking at Figure 7, aiming
at minimizing the dissimilarity turns out to be crucial since
reference scheme (Max-Diss-Rand) requires the most partitions

FIGURE 6 | Partitions of the uncertainty set for four different partitioning schemes.
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FIGURE 7 | Comparison of solutions to HUC for four different partitioning

schemes.

to yield results, which are similar to the ones obtained by
applying our proposed scheme. In conclusion, the limitations
of the reference algorithms highlight the key properties of the
proposed partitioning algorithm and demonstrate its superior
performance.

4.3. Evaluation of Proposed Benders
Decomposition Algorithm
To relieve the computational burden, a solution strategy based
upon Benders decomposition has been proposed in section 3.2
to solve the novel HUC in an efficient manner. However, relying
on decomposition schemes might not always be necessary. For
instance, the assumed one-node model puts us in a position to
derive an exact solution to our novel HUC, since only small-scale
optimization problems need to be handled. This fact is exploited
to verify that the proposed decomposition algorithm to solve the
novel HUC works properly. In order to obtain the exact solution,
the HUC is solved by applying exhaustive enumeration as follows
(see, Sheble and Fahd, 1994; Padhy, 2004 for example). First, all
possible combinations of the ON/OFF status of the thermal units
are determined. Then, by solving the HUC for the enumerated
values, a set of objective values is received. Finally, selecting the
least-cost feasible solution gives the optimal solution to ourHUC.
In Figure 8, the results of solving the novel HUC by applying our
proposed decomposition algorithm and exhaustive enumeration
are compared. Note that the partitions are the result of running
Algorithm 3.

By analyzing the bar graph, it can be noticed that the
decomposition approach is able to recover the exact solution as
determined by the exhaustive search since the optimal objective
values coincide (the optimality gap is found to lie below 10−12

for all instances). Hence, the numerical results confirm that the
proposed decomposition algorithm is suitable for application to
our novel HUC since it yields very close to optimal results.

4.4. Comparison With Robust Optimization
Approach
In our discussion so far, we have argued that our novel HUC
formulation is able to yield results similar to RUC and SUC,
since the number of partitions can be adjusted such that the

FIGURE 8 | Comparison of solutions to HUC after applying Benders

decomposition and exhaustive enumeration.

differences between the objectives vanish. However, in order to
truly benefit from the novel formulation and to justify practical
implementations, it is necessary to demonstrate that the novel
approach is not limited to recover known results. On that
account, we seek to show in the following that the novel HUC is
as reliable but more cost-efficient than RUC and as cost-efficient
but more reliable and computationally cheaper than SUC. In this
section, our focus lies on the benefits of applying our novel HUC
instead of RUC. Contrasting our novel approach with SUC is
postponed until the next section.

In accordance with Bertsimas et al. (2013) and Zhao and
Guan (2013), we proceed as follows. First, by solving the
problem formulations from Definitions 1 and 3, the respective
commitment decisions are obtained. In order to keep the
computational costs of the HUC as low as possible, the number
of partitions is fixed to be K = 2. Then, the received unit
commitment policies are fixed and their performance is evaluated
by carrying out Monte-Carlo simulation. To this end, the
economic dispatch problem

Q(x, u) =min
y

d⊺y (u) (67)

s.t. Hy (u) ≤ h (68)

Ax+ By (u) ≤ g (69)

Suy (u) ≤ u (70)

y ≥ 0 (71)

is solved for Ns = 1,000 randomly generated scenarios of the
available wind power u. Note that the commitment decisions
x in the above minimization problem correspond to the RUC
and HUC solution, respectively. The computational results are
collected in Table 1.

