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Micro-tracked CPV, in which cells move relative to fixed concentrating optics, allows CPV

to be deployed in the same manner as fixed PV modules. Behind-the-meter applications

in locations where there is a land/roof area cost for the space occupied by the modules

confers a cost advantage to CPV compared to PV. The primary objective of the present

paper is to estimate target prices below which CPV has a competitive advantage over

PV. We analyse PV and CPV microgrids, optimizing the scheduling of power into and out

of the battery in order to achieve the maximum savings compared to purchasing grid

power. We then choose the battery capacity that maximizes the internal rate of return

(IRR) on the PV microgrid. The CPV target price is the price that gives a CPV IRR that

matches the PV IRR. The target CPV prices obtained are found to depend on the land

price and on the ratio of CPV to PV annual energy yield (REY), but are insensitive to

battery prices, load profiles, current electricity tariffs and future trends in electricity tariffs.

Modesto, CA has a REY of 1.10 and an average target CPV price from $1.86/W at zero

land price to $3.53/W at $400/m2. Lancaster, CA with a REY of 1.26 has corresponding

target CPV prices from $2.14 to $4.23/W. In Las Vegas, NV, (REY= 1.27) the target CPV

price is $2.13/W at a land price of zero, but at higher land prices the IRR is insufficient for

solar power to be deployed. These target CPV prices correspond with current estimates

of pedestal-tracked CPV of $2.4 to $3.3/W and indicate that it is realistic to expect

micro-tracked CPV to be cost competitive with PV in some urban areas in southwestern

USA.

Keywords: concentrator photovoltaics, micro-tracking, CPV, microgrid, internal rate of return, demand charges,

behind-the-meter

INTRODUCTION: TRENDS IN CPV AND MICROGRID ECONOMICS

Industry Trends
Although Concentrator Photovoltaics (CPV) has been profitable in utility-scale deployments in
high Direct Normal Irradiance (DNI) regions, its cost in US$/W has not declined as fast as expected
inHaysom et al. (2015) and deployment volumes have been very low since 2015, (Ekins-Daukes and
Johnson, 2017; Gil et al., 2017). Photovoltaic (PV) costs are declining at 11% per annum (Cole et al.,
2017) resulting in PV being more profitable than CPV in utility-scale applications, which constitute
the vast majority (86%) of CPV deployment to date (Grand View Research, 2017).
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A major advantage of CPV over PV is its higher efficiency
(NREL, 2018) in converting light energy into electrical energy,
implying less land area being required for CPV than for PV.
However, many large-scale high DNI deployments are in desert
regions (North Africa, Northern Chile, Australia, and SW USA)
where the price of land is low so that the greater efficiency of
CPV does not translate into an economic advantage. In this
paper, we therefore focus on urban deployment where the value
of land or roof area is significant, in order to investigate situations
in which CPV has a higher internal rate of return (IRR) than
PV. This leads us to focus our research on behind-the-meter
(BTM) applications on customer premises instead of utility-scale
deployments. Adding the cost of land to solar projects reduces
their IRR and we therefore conduct our analysis in cities in the
high DNI region of the southwestern USA where we can expect
an elevated IRR.

The phasing out of feed-in-tariffs (FITs) has lead to
opportunities for CPV deployment under net-metering (NM)
programs, in which customers receive a credit on their electricity
bill for electricity fed into the grid up to a certain limit.
Most FITs are flat rate, guaranteeing a constant price for
electricity generated in $/kWh, whereas NM applies to a range
of tariffs including peak dependent tariffs for medium to large-
sized businesses. Charges for peak usage ($/kW) each month
under these tariffs can constitute a significant percentage of
a customer’s electricity bill with most of the remainder being
charges for electricity ($/kWh). When these peaks are due to
air conditioning, we can expect them to be reduced significantly
by solar power which is generating well at the same time. We
therefore focus on customers subject to such peak charges, and in
the cities studied, such tariffs apply to customers with peak power
consumption > 200 kW.

In order to compare the economic viability of CPV and PV,
we require comparable customer premises installations. Pedestal-
mounted CPV tracking systems are unsuited to roof-tops due
to wind loads and the cost of reinforcing the roof structure to
support the pedestal. They also do not compete well with fixed
PV in ground-mount scenarios because of the additional space
required between CPV modules to avoid shading (Apostoleris
et al., 2018). In the present paper we therefore analyse CPV with
microtrackers integrated into the modules, moving the cell in
relation to fixed optics (Price et al., 2017) and resulting in a shape
and size for CPV modules similar to that of PV modules. In
particular, both types of module can be fixed and can be mounted
on roofs or on the ground with identical shading implications.

Early designs of fixed CPV modules, e.g., Zettasun and
Suncycle, involved complex moving parts and resulted in a CPV
module significantly thicker than a PV module. Comparable
thickness is advantageous since it allows CPV modules to be
installed at similar cost to PV modules using similar racking.
CPV can then share the benefits resulting from the efficiencies
that have been achieved in PV installation costs over the
years. There is however a trade-off between thickness, optical
concentration ratio, and the range of incidence angles that can
be accepted. Recent designs move the cell in a plane between
refractive and reflective optics so that it maintains the focus
of the direct sunlight as the sun moves across the sky. The

work of Price et al. (2015) achieved a 200x concentration ratio
for ±60◦ incidence angles in a module 1 cm thick. Their more
recent design (Price et al., 2017) achieves 660x concentration for
±70◦ incidence angles in a module < 2 cm thick. In a test, it
generated 54% more electricity per unit area than a 17% efficient
PV module. Future designs may aim for higher concentration at
a lower range of incidence angles which may be economic since
irradiance is lower at high incidence angles.

Microtracker integrated CPV is reviewed by Apostoleris et al.
(2016), but commercial product costs ($/W) are not yet available.
This paper establishes target costs which would enable micro-
tracked CPV to be more profitable than PV in specific situations.

The simplest way to implement solar behind the meter is to
use electricity generated to offset loads and to send any surplus to
the grid under NM, which is one situation that we analyse. The
current 7% per annumdecline in battery prices (Rubel et al., 2017;
Sekine and Goldie-Scot, 2017;), is resulting in their increased
use in conjunction with solar. The introduction of a battery
and optimal microgrid controller allows additional savings at
an additional cost and we therefore investigate optimal control
schedules and battery capacities to maximize IRR for PV and
CPV. Microgrid economics has an established literature which
we now review in order to identify the contribution of the present
paper.

Microgrid Economics Literature Review
Above we have given the major relevant references relating to
CPV costs and micro-tracking; we now focus on the literature
on microgrid economics.

