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Editorial on the Research Topic

Advancements in Biomass Recalcitrance: The Use of Lignin for the Production of Fuels and

Chemicals

The valorization of lignin has become a dominant translational research theme in biorefining in the
last few years (Ragauskas et al., 2014). Historically, lignin has been sourced from kraft and sulfite
pulping operations, and each of these sources provides some natural limitations to their usage.
Commercially, this type of lignin has been used as a dispersant, dust suppression agent, surfactant,
binder, and emulsifiers; however, most of these applications are low-value, and the markets are
saturated (Gargulak and Lebo, 2000). The general limitation of these lignins is due to the presence
of sulfur, extensive cross-linking, difficult process ability, purity, and low-molecular-weight profiles
in the case of kraft lignin.

The next phase in lignin application is to use the intrinsic structural features of lignin to
develop value-added products. Several studies have shown that lignin may be well suited for
bio-based plastics and composite applications, in particular, for lignin resources isolated from
biomass using an organosolv extraction protocol. Depending on the exact lignin extraction
procedure used, the structure of lignin may be kept mostly intact. Several promising lignin
applications include the use of oxypropylated lignin for polyurethane foams (Li and Ragauskas,
2012), inclusion into polystyrene (Henry et al., 2012), as a potential green antioxidant (Pouteau
et al., 2003), or flame-retardant additive (Matsushita et al., 2017). Furthermore, lignin is
also being actively developed as an adhesive for non-formaldehyde wood resins for flooring
(Aracri et al., 2014), packaging, and composite wood board production (Li et al., 2018) which
leverage the intrinsic reactivity between lignin and oxidoreductase enzymes, such as laccase,
which catalyzes further lignin polymerization. The use of lignin has been leveraged with
epoxy resins to yield printed circuit boards (Luukko et al., 2013), and for molding (Nam
and Son, 2015). As reported by Stewart, the starting plant resource and lignin extraction
process have a substantial impact on the resulting physical properties and the purification
cost of lignin (Stewart, 2008). Finally, there is a growing interest in using lignin in the
polyolefin markets (i.e., polyethylene and polypropylene) as the aromatic unit of lignin provides
photo-stabilization, strength enhancement, and elongation effects (Lv et al., 2011). In addition to
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FIGURE 1 | Three phenyl propane precursors of lignin and illustration for SW lignin. (DOE, 2006).

these efforts, the conversion of lignin to chemicals and fungible
fuels for ground and aviation transportation is being aggressively
developed using thermal and/or catalytic processes (Ben and
Ragauskas, 2011; Bi et al., 2015). As an alternative to these
chemical technologies, the power of biology is also being
investigated to convert lignin to fatty acids and esters using
Rhodococcus (Le et al., 2017), and Pseudomonas putida for PHAs
(Liu et al., 2017), to name just a few promising pathways.

In each of these applications, the structure and purity of
lignin play a critical role in determining its chemical and
physical properties. Lignin is one of the most complex natural
polymers in regards to its chemical structure and composition.
It is synthesized by enzymatic dehydrogenative polymerization
of 4-hydroxyphenyl propanoid units (Figure 1). Major types of
interunit linkages and the reported abundance in softwood (SW)
and hardwood (HW) lignins are presented in Table 1. Also, the
molecular weights of various lignins isolated from native and
pretreated biomass are presented in Table 2. There are several
techniques that can be used to determine the molecular weight
of lignin, but one of the most commonly used methods is lignin
acetylation followed by gel permeation chromatography (GPC)
analysis conducted via external standards or using multi-angle
laser light scattering (MALLS) (Tolbert et al., 2014).

The breadth of lignin molecular weight and its structural
features have become significantly more complex as genetic
engineering of the monolignol pathways have demonstrated
the ability to significantly alter the S (syringyl): G (guaiacyl):

H (p-hydroxyl) ratio in plants. In these days, the structure
of lignin is widely determined using advanced 1D and 2D
NMR techniques (Yoo et al., 2016b) supplemented with selected
lignin functionalization techniques followed by heteronuclear
single quantum coherence (HSQC) NMR techniques (Pu et al.,
2011). These techniques have been refined so that all the key
functional groups of lignin can now be established quantitatively
or semi-quantitatively. Also, they made it possible to detect
the acetylation of lignin in nature and the incorporation
of p-hydroxybenzoate, ferulate, p-coumaric acid, and other
structures in lignin (Yoo et al., 2016a, 2017b). The presence
of lignin-carbohydrate complexes (LCCs) in native and process
lignin remains difficult to establish fully and yet is believed
to cause challenges in the processing of lignin. This special
issue highlights recent advances in lignin characterization,
conversion, and valorization.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the U.S. Department

Frontiers in Energy Research | www.frontiersin.org 2 November 2018 | Volume 6 | Article 118

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Ragauskas and Yoo Advancements in Biomass Recalcitrance

TABLE 1 | Reported abundance of major linkages in softwood and hardwood lignins (Chakar and Ragauskas, 2004; Zakzeski et al., 2010).

Linkage β-O-4 (%) 4-O-5 (%) Dibenzodioxocin (%)

C-O linkage Abundance Per 100 C9-units

Softwood 45–50 4–8 5–7

Hardwood 60–62 7–9 0–2

Linkage β-5 (%) 5-5 (%) β-1 (%) β-β (%)

C-C linkage Abundance Per 100 C9-units

Softwood 9–12 18–25 7–10 2–4

Hardwood 3–11 3–9 1–7 3–12

TABLE 2 | Weight-average molecular weight (Mw), number-average molecular

weight (Mn), and polydispersity index (PDI) of various lignins.

Origin Mw Mn PDI

Switchgrass 5,000 2,940 1.7

Buddleja davidii 16,800 7,260 2.3

Populus 13,260 5,047 2.6

Sugarcane Bagasse 3,176 1,673 1.9

Kraft softwood lignin 6,300 955 6.6

Ammonia lignin (Corn

stover)

3,975 1,827 2.2

Ethanol organosolv lignin

(Miscanthus)

13,800 8,300 1.6

David and Ragauskas (2010); Zeng et al. (2014); Sen et al. (2015); Bezerra and Ragauskas

(2016); and Yoo et al. (2016a, 2017a).
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