The first column reports the unit commitment decisions for
each approach. Here, we observe that RUC schedules more
thermal units than the novel HUC approach. The second column
counts the number of constraint violations in the economic
dispatch problems. Since neither RUC nor HUC incur any
violations, both unit commitment decisions are feasible for
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all samples. Hence, despite scheduling less thermal units, the
HUC approach can ensure reliability. Summing up commitment
related and dispatch related costs gives the total system costs

C(x, u) = c⊺x+ Q(x, u) (72)

for given commitment decisions x and given sample of the
available wind power u. By analyzing the average and the
worst-case total costs, we can draw a comparison between the
performance of RUC and HUC in terms of costs. In the third
column, the average total system costs

Cavg(x) =

∑

u C(x, u)

1,000
(73)

are described. From this point of view, HUC performs better than
RUC since it incurs considerably lower costs on average (around
2.2% savings in our small-scale one-node model). Finally, the
fourth column contains the worst-case total system costs

Cmax(x) = max
u

C(x, u). (74)

Since in RUC, the commitment decisions are made so that the
total costs in the worst-case are minimized, RUC leads to lower
costs than HUC. However, the potential savings are negligible
(less than 0.02%). In summary, the main findings of this section
are

• the HUC solution is as robust as the RUC solution
• theHUC solution ismore cost-efficient than the RUC solution.

4.5. Comparison With Stochastic
Programming Approach
In this section, the novel HUC is compared with traditional SUC.
We follow a procedure similar to that adopted in the previous
section to carry out the simulation. First, the unit commitment
decisions are obtained by solving the SUC andHUC formulations
from Definitions 2 and 3. In the HUC, the number of partitions
is again set to be K = 2. Following common practice, the
expectation in the second stage of the objective in the SUC is
approximated by a sample average. In order to evaluate the effect
of the number of samples on the solution, the SUC is solved twice,
once with 50 samples and once with 500 samples. Second, using
the committed units, Monte-Carlo simulation is run by solving
the economic dispatch problem (67)-(71) for a set of Ns = 1,000
randomly generated scenarios of the available wind power. The
numerical results are reported in Table 2.

The unit commitment decisions are summarized by the first
column. The second column reports the number of infeasible
scenarios by counting the constraint violations. The third and
fourth column describe the average total costs (73) and worst-
case total costs (74). We first draw a comparison between
HUC and SUC with the smaller sample set SUC(50). Here,
at first sight, the HUC is more conservative than the SUC as
more thermal units are committed. However, considering the

TABLE 1 | Comparison between RUC and HUC.

Approach Commitment

decisions

Violations Average

total costs

Worst-case

total costs

RUC ON/ON 0 644.09$ 671.90$

HUC ON/OFF 0 630.12$ 672.00$

TABLE 2 | Comparison between SUC and HUC.

Approach Commitment

decisions

Violations Average

total costs

Worst-case

total costs

SUC(50) ON/OFF 9 677.82$ 13,360.46$

SUC(500) ON/ON 0 659.73$ 691.62$

HUC ON/ON 0 659.73$ 691.62$

number of constraint violations of the SUC reveals that the
more conservative scheduling approach of the HUC is justified
since only the unit commitment plan provided by HUC can
ensure feasibility for all outcomes of the available wind power.
As violations are penalized at the rate of 5000 $/MW, the
potential savings of the SUC resulting from scheduling less
thermal units are expected to be by far outweighed by the penalty
related costs. To confirm this supposition, we first focus on the
worst-case performance. Here, we notice that the total costs of
the SUC solution are around 20 times the total costs of the
HUC solution. This result illustrates vividly that applying HUC
instead of SUC can help keep the costs in the worst-case under
control. Regarding the average system operation, the differences
in performance between HUC and SUC are less prominent but
still existent as applying HUC in lieu of SUC leads to a decrease
in average total costs by 2.7%. In summary, from an economical
point of view, the HUC yields superior results as compared to
SUC in both the expected case and the worst-case provided that
penalty costs are included.

Above shortcomings can be remedied by incorporating more
samples into the SUC in order not to miss critical realizations
of the uncertainty. For instance, in our numerical case study,
when applying SUC with 500 samples, the results of the HUC
are recovered. However, since a large number of samples is
required, this achievement comes at the expense of increased
computational costs as compared to HUC, where considering
K = 2 worst cases is sufficient to yield the same result. The main
conclusions of the comparison between HUC and SUC read as
follows.