Microgrid optimization occurs at three levels (i) control of
voltage, current and power, (ii) control of power quality, and
(iii) control of scheduling and economics, and a comprehensive
review is provided by Meng et al. (2016). Focusing here on
optimal scheduling and economics, various approaches have
been used including: minimizing annual net cost of operation
(Azzopardi and Mutale, 2009), minimizing cost of electricity
consumed in a commercial building (Marnay et al., 2008; Fina
et al., 2017; Mariaud et al., 2017), optimal participation in
an energy market (Celli et al., 2005), optimal integration of
distributed wind generation into the grid (Zhou and Francois,
2011), optimal management of a rural microgrid (Zhang et al.,
2012), optimal PV-battery system for demand charge or peak
reduction (Hanna et al., 2014; Khalilpour and Vassallo, 2016;
Park and Lappas, 2017; Parra et al., 2017; McLaren et al., 2018;
Raoufat et al., 2018), and optimal PV-storage capacity in terms
of grid impact and PV utilization rate (Brusco et al., 2016; Merei
et al., 2016; Cervantes and Choobineh, 2018; Freitas et al., 2018;
Raoufat et al., 2018). These papers focus on PV microgrids.
There is a lack of literature on the economics of CPV microgrids
because of the predominance of PV in recent solar projects.
However, (Moumouni and Baker, 2015) analyse battery size to
buffer the intermittency of grid connected CPV.

Although peak load in commercial buildings often coincides
with solar generation making PV a viable option for peak
reduction (Merei et al., 2016), energy storage could provide
additional benefits to customers, particularly those with less
variable demand (McLaren et al., 2018). Linear programming has
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often been used to determine optimal PV-storage system sizes
(Hanna et al., 2014; Khalilpour and Vassallo, 2016; and Mariaud
et al., 2017; Cervantes and Choobineh, 2018), however Zhang
et al. (2017a) use three rule-based operation strategies which
optimized the system using non-linear programming. Under
current market prices, battery storage was found in some cases to
be uneconomical and delivering minimal cost reduction (Merei
et al., 2016;Mariaud et al., 2017; Zhang et al., 2017a; Raoufat et al.,
2018). In such circumstances, it is possible for batteries to provide
additional services such as ramp rate control and frequency
regulation (Raoufat et al., 2018). Conversely, storage integration
yielded financially beneficial results at lower technology cost
limits as modeled in McLaren et al. (2018), nearly doubled net
present value of cash flow in Khalilpour and Vassallo (2016),
decreased maximum load by nearly 10% in Hanna et al. (2014),
supplied energy at 34% less cost than network prices in Park
and Lappas (2017), and produced electricity bill savings of up
to 12% in Brusco et al. (2016). Financial viability of a battery
storage with PV microgrid can be impacted by other variables
such as electricity retail prices (Fina et al., 2017; Parra et al., 2017),
forecasting of solar irradiance (Hanna et al., 2014; Mariaud et al.,
2017), and presence of net-metering, which reduced financial
benefits gained through storage in McLaren et al. (2018), and
resulted in a larger optimal PV-battery system size in Cervantes
and Choobineh (2018), as compared to no net-metering.

The measure we use as the objective function is the IRR. Other
valid metrics include net present value (NPV) and lifetime cost of
electricity (LCOE) which have been used by many authors (e.g.,
Reichelstein and Yorston, 2013; Makbul et al., 2015; Mudasser
et al., 2015; Wouters et al., 2015; Boloukat and Foroud, 2016;
Khalilpour and Vassallo, 2016; Mariaud et al., 2017; Parra et al.,
2017; Zhang et al., 2017a). Such studies require assuming a value
for the discount rate, and have assigned a range of values from
7.5 to 10%, reflecting a subjective assessment of the risk of the
project. Both NPV and IRR are useful in assessing the economic
viability of a single project, since they deal with economic
return on investment when the price at which electricity can be
sold is known. LCOE is useful when comparing among several
alternative utility-scale projects and bidding on the price at which
they can supply electricity, since it focuses on the cost at which
electricity can be produced. In our case, we are assessing a
behind-the-meter project subject to published electricity tariffs
and therefore our choice is between IRR and NPV. When the
assessment is done for a specific site for a specific organization,
the discount rate of that organization can be used to calculate
the NPV. In our case, we are considering more generic projects
for which there is no available discount rate. The rationale for
choosing IRR for the present paper is therefore that IRR does not
involve assuming a discount rate.

Objectives and Contributions of the
Current Paper
The primary objective of this paper is to estimate target prices
for micro-tracked CPV at which it can compete with fixed PV in
behind-the-meter applications. In order to achieve this objective
we analyse the economics of PV and CPVmicrogrids. Since there

is a lack of literature on the economics of CPV microgrids, we
also provide a comparative analysis of PV and CPV microgrids
as a secondary objective.

In summary, the present paper extends the literature by:

• Estimating target prices for micro-tracked CPV at which it is
cost-competitive with PV;

• Comparing the operation and economics of PV and micro-
tracked CPVmicrogrids in behind the meter applications with
peak demand charges in addition to electricity charges.

ENERGY AND ECONOMIC MODELING

The analysis uses three stages of modeling: (i) energy yield from
PV and CPV (ii) optimal scheduling of electricity in microgrids
and (iii) optimal IRR over 32 year life of the PV and CPV
installation. We use these models to calculate the IRR from a
PV microgrid with current installed PV costs, optimal battery
size, and a given land price. We then calculate the IRR of a CPV
microgrid at the same land price for a range of potential capital
costs of CPV ($/W). The target CPV cost is the one that results
in an IRR that matches the PV IRR. If micro-tracked CPV can be
produced at or below that cost, it will achieve a higher IRR than
PV and hence be cost competitive with PV.

Energy Yield Models
In this section we list the factors taken into consideration in
calculating the PV and CPV energy yield from the irradiance
and temperature data. We give references instead of detailed
equations, since this paper focuses on the economically optimal
operation of the microgrid in order to estimate target CPV costs.
The solar energy yield st in hour t is estimated in each month
based on the size of the solar installation S (kW DC).

CPV Energy Yield Model
The DC energy yield from CPV is modeled using 17 years of DNI

and temperature measurements from Solar Anywhere© satellite
data (Clean Power Research, 2018) using an efficiency of 32% for
a triple junction cell (NREL, 2018). This is then modified to take
into account the effect of:

a) temperature, giving a modification in cell efficiency of
−0.07%/◦C relative to a normal operating temperature of
25◦C (Muller et al., 2015)

b) spectrum, using the zenith angle of the sun as a proxy (Yandt
et al., 2015),

c) low irradiance < 600 W/m2, resulting in a modification of
efficiency of−0.0195%/(W/ m2) (Gerstmaier et al., 2011) and

d) module degradation over time which has proven to be too
small to measure accurately (Gerstmaier et al., 2011) and
which we conservatively estimate at 0.025%/year, i.e., half the
PV degradation rate of 0.05%/year (Lowder et al., 2013).

