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As the lignocellulosic biofuels industry is still developing, reducing operational, and capital

costs along the supply chain can increase the competitiveness of the final fuel price

and investor willingness to commit funds. Capital cost savings may be realized through

co-locating depots with active biomass processing plants, such as sawmills, and through

repurposing existing industrial facilities, such as pulp mills, into a biorefinery. Operational

cost savings may be gained through the selective siting of depots and biorefineries

based on operational cost components that vary geospatially, such as energy rates

and feedstock availability. Utilizing depots in a biofuel supply chain to procure and

preprocess feedstock has additionally been found to mitigate supply risk in regions of low

biomass availability, as well as reduce the biorefinery footprint. A multi-criteria decision

support tool (DST) is utilized to assess existing industrial facilities for their potential role

in a wood-based depot-and-biorefinery supply chain. Geospatial cost components are

identified through techno-economic analyses for use as siting criteria for the depots and

biorefinery. The “repurpose potential” of industrial facilities is assessed as a siting criterion

for candidate biorefinery locations. A case study is presented in the Inland Northwest

region of the United States to assess the usefulness of the tool in selecting industrial

facilities for a configured depot-and-biorefinery supply chain. The results are compared

against optimization runs of the candidate facilities to validate the depots selected by the

DST. In two of the three supply chains, the DST selected the same or similar facilities as

the optimization run for no net increase in annual cost. The third supply chain showed

an ∼1% increase in annual cost over the optimized facilities selected.
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INTRODUCTION

Annual feedstock supply variability and significant upfront
capital costs can affect investor willingness to commit funds
for the construction and operation of cellulosic and advanced

biorefineries (Coyle, 2010). To mitigate supply risk in regions
of low biomass availability, depots have been found useful for
procuring and preprocessing feedstock (Hansen et al., 2015;
Lamers et al., 2015a,b). Capital construction cost savings may be
found through repurposing existing facilities into a biorefinery
when the infrastructure and equipment are compatible with the
biorefinery design (Martinkus and Wolcott, 2017). Additionally,

operational cost savings may be gained through the selective
siting of depots and biorefineries based on location-specific costs
such as energy rates and delivered feedstock cost (Martinkus
et al., 2017b). Prioritizing capital and operational cost savings
during site selection can enable biorefineries and depots to be
constructed with reduced financial risk.

Potential biorefinery locations are often selected based solely

on general location characteristics (e.g., population, proximity to
rail, etc.) with the assumption that a greenfield site can be found
within the geographic boundaries (Panichelli and Gnansounou,
2008; Parker et al., 2008; Stephen et al., 2010; Zhang et al., 2011;
Ng and Maravelias, 2016). Others assume every pixel, grid point,
or county centroid is a potential biorefinery location in a study
region or along a roadway (Graham et al., 2000; Noon et al.,
2002; Wilson, 2009; Kocoloski et al., 2011; You et al., 2012;
Lewis et al., 2014). Still others (Ma et al., 2005; Sultana and
Kumar, 2012) expand on the pixel approach by performing an
exclusion analysis using rasterized layers to identify potential
biomass-based facilities. These approaches may be adequate
when performing a scoping analysis for biorefinery siting as
they broadly assume a suitable location can be found within
the pixels or region identified as optimal. However, a strategic
siting analysis should focus on reducing capital and operational
biorefinery costs to lessen the barrier to entry into the fuels
marketplace. Research has found that location characteristics
and economic determinants influence site selection (Kenkel
and Holcomb, 2006; Stewart and Lambert, 2011; Fortenbery
et al., 2013). Therefore, strategic siting decisions must include
considerations for location-specific cost variables to reduce
capital and operational expenses.