1. SUC with small sample set

• the HUC solution is more robust than the SUC solution
• Including penalty terms, the HUC solution is more cost-

efficient than the SUC solution

2. SUC with large sample set

• the HUC solution is as robust and as cost-efficient as the
SUC solution

• the HUC solution is computationally cheaper than the SUC
solution.
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4.6. Comparison With Previous Hybrid
Approaches
Finally, we seek to compare our novel HUC to previous HUC
formulations that have appeared in literature. Recalling the
introduction, the evaluation is based upon 4 criteria: 1. ease
of use, 2. tractability, 3. reliability, and 4. cost-efficiency. The
numerical results from the preceding sections verify that our
novel HUC satisfies all of these properties since

1. the solution to the HUC can be adjusted between RUC
and SUC in an obvious manner by varying the number of
partitions of the uncertainty set, compare section 4.1

2. the proposed HUC formulation can efficiently be solved by
applying Benders decomposition algorithm, compare section
4.3

3. the solution to the HUC does not incur any constraint
violations and is thus as reliable as RUC, see section 4.4

4. the solution to the HUC is as cost-efficient as the SUC
solution, compare section 4.5.

In the following, known HUC approaches are briefly reviewed.
As the constraint set is given by (3)–(7) in all formulations, we
restrict our discussion to the objective functions in the following.
By pointing out the major shortcomings of each formulation, the
superior performance of our novel HUC is demonstrated.

The unified stochastic and robust UC (UUC) by Zhao and
Guan (2013) employs a weight term α ∈ [0, 1] to include both
expected and worst-case dispatch costs in the second-stage:

C
UUC = min

x

{

c⊺x+ αEu

[

min
y

d⊺y (u)

]

+ (1− α)max
u∈U

[

min
y

d⊺y (u)

]}

. (75)

As the weight term needs to be determined by applying heuristics
in order to avoid sup-optimal results, the conservatism of the
solution can not be controlled in an easy-to-use manner.

In accordance with our novel HUC, the idea behind the robust
stochastic UC (RSUC) as presented by Blanco andMorales (2017)
is to minimize the expected dispatch costs of several worst cases:

C
RSUC = min

x

{

c⊺x+ Eu

[

max
u∈U

min
y

d⊺y (u)

]}

. (76)

However, unlike our novel HUC, this formulation is limited
to discrete uncertainties. Hence, in the face of continuous
uncertainties such as the available wind power, reliability can no
longer be ensured.

Finally, the distributionally robust UC (DRUC) formulations
by Zhao and Guan (2016) and Duan et al. (2018) propose to
minimize the dispatch costs under the worst-case distribution
within a pre-defined ambiguity set D:

C
DRUC = min

x

{

c⊺x+max
fu∈D

Eu

[

min
y

d⊺y (u)

] }

. (77)

Similarly to traditional SUC, such approaches require trade-offs
between computational costs and reliability. The features of the
considered HUC approaches are summarized in Table 3 for ease
of reference.

We conclude that only our novel HUC satisfies all demanded
properties.

5. CONCLUSION

Robust optimization and stochastic programming are the most
prominent formulations to deal with uncertainty in the unit
commitment problem. By protecting against the worst-case, RUC
can guarantee reliability, but suffers from over-conservatism as
the probability that the worst-case actually occurs is virtually
nil. SUC yields better results from an economical viewpoint
by preparing for the expected case, but commonly requires
approximations which might in turn raise concerns about
feasibility. In an attempt to address the shortcomings of
purely robust and stochastic formulations, prior work has paid
close attention to hybrid approaches in recent years. However,
accommodating uncertain factors with continuous range such as
the generation from wind or solar farms still remains an obstacle.
On that account, known approaches either rely on discrete
sample approximations or are computationally very demanding.