PV Energy Yield Model
The DC energy yield from PV is modeled from DNI, Global
Horizontal Irradiance (GHI) and temperature measurements

from Solar Anywhere© satellite data (Clean Power Research,
2018) based on the classic model of Masters (2004) using a

Frontiers in Energy Research | www.frontiersin.org 3 September 2018 | Volume 6 | Article 97

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Wright et al. Economic Viability of Micro-Tracked CPV

cell efficiency of 15.6% (NREL, 2018) and an albedo = 0.2 for
reflected light from the ground in front of the module. Themodel
is modified to take account of the effect of:

a) temperature, giving a modification in cell efficiency of
−0.4%/◦C relative to a normal operating temperature of 25◦C
(Sahin et al., 2017)

b) reflections proportional to 0.05(sec θ − 1) at angle, θ , between
the direct beam irradiance and the normal to the plane of the
module (Sandia lab, 2018) and (PVsyst, 2018) and

c) modules degradation of 0.05%/year (Lowder et al., 2013).

Microgrid Economics Optimization Model
The solar microgrid is illustrated in Figure 1 and the associated
notation is summarized in Table 1.

Our model optimizes the operation of the microgrid each day
of each month for workdays and weekends separately to take into
account variations in the load and electricity tariff. The objective
function is the total electricity bill from electricity and demand
charges, and the decision variables are the peak consumption and
the energy flow into and out of the battery:

min
M,ut ,vt

DM +
23

∑

t=0

Ptgt (1)

We note that the demand charge is applied to the hour with
the peak consumption from the grid during each month: M =
max(gt). This non-linear relationship is replaced by the following
equivalent linear formulation in which M becomes a decision
variable:

M ≥ gt (2)

A first group of constraints represents the dynamics of the
microgrid operation as shown in Figure 1.

FIGURE 1 | Commercial customer solar microgrid showing notation and

direction of power flows.

The flows into and out of the battery are treated as separate
decision variables because the inefficiency of the battery results
in asymmetric operation:

xt+1 = xt + ebut −
vt

eb
(3)

This inefficiency also ensures that the optimal solution can never
have both ut and vt positive at the same time, t. In order to
estimate eb, we combine academic research information and
commercial product information. Energy efficiencies of anode,
cathode and multiple cell management are 0.937, 0.965, and
0.9873 for an overall efficiency of 0.893 (Meister et al., 2016 and
Zhang et al., 2016). The Tesla Powerwall 2 battery, (Tesla, 2018),
and the Aquion M110 LS83 battery, (Aquion Energy, 2018), have
round trip efficiencies of 85–92%, averaging at 88.5%. Averaging
the academic research figure and the commercial figure, we
obtain a round trip efficiency of 0.889, giving a one-way efficiency
of eb =

√
0.889 = 0.943.

In order to ensure that the operation of the battery 1 day does
not adversely affect its operation the next day, we impose the
constraint:

x24 = x0 (4)

The net flow of power from the DC part of the system into the
inverter is given by:

Qt − Rt = edst + vt − ut (5)

and hence the power purchased from the grid is given by:

gt = Lt + aI − eiQt +
Rt

ei
(6)

The inefficiency of the inverter also ensures that the optimal
solution cannot have both Qt and Rt positive at the same time,
t.

A second group of constraints are also imposed, modeling the
capacity of the various components of the microgrid:

In order to ensure 5,000 cycles of battery lifetime operation,
we operate the battery between 10 and 90% of capacity (Saft,
2018). This also ensures that there is reserve battery capacity
available to smooth out short term (of the order of seconds and
minutes) fluctuations in solar energy yield.

0.1B ≤ xt ≤ 0.9B (7)

The power flow into and out of the battery is related to the
battery capacity and the ratio between the two is determined
by the battery design. We choose a ratio of 0.5 (kW/kWh) as
being representative of a typical microgrid battery with capacity
of about 100 kWh (Kokam, 2018).

ut ≤ 0.5B; vt ≤ 0.5B (8)

The power flow into and out of the inverter is limited by the
inverter capacity:

Qt ≤ I; Rt ≤ I (9)
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The resulting model is linear and is optimized using linear
programming, thus guaranteeing a global optimum. The inputs
to the model are the solar power produced, st , the AC loads
in the customer premises, Lt , the price of purchasing electricity
from the grid, Pt , and the demand charge, D. For a range
of battery sizes, B, we minimize the customer electricity bill
each month for workdays and weekends separately and calculate
the annual savings, Z(B), from using the solar microgrid with
battery capacity, B, compared to satisfying all the loads from grid

TABLE 1 | Notation and data sources used in microgrid modeling.

Notation Definition Source

ITEMS RELATED TO THE DC PART OF THE MICROGRID

t Time (hours) 0,…,23

S Capacity of solar

installation (kW)

Determined from the space available

at the site = 270 kW DC

st DC energy yield (kWh) From section Energy Yield Models

Lt AC loads in customer

premises (kW)

Empirical data from electricity meter

readings

ut DC Power flow into the

battery (kW)

Decision variable chosen by

optimization algorithm.

vt DC Power flow out of

the battery (kW)

Decision variable chosen by

optimization algorithm.

xt State of charge of the

battery (kWh)

Equations (3, 4)

B Battery capacity (kWh) 0, …, 500 kWh scenario analysis

b Number of battery

cycles per year

Obtained from the optimal solution

Qt DC power flow into

inverter

Equation (5)

Rt DC power flow from

bidirectional inverter

Equation (5)

ITEMS RELATED TO THE AC PART OF THE MICROGRID

I Capacity of the inverter

(kW)

Chosen to match the maximum solar

generation, S.

gt AC power purchased

from grid (kW)

Equation (6)

eb Efficiency of charging

and discharging the

battery

0.943 (see text)

ei Efficiency of inverter 0.99 (Hatanaka et al., 2015)

ed Efficiency of DC/DC

conversion

0.97 (Zhang et al., 2017b)

a Self-consumption

proportion of inverter

0.01 (King et al., 2017)

ITEMS RELATED TO THE CONNECTION TO THE PUBLIC UTILITY GRID

Pt Price of electricity

purchased from the

grid ($/kWh)

Electricity tariff for each city. https://

openei.org/apps/USURDB/

D Demand charge on

peak consumption

each month ($/kW)

Electricity tariff for each city. https://

openei.org/apps/USURDB/

M Monthly maximum

electricity purchased

from the grid (kWh)

M = max(gt )

Z Annual savings ($) Obtained from the optimal solution

Since the time unit is 1 h, energy (kWh), and power (kW) are equivalent.

purchased electricity. We also note the number of battery cycles,
b, during the course of a year in this optimal solution, which is
used in the next section to estimate costs associated with end of
life battery cell replacement.

This calculation is repeated for energy yield from PV and CPV
resulting in annual savings, ZPV (B) and ZCPV (B), respectively.