A centralized, or integrated, biorefinery includes all biomass
processing units from preprocessing through conversion into
fuel, while in a distributed biorefinery, some of the initial
processes occur at a separate location, such as a depot. The
integrated biorefinery’s feedstock collection area is the immediate
radius surrounding the biorefinery, whereas depots can draw
biomass from geographically separate locations and marginal
lands previously inaccessible (Argo et al., 2013). The technical
feasibility of depots in a biorefinery supply chain model has been
explored in depth by others for preprocessing and pretreating
cellulosic material to reduce the biorefinery footprint and
operational costs (Carolan et al., 2007; Eranki et al., 2011; Bals
and Dale, 2012; Argo et al., 2013; Hansen et al., 2015; Kim and
Dale, 2015; Lamers et al., 2015a,b). All of these studies assume
the biorefineries and depots would be greenfield facilities. Ng and

Maravelias (2016) assume depots could co-locate with farms for
biomass drying and densification, yet they do not provide siting
criteria for farm selection. All facilities these studies are sited
in optimized locations based on minimizing transportation and
feedstock costs without considering other facility expenses that
may impart additional influence on the overall cost to procure
and process feedstock.

A multi-criteria decision analysis (MCDA) approach can be
useful for facility siting analyses that utilize disparate siting
criteria. The most-often used MCDA tool in biorefinery siting
is the Analytic Hierarchy Process (Saaty, 2008; Sultana and
Kumar, 2012; Van Dael et al., 2012). Stakeholders perform
pairwise comparisons between all criteria in a siting analysis
to determine the relative importance of each criterion, from
which criteria weights are derived. Individual facilities or sites are
then scored based on their location-specific criteria multiplied
by the respective criteria weights. While this method provides
a quantitative facility scoring method, the criterion weights
are inherently biased due to the relative criteria importance
determined qualitatively by the stakeholders.

Perimenis et al. (2011) developed an MCDA tool using a
modified version of the AHP to aid users in selecting biofuel
production pathways from multiple feedstock and conversion
pathways. Production pathway criteria included qualitative and
quantitative measures, and a pairwise comparison was performed
by the researchers to determine the criteria weights. The range
of values for each criterion was translated into a given grade
scale. Production pathway scores were developed by multiplying
criterion scaled values by their respective criterion weight.

Martinkus et al. (2017b) built on this approach by using
economic and social metrics in a facility siting decision support
tool (DST) to assess existing industrial facilities for their potential
role as a repurposed biorefinery. Operational cost components
that vary geospatially (such as feedstock cost or energy rates)
were selected as the economic siting criteria. The range of values
for the siting criteria in each metric were translated into a grade
scale to assess the list of existing facilities within the region for
their compatibility with the “biorefinery design case.” Economic
siting criteria weights were developed through assessing the
biorefinery techno-economic analysis (TEA) to determine the
annual percentage cost of each geospatial operational cost out of
the total geospatial operational costs. This approach to weight
derivation removes inherent biases that may be present in
pairwise comparisons. Existing facilities were scored based on
how well their individual site characteristics compared to the
biorefinery design case.

The aim of this research is to develop a methodology for
assessing existing facilities for their potential role in a distributed
supply chain for biomass processing and biofuel creation.
The objectives are to (1) select existing facilities to serve as
depots for a given potential biorefinery through considering
location-specific operational costs, and (2) identify the depot-
and-biorefinery configuration that provides the least processing
and transportation costs from an array of potential depot and
biorefinery locations for a given end user.

Researchers have studied the benefits of repurposing facilities
into biorefineries, applied MCDA to biorefinery site selection,
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and utilized depots in biorefinery supply chain analysis, but
none to our knowledge have combined all three approaches
into one siting model. The MCDA approach utilized in this
work is presented as a decision matrix developed to assess
industrial facilities and primary biomass processing facilities for
their potential inclusion in a biofuel supply chain. Coupled with
a transportation cost model, supply chains are developed, and the
supply chain that procures and processes biomass into biofuel
at the least-cost for a given end user can then be identified.
A case study is presented in the Inland Northwest region of
the United States, and the results are compared against an
optimization routine to determine how well facilities are selected
by the decision support tool.