In this study, we propose a novel hybrid UC formulation
which respects the continuous nature of uncertainties like wind
power availability in its problem statement. By partitioning
the continuous range of the uncertainty into subsets, the new
approach seeks to minimize the expected worst-case costs. As
continuous uncertainty sets are considered, the provided solution
ensures system reliability for all possible future outcomes of
the uncertainty. By means of the number of partitions, the
conservatism of the solution can be controlled in a user-friendly
manner. An efficient partitioning algorithm is derived such that
the novel HUC achieves great reductions in conservatism within
the first few partitions. This feature contributes to the tractability
of our novel approach. A Benders decomposition algorithm is
proposed to solve the HUC efficiently. Finally, a case study
confirms that the presented HUC formulation delivers solutions
that perform well in terms of both costs and reliability.

In comparison to RUC, the novel HUC yields results with
reduced conservatism. Since the solution can still withstand any
possible realization of the uncertainty, this benefit comes without
sacrificing system reliability. Additionally, by applying our novel
HUC, solutions which compare to SUC in terms of costs can
be obtained. Contrary to SUC, no approximations which affect
reliability are necessary. Indeed, similar remarks hold for various

TABLE 3 | Comparison between novel HUC and previous HUC approaches.

Property Novel HUC UUC RSUC DRUC

ease of use Yes No Yes Yes

tractability Yes Yes Yes Yes/No

reliability Yes Yes No No/Yes

cost-efficiency Yes Yes Yes Yes
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hybrid approaches. The key properties which differentiate
our novel HUC from known formulations are listed in the
following. Most notably, the novel HUC considers continuous
uncertainties. This clearly distinguishes our formulation from
the hybrid approach of Blanco and Morales (2017), where the
discussion is restricted to discrete uncertainties. Consequently,
in contrast to the approach therein, our novel formulation
can ensure robustness in the face of continuous uncertainties.
Moreover, our novel HUC offers to control conservatism by
varying the number of partitions. Obviously, this approach is
more intuitive than heuristically determining a proper weight
term as suggested by Zhao and Guan (2013). Finally, the hybrid
approaches by Duan et al. (2018) and Zhao and Guan (2016),
which are based upon the principles of distributionally robust
optimization, tend to impose a high computational complexity.
Given limited computational resources in practice, the fact
that the structure of our proposed hybrid formulation lends
itself to solution by decomposition schemes such as Benders
decomposition is another beneficial feature of our novel HUC.
Being the main culprit of our novel HUC, system reliability
stands or falls by the accuracy of the probabilistic model
of uncertain factors. Hence, analyzing a sufficient amount of
historical data in order to obtain an accurate representation is an
integral preliminary step.

Current limitations of our formulation are possible targets
of future research and thus worth mentioning. For instance,
by assuming that the deterministic uncertainty set is given by
a box set, spatio-temporal correlations have been neglected.
Apparently, this simplistic assumption does not reflect reality,

where obvious correlation patterns can be found. In order to be
able to fully exploit such correlations, exploring ways to extend
our novel HUC so that more sophisticated uncertainty sets are

supported is an interesting aspect. As a natural consequence of
loosening restrictions on the shape of the uncertainty set, more
advanced algorithms are in line for determining the partitions
of the uncertainty set. Recalling that in general any space
partitioning algorithm can be envisioned, evaluating the effects of
such algorithms on the performance of our novel HUC is another
interesting direction of future research. Finally, we have pointed
out the benefits from applying our hybrid approach provided
that the sole source of uncertainty is the available wind power.
Apart from wind power, solar power is going to play an essential
role in future power systems as well. Hence, examining how our
hybrid formulation adapts to this source of uncertainty is another
possible target for future researchers.
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forecasting error distributions and probabilistic load dispatch,” in Power and

Energy Society General Meeting (Boston, MA), 1–5.
Padhy, N. (2004). Unit commitment – a bibliographical survey. IEEE Trans. Power

Syst. 19, 1196–1205. doi: 10.1109/TPWRS.2003.821611
Postek, K. and den Hertog, D. (2016). Multistage adjustable robust mixed-integer

optimization via iterative splitting of the uncertainty set. INFORMS J. Comput.