IRR Optimization
The notation and sources of information for IRR optimization
are given inTable 2. The internal rate of return (IRR) is calculated
from the cash flows over the 32 year life of the solar microgrid.
The incoming cash flows correspond to the annual savings
calculated in section Microgrid Economics Optimization Model
increased according to the rate of increase of electricity prices and
decreased according to degradation of the solar modules:

Zn(B) = Z (B) (1+ r)n
(

1− d
)n

for n = 1, . . . , 32 (10)

The outgoing cash flows consist of capital and operating costs.
The capital costs are incurred in year 0 and include the cost of

TABLE 2 | Notation and sources of information for calculation of IRR.

Notation Definition Source

n Year number: n = 0,…,32

cS Installed cost of solar for

medium sized businesses

($/W)

1.62 for PV (NREL, 2017)

cB Installed cost of battery

($/kWh)

Two scenarios:

590.8 all-in cost

254.0 Battery pack and management

system only (Rubel et al., 2017;

Sekine and Goldie-Scot, 2017)

cA Cost of land or roof area

($/m2)

0–600, scenario analysis.

A Area (m2) Equation (12)

C Total capital cost ($) Equation (11)

es Efficiency of solar modules 0.156 for PV (NREL, 2018)

0.32 for CPV (NREL, 2018)

oS Operations and

maintenance cost of solar

system ($/kW-yr)

14 (Fu et al., 2017)

oI Replacement cost of

inverter ($/W)

0.098 (MacDougall et al., 2018)

oB Replacement cost of

battery cells ($/kWh)

Equation (17)

oR Recycling cost at end of

life ($/m2)

18.25 (Di Francia, 2013)

β Battery cell cost as a

proportion of the battery

pack cost

0.764 (Kittner et al., 2017)

r Annual rate of increase of

electricity prices

0.0318 for California

−0.01684 for Nevada, (EIA, 2017)

d Annual degradation rate of

solar modules

0.05 for PV, (Lowder et al., 2013)

0.025 for CPV, (Gerstmaier et al.,

2011)

Zn Savings in year n. ($) Equation (10)

IRR Internal rate of return Equations (18), (19)
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solar installation, the battery, and the land or roof area occupied
by the solar installation:

C (B) = cSS+ cBB+ cAA (11)

In standard test conditions, 1 m2 corresponds to 1 kW of solar
irradiance. Therefore, the land or roof area is:

A =
S

es
(12)

We note that cS is known for PV. Section Methodolgy describes
how a target value of cS is estimated for CPV, which is a major
result of this analysis.

The operations costs, On, in year n, are associated with annual
maintenance of the system, inverter replacement, battery cell
replacement and end of life recycling costs. A battery with a life
of 5,000 cycles using b cycles per year lasts for

⌊

5000/b
⌋

years. In
practice, we found this to come to between 11 and 20 years, so
that battery cells need replacing either once or twice during the
32 year life of the system.

Os = oSS (13)

The operations and maintenance costs for micro-tracked CPV
are taken to be the same as those for PV (Fu et al., 2017) since
no independent figure is available and since the form factor of
micro-tracked CPV is very similar to that of PV.

OI = oII in year 16 (14)

OB(B) = oBB in years
⌊

5000/b
⌋

and
⌊

10000/b
⌋

(15)

OR = oRA in year 32 (16)

On (B) = OS + OI + OB + OR (17)

Rapid declines in battery prices imply that it is necessary to
forecast the price of battery cells in the future years when they
will need replacing. This was based on averaging projections of
the prices of battery packs ($/kWh) from BCG and Bloomberg
(Rubel et al., 2017; Sekine and Goldie-Scot, 2017), and scaling the
result according to the battery cell price as a proportion of the
battery pack cost (Kittner et al., 2017). A logarithmic regression
(R2 = 0.996) results in an estimated battery cell cost ($/kWh) in
year n (for n= 0 in 2018) of:

oB (n) = 10(2.2815−0.0315n) (18)

The IRR is the discount rate at which the net present value (NPV)
of this sequence of cash flows is zero:

NPV =
∑32

n=1

Zn(B)− On(B)

(1+ IRR(B))n
− C(B) = 0 (19)

The notation used in this calculation emphasizes the dependence
of certain variables on the battery size, B, since we need to choose
the value of B that maximizes IRR(B). The IRR for PV is:

IRR = max
B

IRR (B) (20)

METHODOLGY

Sequence of Calculations
The aim of the current paper is to assess the economic
viability of CPV in behind-the-meter applications in commercial
buildings using available anonymized consumption data for such
a customer. We aim to calculate a target cost cS for CPV that
results in an IRR for CPV that is equal to the IRR for PV. If micro-
tracked CPV can be produced at a price less than this target value
of cS then it will be more economically viable than PV as it would
have a higher IRR. We first calculate the IRR for PV and then
find a CPV cost cS that results in a matching IRR following the
procedure in Figure 2.

Scenarios and Corresponding Data
Sources
The four main determinants of solar microgrid economics in
behind the meter applications are the battery prices, the solar
energy yield, the electricity tariff and the customer’s load profile.
These factors have many parameters that vary with hour, day,
and month. Our aim is to obtain results based on empirical
and realistic data that can be clearly interpreted as opposed
to providing a comprehensive review of all possible parameter
values. We therefore deal with the first two factors, energy yield
and electricity tariff, by selecting three cities (Las Vegas, NV;
Lancaster, CA; and Modesto, CA) in the high irradiance region
of southwestern USA, two of which (Las Vegas and Lancaster)
have similar energy yield and two of which (Lancaster and
Modesto) have similar tariffs (Table 3 and Figure 3). For the

FIGURE 2 | Sequence of calculations from different subsections of section

Energy and Economic Modeling.
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customer load profile, we have available anonymized data from a
medium sized business customer. However, load profiles are very
specific to individual customers and therefore we also investigate
two stylized load profiles representing a commercial site used
primarily on workdays from (i) 8 a.m. to 6 p.m. and (ii) 9 a.m. to
5 p.m., Figure 4. The stylized load profiles have the same annual
total consumption as the empirical data from the customer. The
PV capacity determined by the customer site layout is 270 kW
DC. For our comparative analysis of PV and CPV microgrids,
we therefore also use a 270 kW DC CPV system. CPV uses less
land/roof area than PV for the same amount of power and an
alternative comparison would be with a 550 kW CPV system
occupying the same area as the 270 kW PV system. However, this
would imply a CPV system generating a greater proportion of
the customer load, introducing multiple differences in the battery
scheduling. An apples for apples comparison is to have both PV
and CPV systems at 270 kW.

PV AND CPV ECONOMIC ANALYSIS
RESULTS AND DISCUSSION

In this section we achieve our original objective of estimating
target prices for micro-tracked CPV at which it can be at least as
profitable as fixed PV. This involves the economic optimization
of CPV and PVmicrogrids. Section Introduction: Trends in CPV
and Microgrid Economics demonstrated an absence of research
literature on economic optimization of CPV microgrids with
demand charges and we therefore present results comparing
CPV and PV microgrids with demand charges in addition to
presenting the final result on target CPV prices.

In section Analysis for Zero Land/Roof Price, we analyse the
cost of CPV at which it can compete with PV for the situation

TABLE 3 | Energy yield for 270 kW DC solar installations and medium sized

business tariffs.

Las Vegas,

NV

Lancaster,

CA

Modesto,

CA

Solar annual total PV

energy yield (kWh)

19032 19477 16670

Solar annual total CPV

energy yield (kWh)

24110 24626 18267

CPV/PV energy yield

ratio

1.26681 1.264363 1.095801

Demand charges

($/kW)

19.3 11.15 9.13

Avg electricity price

($/kWh)

0.055 0.103 0.105

ToU range hi end

($/kWh)

0.05519 0.33536 0.27429

ToU range lo end

($/kWh)

0.05519 0.07846 0.07631

ToU # months 0 4 6

Las Vegas and Lancaster have similar energy yield and Lancaster and Modesto have

similar time-of-use (ToU) tariffs. Las Vegas has a flat rate tariff which is about half of the

average ToU tariff in Lancaster and Modesto but its demand charge is about double that

of the other cities.

in which the land/roof on which the solar is installed is free
of charge. We then move on to address the effect of various
land/roof prices in section Impact of Land Prices.

Analysis for Zero Land/Roof Price
Optimum Battery Scheduling: PV/CPV Comparison
An example of optimum battery scheduling in Lancaster in June
is shown in Figures 5A,B following the procedure in section
Microgrid Economics OptimizationModel. The effect of demand
charges can be seen in the flat profile of grid purchases in the
late morning, and the effect of time of use charges can be seen in

FIGURE 3 | Time of use tariffs ($/kWh) in (A) Lancaster, CA, and (B) Modesto,

CA, over 24 h and 12 months.

FIGURE 4 | Example AC load profiles over 24 h for 3 scenarios for workdays

in June. The total annual load is scaled to be the same for each profile.
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FIGURE 5 | Example optimum battery schedules (kWh) over a 24 h workday for Lancaster, CA, with an 8 a.m.−6 p.m. load profile and a battery size of 200 kWh, for

(A) PV and (B) CPV during June and (C) PV and (D) CPV during December.

further reductions in grid demand in the afternoon. The use of
linear programming ensures that the savings achieved is a global
optimum, however the optimum battery schedule is not unique.
For instance, the battery can be charged from the grid at any time
when the time of use (ToU) charges are at a minimum so long
as that charging does not increase the peak demand or exceed
battery capacity.

We note how the broader generation profile of CPV compared
to PV has enabled the peak consumption from the grid to be
lower in the case of CPV. It is this combination of CPV plus a
battery that enables CPV to compete effectively with PV.

In both PV and CPV microgrids, the battery is fully charged
in time for the start of the daytime load. However for PV,
even in June, the battery needs to be depleted to about 50% of
capacity while the solar energy yield is increasing during the later
morning. At midday, some of the solar energy yield is used to
recharge the battery, which is ready for use as the sun starts to
set in the late afternoon. This pattern is much less pronounced in
the case of CPV due to its broader generation profile. This results
in more battery cycles for PV than for CPV, necessitating battery
cell replacement earlier, thus adding to costs in the PV system.

In both PV and CPV, the grid purchases are reduced below
the maximum grid consumption in the afternoon when ToU
charges are high. This is distributed over more hours in the case
of CPV; however, such a distribution over hours with the same
ToU charge is another example of the non-uniqueness of the
optimal schedule.

Figures 5C,D illustrate the situation in December which is
different than that of June in that the broader generation profile

of CPV does not achieve a significantly lower demand charge
than PV. The peak consumption from the grid is 332 kW for
PV and 331 kW for CPV. Instead, CPV energy yield is used
to reduce electricity charges during the day. One reason for
this difference between summer and winter is that the solar
generation profile for both PV and CPV is narrower than in
the summer, but a second important contributing factor is the
clock change for daylight saving time. In the winter the gap
between solar generation and the workday is primarily in the
afternoon whereas in the summer it is more equally split between
morning and afternoon. The capacity of the battery to bridge
this afternoon gap is the determining factor in the resulting peak
demand charge. In Figure 5, a 200 kWh battery is used. Doubling
that capacity to 400 kWh reduces the peak consumption from
the grid in December to 284 kWh for PV and 272 kWh for CPV,
conferring an advantage to CPV. Whether such savings covers
the cost of large batteries is discussed in section Optimal IRR and
Target CPV Costs.

The points described in this section apply, in general, to all 3
load profiles in all 3 cities.

Demand Charge Dollar Savings: PV/CPV Comparison
The first four steps of the methodology in Figure 2 allow us
to investigate the dollar savings from PV and CPV before
accounting for the costs. In section Introduction: Trends in CPV
and Microgrid Economics, we emphasized the importance of
peak demand charges to medium sized business customers and
how batteries can contribute to reducing peaks in consumption
from the grid when the load profile extends to times at which
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solar power is not generating well. Examples of such energy flows
are given in Figure 5. We now quantify the dollar impact of this
effect by giving the percentage of savings that is due to reduced
demand charges (as opposed to reduced electricity charges) from
optimum scheduling of different sizes of battery. The results are
shown in Figure 6. The much higher demand charges in Las
Vegas (given in Table 3) result in a much higher percentage of
savings being due to demand charges compared to the other two
cities. The demand charges in Lancaster are only slightly higher
than in Modesto, giving closer results between those two cities.

Figure 6 also clearly shows that the larger the battery, the
greater the corresponding percentage that demand charges
contribute to total savings. However, there is a difference between
PV and CPV. The battery size needs to be very large before
the percentage contribution of demand charges is higher for
PV than for CPV. The greater gap between the load profile
and the generation profile for PV means that a larger battery
is required to bridge it. With smaller batteries, saving demand
charges contributes a greater percentage of total savings for CPV
than for PV. The dollar cost of the larger batteries required by PV
is discussed in section Optimal IRR and Target CPV Costs.

This discussion of the proportional contribution of demand
charges to total savings must be complemented by considering
the absolute dollar value of those total savings. This is higher for
CPV than for PV, corresponding to the higher energy yield of
CPV shown in Table 3.

These points are generally true for all three load profiles shown
in Figure 4.

Optimal IRR and Target CPV Costs
The additional savings derived from increased battery size
are associated with the corresponding battery costs, which we
now deal with by calculating the IRR following the procedure
in section IRR Optimization. We first work with the all-in
battery price of $590/kWh from Table 2 that includes battery
pack, balance of system hardware, soft costs and engineering
procurement and construction. We also include inverter
replacement costs, battery cell replacement costs, operations and
maintenance costs, end-of-life recycling costs, etc. as given in
Table 2. An example of the cash flows is given in Figure 7.