28, 553–574. doi: 10.1287/ijoc.2016.0696
Quan, D., Ogliari, E., Grimaccia, F., Leva, S., and Mussetta, M. (2013).

“Hybrid model for hourly forecast of photovoltaic and wind power,”
in IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)

(Hyderabad), 1–6.
Rahmaniani, R., Crainic, T., Gendreau, M., and Rei, W. (2017). The benders

decomposition algorithm: a literature review. Eur. J. Oper. Res. 259, 801–817.
doi: 10.1016/j.ejor.2016.12.005

Sheble, G., and Fahd, G. (1994). Unit commitment literature synopsis. IEEE Trans.

Power Syst. 9, 128–135.
Vayanos, P., Kuhn, D., and Rustem, B. (2011). “Decision rules for information

discovery in multi-stage stochastic programming,” in 50th IEEE Conference

on Decision and Control and European Control Conference (Orlando, FL),
7368–7373.

Zeng, B., and Zhao, L. (2013). Solving two-stage robust optimization problems
using a column-and-constraint generation method. Oper. Res. Lett. 41, 457–
461. doi: 10.1016/j.orl.2013.05.003

Zhao, C., and Guan, Y. (2013). Unified stochastic and robust unit commitment.
IEEE Trans. Power Syst. 28, 3353–3361. doi: 10.1109/TPWRS.2013.2251916

Zhao, C., and Guan, Y. (2016). Data-driven stochastic unit commitment
for integrating wind generation. IEEE Trans. Power Syst. 31, 2587–2596.
doi: 10.1109/TPWRS.2015.2477311

Zhao, L., and Zeng, B. (2012). “Robust unit commitment problem with demand
response and wind energy,” in IEEE Power and Energy Society General Meeting

(San Diego, CA), 1–8.
Zheng, Q., Wang, J., and Liu, A. (2015). Stochastic optimization for

unit commitment– a review. IEEE Trans. Power Syst. 30, 1913–1924.
doi: 10.1109/TPWRS.2014.2355204

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Gögler, Dorfner and Hamacher. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Energy Research | www.frontiersin.org 17 July 2018 | Volume 6 | Article 71

https://doi.org/10.3390/en11030540
https://doi.org/10.1109/TPWRS.2003.821611
https://doi.org/10.1287/ijoc.2016.0696
https://doi.org/10.1016/j.ejor.2016.12.005
https://doi.org/10.1016/j.orl.2013.05.003
https://doi.org/10.1109/TPWRS.2013.2251916
https://doi.org/10.1109/TPWRS.2015.2477311
https://doi.org/10.1109/TPWRS.2014.2355204
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Hybrid Robust/Stochastic Unit Commitment With Iterative Partitions of the Continuous Uncertainty Set
	1. Introduction
	2. Review of Robust and Stochastic Unit Commitment
	2.1. Robust Unit Commitment
	2.2. Stochastic Unit Commitment

	3. Novel Hybrid Robust/Stochastic Unit Commitment
	3.1. Mathematical Formulation
	3.2. Benders Decomposition Algorithm
	3.2.1. Feasibility Check
	3.2.2. Optimality Check
	3.2.3. Overall Algorithm

	3.3. On the Partitioning of Continuous Uncertainty Sets

	4. Numerical Case Study
	4.1. Effects of Considered Number of Partitions
	4.2. Evaluation of Proposed Partitioning Algorithm
	4.3. Evaluation of Proposed Benders Decomposition Algorithm
	4.4. Comparison With Robust Optimization Approach
	4.5. Comparison With Stochastic Programming Approach
	4.6. Comparison With Previous Hybrid Approaches

	5. Conclusion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