In the case of PV, we include the installed PV capital costs
which leads to an IRR for each battery size. PV developers would
naturally choose the battery size that maximizes this IRR. The
target CPV cost is chosen so that, for each possible battery size
in the CPV microgrid, CPV attains at least this maximum IRR
achievable from PV. We then note the battery size in the CPV
microgrid that allows the highest CPV target price.

Figure 8 presents the results for Las Vegas, displaying the PV
IRR and the CPV target price on the left and right vertical axes
respectively. Figure 8B shows the maximum PV IRR of 9.9% for
the 9 a.m.−5 p.m. load is achieved with a 200 kWh battery. The
optimization is performed with a granularity in battery prices
corresponding to the availability of commercial products. This
is also the scenario shown in Figure 7. The target CPV cost to
achieve the same IRR depends on the size of battery used in the
CPV microgrid and is less than 2.08 $/W for all battery sizes.
The maximum CPV cost of 2.08 $/W at which CPV can compete

FIGURE 6 | Percentage of the dollar savings that is due to reduced demand

charges as a function of battery size for Lancaster, CA, with the 8 a.m.−6 p.m.

demand profile.

with PV is in a CPV microgrid including a 100 kWh battery. The
optimal battery size in a CPVmicrogrid is lower than the optimal
battery size in a PV microgrid because the CPV solar generation
profile is better able to supply the 9 a.m.−5 p.m. load profile.

The broader load profile from 8 a.m. to 6.p.m., Figure 8A, is
less well matched to the solar generation profile of PV or CPV,
resulting in a lower PV maximum IRR of 7.6% using a 200 kWh
battery. For this load profile, CPV canmatch the PV IRR at a CPV
cost of 2.24 $/W using a 200 kWh battery.

The empirical load profile, analyzed in Figure 8C, is broader
still (Figure 4) and results in a lower maximum PV IRR of 7.0%
using a 100 kWh battery. The optimal way for a CPV microgrid
to compete is with a 200 kWh battery and a price of up to 2.06
$/W. The total energy yield of CPV is higher than that of PV and
hence it can benefit from use of a larger battery.

The broader the load profile, the lower the optimal PV IRR.
In order to compete, a CPV microgrid developer can choose a
battery size that allows high CPV target prices. If micro-tracked
CPVmodules are available below this target price, a higher IRR is
obtainable from a CPV microgrid using a range of battery sizes.

The corresponding results for Lancaster and Modesto are
summarized in the top half of Table 4. The optimal PV IRR
is 20–25%, much higher than the 7–10% in Las Vegas, due to
the electricity charges being about double those in Las Vegas
and due to the ToU peak period being during the hours when
solar is generating well. The savings due to demand charges are
proportionately higher in Las Vegas, as seen in Figure 6, because
of the high demand charges in that city, but in absolute terms they
are insufficient to achieve IRRs as high as those in Lancaster and
Modesto.

Solar microgrids in Lancaster and Modesto have an optimal
battery capacity of zero. The maximum PV IRR is achieved for
all load profiles without a battery and the highest target CPV
cost also does not involve a battery. The dollar value of savings
from the use of solar microgrids increases as battery size increases
but not sufficiently to offset the cost of the battery. Battery costs
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FIGURE 7 | Example 32 year cash flows for PV IRR calculation: Las Vegas, 9 a.m.−5 p.m. load profile, 200 kWh battery.

FIGURE 8 | PV IRR (blue graph, left axis) and CPV target cost to match the maximum PV IRR (orange graph, right axis) for Las Vegas (A) 8 a.m.−6 p.m. load (B)

9 a.m.−5 p.m. load (C) empirical load.

are forecast to decline at 6.5% per year until 2025 (Rubel et al.,
2017; Sekine and Goldie-Scot, 2017). A battery could therefore
be added to a PV or CPV system at a later date, when it becomes
economically viable, albeit with costs associated with the retrofit.

The above results are obtained with a 2018 battery price of
$590.8/kWh from Table 2, which includes not only the battery
pack and management system, but also project development,
engineering procurement and construction, grid connection and
balance of system hardware. If some of these costs can be shared
with similar costs included in the installation costs of solar, the
additional cost of the battery may be reduced.

The battery pack plus management system cost only
$254/kWh (Rubel et al., 2017; Sekine and Goldie-Scot, 2017).
At this price it is economically optimal to use batteries in all 3
cities and the corresponding results are recorded in the lower half
of Table 4. Lower battery prices increase the PV IRR, setting a
tougher bar with which CPV needs to compete. Lower battery
prices also benefit CPV, but the net effect is a reduction in the
target price of CPV at which it can compete with PV. A battery

price of $254/kWh compared to $590/kWh is a very substantial
reduction, however the impact on CPV target prices is less than
5%. This is in part due to the fact that the battery constitutes a
small part of the total system cost and also because a reduction
in battery prices benefits both PV and CPV. The impact on target
CPV costs reflects the difference in the extent to which battery
prices affect the economics of PV compared to CPV. The fact
that the overall effect is small implies that the CPV target prices
in Table 4 are robust to changes in battery prices.

The target CPV costs given in Table 4 are influenced by 5
factors:

1. Battery prices. As just discussed, CPV target costs are
insensitive to battery prices.

2. The customer load profile. The broader the load profile, the
lower the optimum PV IRR, but there is little impact on CPV
target prices.

3. The electricity tariffs in the 3 cities. There are major differences
among these tariffs, given in Table 3 and Figure 3, with
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TABLE 4 | Optimal PV IRR under 3 load profiles in 3 cities and the target CPV cost required to match that IRR.

Maximum PV IRR (%) Maximum Target CPV cost ($/W)

8 a.m.−6 p.m. 9 a.m.−5 p.m. Empirical 8 a.m.−6 p.m. 9 a.m.−5 p.m. Empirical

Battery Price = $590/kWh

Las Vegas 7.6% 9.9% 7.0% 2.24 2.08 2.06

Lancaster 22.4% 24.5% 23.1% 2.22 2.16 2.06

Modesto 20.5% 22.1% 21.0% 1.90 1.86 1.83

Battery Price = $254/kWh

Las Vegas 10.1% 12.2% 8.5% 2.13 2.01 2.1

Lancaster 24.4% 26.0% 23.5% 2.12 2.08 2.07

Modesto 21.8% 23.0% 21.4% 1.85 1.83 1.82

CPV is competitive with PV at costs below these values.

Lancaster and Modesto being very different from Las Vegas.
However, those differences apply to both PV and CPV and
Table 4 shows that they have little impact on the CPV target
price that competes with PV.

4. The trends in electricity prices in the future. There is a major
difference between California and Nevada given in Table 2.
However, again this impacts both PV and CPV, and Table 4

shows that it has little impact on the point of competition
between them.

5. The solar irradiance in each city. Table 3 shows that the ratio
of CPV/PV annual energy yield is lower in Modesto than in
Lancaster and Las Vegas, resulting in lower target CPV costs
in Modesto in Table 4.

Battery prices, load profile, and present and future electricity
tariffs have a major impact on both PV and CPV IRR, and
uncertainty about future trends introduces risk into solar
projects. However, they have little impact on target CPV costs
implying that the CPV target costs in Table 4 are insensitive to
these factors.

Comparison With Other Approaches to Estimating

CPV Costs
A simplistic approach to estimating costs at which CPV would
compete with PV is to ignore ToU charges, demand charges,
and load profiles. Capital costs of solar installations are high
compared to the discounted stream of annual operating costs
so that a simplistic approach can also justify ignoring operating
costs. The ratio between CPV and PV costs for the same level
of profitability should now reflect the ratio in the energy yield.
Using our PV installed cost from Table 2 and the energy yield
ratios from Table 3 leads to the target CPV prices of 2.05, 2.05,
and 1.78 $/W for Las Vegas, Lancaster, andModesto respectively,
lower than those from our more comprehensive analysis in
Table 4. This shows that the additional detail in our analysis
is important to include since it results in different and more
accurate estimates.

Systems costs for pedestal-tracked CPV have been declining
and a learning analysis (Haysom et al., 2015) indicated a rapid
learning rate of 18% cost reduction for every doubling of
deployment volume. However, recent CPV deployment volume

has been lower than originally expected resulting in current
cumulative deployment estimates of 330 MW (Ekins-Daukes
and Johnson, 2017) and 360 MW (Gil et al., 2017), and a
corresponding average installed systems cost of 2.4 $/W using the
learning analysis. An industry survey indicated median costs of
3.3 $/W (Ekins-Daukes and Johnson, 2017).

There is evidently a major difference between pedestal
tracking and micro-tracking both from a technology and a cost
perspective and these figures of 2.4 and 3.3 $/W are not directly
comparable with those in Table 4. However, we present them
here since other estimates of micro-tracked CPV are not available
at the time of writing. That the figures in Table 4 are lower
motivates us to achieve higher target CPV costs by including the
impact of land/roof prices, which we do in section Impact of Land
Prices.

Practical Considerations
The geographical and architectural layout of customer sites differ
considerably. The analysis in this paper is intentionally kept
broad in order to estimate micro-tracked CPV prices for the
industry as a whole. It would need to be made specific to an
individual site for implementation of an actual project.

One site-specific consideration is whether the area available
for solar is limited in some way. For instance the roof area of
a commercial building can only supply enough PV solar for the
electricity consumption of 2–3 floors of office space. CPV would
have an advantage if the building manager of a taller building
wished to supply a significant proportion of the electricity load
from solar.

A second factor is the orientation of the PV solar modules.
Much solar analysis assumes south facing modules tilted
just below the latitude to maximize energy yield. Roof top
installations may require less tilt to reduce wind load, and
the architectural and site layout may require azimuths to the
east or west of south. Tomosk et al. (2017) analyzed ToU
tariffs in 25 cities in southwestern USA and calculated the
orientation of PV modules that maximizes IRR. They found
that the average absolute increase in IRR was only 0.29%.
Haysom et al. (2016) found that with a ToU tariff in Las Vegas,
95% of the revenue could be obtained within a 68◦ range
of azimuth. Our own analysis finds that the absolute change
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in IRR compared to azimuth=0, tilt=latitude is 0.11, −0.28,
and −0.55% for azimuth=–20◦, tilt=latitude; azimuth=–40◦,
tilt=latitude; azimuth=0◦, tilt=0◦, respectively. These minor
differences for a wide range of orientations, together with the fact
that this paper does not deal with the specifics of architectural and
site layout justifies using south facing modules tilted just below
the latitude in our analysis.

Impact of Land Prices
In section Analysis for Zero Land/Roof Price we analyzed target
CPV prices with respect to 3 dimensions: load profile, city and
battery price. Adding land prices in this section introduces a
4th dimension. Table 4 indicates that battery price has very little
influence on the results and we therefore condense our analysis
in this section back to 3 dimensions by doing the analysis for an
average battery price of $422.4/kWh. This represents a battery
price in which half of the project development, engineering,
procurement and construction (EPC), associated hardware and
grid connection costs are already included in the solar installation
costs.

Following the procedure in section IRR Optimization at the
end of Figure 2, we choose a range of land prices from $0 to
$400/m2 in increments of $100/m2. For each of these land prices
we first calculate the battery capacity for a PV microgrid that
maximizes the IRRPV . We then choose a CPV target cost that
matches that optimized IRRPV using a range of battery capacities
in the CPV microgrid from 0 to 400 kWh. We select the battery
capacity that allows the highest CPV target cost. This procedure
follows that illustrated in Figure 8, repeated for each of the land
prices considered. It should be noted that the results in Figures 5,
6 are for savings and do not involve costs. They therefore apply
equally to the analysis in this section.

An example of the results is given in Figure 9 for Lancaster
using the 8 a.m.−6 p.m. load profile. In Figure 8 the horizontal
axis is battery capacity and the graphs show the PV IRR and target
CPV price across a range of battery capacities. The maximum PV
IRR and target CPV cost correspond to the peaks of the graphs. In
Figure 9, this maximization is subsumed into each point on the
graphs and the horizontal axis is now land price. The optimum
battery capacities are indicated at each point on the graphs. We
note that at higher land prices, the optimal battery capacity is also
higher.

Commercial land prices in Las Vegas, Lancaster and Modesto
range from $50 to 100/m2 for semi-rural land at the city edge,
to ∼$400/m2 in commercial office parks in the suburbs (Land
and Farm, 2018). Figure 9 shows that in these areas, target prices
for micro-tracked CPV are in the range of current estimates
for pedestal tracked CPV [$2.4/W (Haysom et al., 2015) and
$3.3/W (Ekins-Daukes and Johnson, 2017)], and can be even
higher when land prices are at the top end of the range. Much
higher land prices in downtown areas would theoretically imply
cost competitiveness of CPV at even higher target prices, but in
reality, Figure 9 shows that the corresponding IRR would be too
low. Typically, an IRR of at least 7.5–10% is expected in solar
projects (Wouters et al., 2015; Parra et al., 2017).

The cost of land as a proportion of the total project cost is
shown in Figure 10. The proportion is lower for CPV than for

PV for two reasons (i) CPV is more efficient than PV and hence
requires less land and (ii) the fact that CPV has a higher target
price than current PV prices means that the cost of the solar part
of the project is higher for CPV than for PV. Although CPV uses
half as much land as PV, in proportionate terms the cost of land
in an optimized CPV system is less than half of the corresponding
cost for PV.

The other load profiles result in little change to Figure 9 and
we record the results in Table 5. For Las Vegas, the low electricity
prices result in an IRR for PV in Table 4 that is much lower than
for Lancaster and Modesto. Adding a cost of land results in IRR
values less than 7.5–10%, and these projects would typically not
be implemented by solar developers. Table 5 therefore contains
results for Lancaster and Modesto without including Las Vegas.

Table 5 gives target prices for micro-tracked CPV that are in
the same range as current estimates for pedestal tracked CPV.
Care should be taken in extrapolating the results for land prices

FIGURE 9 | Results of choosing optimal battery capacities at different land

prices in Lancaster with the 8 a.m.−6 p.m. load profile, (i) for PV IRR (left axis,

blue graph) and (ii) for the CPV target cost that matches the PV IRR (right axis,

orange graph). The battery capacities that achieve these optima are indicated

by each point on the two graphs.

FIGURE 10 | Land cost as a proportion of total project cost for the optimal

battery sizes from Figure 9.
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TABLE 5 | Optimal PV IRR under 3 load profiles in Lancaster and Modesto and the target CPV cost required to match that IRR for different land prices and a battery price

of $422.4/kWh.

Maximum PV IRR (%) Maximum Target CPV cost ($/W)

Land Price ($/m2) 8 a.m.−6 p.m. 9 a.m.−5 p.m. Empirical 8 a.m.−6 p.m. 9 a.m.−5 p.m. Empirical

LANCASTER

0 22.7% 24.7% 23.1% 2.21 2.15 2.07

100 16.6% 17.6% 16.2% 2.71 2.67 2.61

200 13.1% 13.9% 12.6% 3.23 3.15 3.12

300 10.8% 11.4% 10.3% 3.78 3.67 3.67

400 9.2% 9.72% 8.68% 4.31 4.18 4.20

MODESTO

0 20.7% 22.1% 21.0% 1.89 1.86 1.84

100 14.9% 15.8% 14.8% 2.32 2.26 2.27

200 11.8% 12.3% 11.5% 2.71 2.68 2.69

300 9.66% 10.1% 9.34% 3.12 3.05 3.12

400 8.11% 8.49% 7.82% 3.56 3.48 3.55

CPV is competitive with PV at costs below these values.

over $400/m2 since the corresponding IRRs are marginal from
the point of view of solar developers.

Modesto and Lancaster have similar tariffs, but inModesto the
annual energy yield fromCPV is 10% higher than for PV,Table 3,
whereas in Lancaster the corresponding figure is 26%. Target
CPV prices are 13–21% higher in Lancaster than in Modesto. We
noted this effect in Table 4 with a land price of zero and Table 5

shows that it becomes more pronounced at higher land prices.
Land price, tariff, and the ratio of CPV to PV annual energy yields
are the main determinants of target CPV prices. The load profile
and the battery price have little impact.

The highest CPV target prices can be expected in areas with
high tariffs, a high ratio of CPV to PV annual energy yields
and high land prices. An upper limit on land prices is however
imposed by the need to obtain a sufficient IRR for the project to
go ahead. This paper has shown that these constraints are satisfied
in Lancaster, Modesto and Las Vegas and result in realistic CPV
target prices.

CONCLUSIONS

To date, 86% of CPV deployments have been utility-scale projects
using pedestal mounted trackers. Research into micro tracking
technology for CPV, in which the cell is moved in relation to fixed
optics can result in a form factor for the modules that is similar to
that of fixed PV, allowing CPV to compete with PV in behind-the-
meter applications. However, at the time of writing, commercial
prices for micro-tracked CPV are unavailable. In such situations,
the cost of land/roof area can be a significant factor, conferring an
advantage on CPV over PV since CPV’s greater efficiency allows
it to occupy less land/roof area. In this paper we estimate target
prices for micro-tracked CPV ($/W) at which it can compete
with PV in behind-the-meter situations using microgrids with
battery capacities optimized for each situation. This analysis takes
into account the price of batteries used in microgrids, the load
profile of the customer, the demand and time-of-use charges,

future trends in electricity prices and the hourly variation of solar
irradiance.

Using data from cities in southwestern USA, for which land
prices range from $50 to $100/m2 at the outskirts to ∼$400/m2

in suburban commercial parks, results were obtained for target
micro-tracked CPV prices at which CPV achieves the same
internal rate of return as PV. Prices ranged from $2.3 to
2.7/W at the outskirts to $3.5–4.3/W in suburban commercial
parks. When land/roof area is essentially free of charge, the
corresponding CPV target prices range from $1.8 to 2.2/W. For
comparison, current prices for pedestal mounted CPV range
from $2.4 to 3.3/W. If micro-tracked CPV can be commercialized
at prices similar to those of pedestal mounted CPV, it therefore
has considerable opportunities to compete with fixed PV.

An important finding of this research is that the target CPV
prices are insensitive to (i) the prices of batteries used in the
solar microgrids (ii) the load profile of typical office buildings
(iii) the demand and time-of-use charges and (iv) future trends in
electricity tariffs. This robustness in our results is due to the fact
that the analysis shows that these factors affect the profitability
of PV and CPV in similar ways even though the optimal battery
size in the microgrid is different for PV and CPV. The two factors
that have a major influence on target CPV prices are (i) land price
and (ii) the ratio of CPV to PV annual energy yield. Prices at
the low(high) end of the ranges given in the previous paragraph
correspond to an energy yield ratio of 1.10(1.27).

These results were obtained after optimization of PV and CPV
microgrids, including optimal scheduling of power in/out of the
battery and optimal battery sizing. The internal rate of return is
then calculated over a 32 year life of the solar modules, replacing
the battery and inverter as necessary within that time frame. This
work allowed us to derive conclusions about how optimized CPV
microgrids compare with optimized PV microgrids, whereas the
current microgrid literature focuses on PV.

The broader generation profile of CPV compared to PV better
matches broad load profiles in office buildings extending outside
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the stylized 9 a.m.−5 p.m. range. However, in scenarios in which
an optimized PV microgrid required a battery, the same was
true of CPV. Optimized CPV microgrids have the following
advantages over optimized PV microgrids: (i) they achieve a
higher reduction in peak time-of-use electricity charges (ii)
they achieve a greater reduction in monthly peak consumption
from the grid, thus reducing demand charges (iii) they require
less battery cycles, thus reducing battery cell replacement
costs.

Demand charges based on peak monthly consumption from
the grid are a major reason for using batteries in a microgrid,
allowing solar power to be shifted to times of peak consumption.
The percentage of savings that is due to reduced demand charges
is higher for CPV than for PV up to a certain battery capacity.
PV can achieve a higher percentage demand charge savings than
CPV at the expense of a larger battery. The size of battery that
is optimal in a CPV microgrid is smaller than that in a PV
microgrid for most land prices.

In summary, PV and CPV microgrids are optimized with
different battery schedules and different battery sizes. However,
the target price at which micro-tracked CPV competes with PV is
insensitive to those differences and to battery prices, load profiles,

and electricity tariffs. CPV target price depends primarily on the
land price and on the ratio between CPV and PV annual energy
yield. Those target prices are realistic compared to pedestal
mounted CPV.
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