METHODOLOGY

Facility siting for both the depots and biorefinery is comprised
of a series of steps (Figure 1) that center around two multi-
criteria decision matrices, one for the assignment of depots
to each potential biorefinery and one for the selection of a
final biorefinery location based on the depots + biorefinery
configuration. The following sections describe the general form
of the decision matrix, a general overview of the depot-and-
biorefinery site selection process, and the general form of
the Total Transportation Cost Model that is used to develop
delivered feedstock costs.

Generalized Form of Decision Matrix
The decision matrix presented here (Table 1) is based on work
by Martinkus et al. (2017b). The decision matrix defines facility
siting criteria, weights, and scale values. Criteria are selected as
geospatial metrics important in the siting of a biorefinery or
depot, weights define the relative importance of each criterion,
and scale values provide a means for assessing existing facilities
against the design biorefinery case based on location-specific
values relative to the range of regional values present.

The rationale behind using geospatial cost components as
siting criteria stems from the knowledge that costs for feedstock,
energy, and labor vary between locales. The infrastructure present
at each facility also varies by facility. The decision matrix allows
candidate facilities to be assessed based on their assets or rates in
relation to the range of regional values for each cost component.
Here, the scale values, s, range from 1 to 5. A “5” indicates a
facility rate or asset that provides the least cost for a criterion
component, and a “1” indicates an asset that may add significant
additional cost to the construction or operation of a facility.

An average annual cost is determined for each geospatial
cost component, ci, through inputting regional average rates
into the TEA and aggregating the total amount spent from all
operational units in the facility. For example, a regional average
electricity rate is input into the TEA, and the total annual
amount of electricity used is summed over all units that require
electricity. Weights, wi, are determined by calculating each cost
component’s percentage of the total annual cost of all geospatial

FIGURE 1 | Process flow diagram for depot-and-biorefinery facility siting model.
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TABLE 1 | Generalized form of the decision matrix.

Criterion 1 (C1) Criterion 2 (C2) Criterion 3 (C3) Criterion n (Cn)

SCALE, s

5 amax bmin cmin dmin

4 amax – B1 bmin + B2 cmin + B3 dmin + Bn

3 amax – 2B1 bmin + 2B2 cmin + 2B3 dmin + 2Bn

2 amax – 3B1 bmin + 3B2 cmin + 3B3 dmin + 3Bn

1 amax – 4B1 bmin+ 4B2 cmin + 4B3 dmin + 4Bn

weight w1 w2 w3 wn

cost components used as siting criteria (n) (Equation 1). The
maximum scale value in the decision matrix, smax, is used to
normalize the weights. Each facility j’s score, Fj, is calculated by
multiplying each weight by the location-specific scale value, sji,
for each siting criterion using the Weighted SumMethod (Wang
et al., 2009) (Equation 2).

wi =

(

ci
∑n

i=1 ci

)

∗
100

smax
(1)

Fj =

n
∑

i=1

wi ∗ sji (2)

Each criterion’s range of regional values is used to determine its
scale value designation in the decision matrix. These criterion
“bin” values (Bi) are determined by dividing the range of
regional values (ai,max, ai,min) by the maximum scale value
(smax) for each criterion i (Equation 3). For each criterion,
the maximum scale value is assigned to the minimum or
maximum range value that denotes the most positive influence
on facility siting, such as high infrastructure repurpose potential
or low electricity rate (Martinkus et al., 2017b). The subsequent
scale values are calculated by either adding or subtracting Bi,
depending on the positive or negative influence of the criterion
(Table 1) (Martinkus et al., 2017b). Where regional values are not
available or possible, as in infrastructure assessments or delivered
feedstock cost, bin values are determined from the range of
facility values (Martinkus et al., 2017b).

Bi =
ai,max − ai,min

Smax
(3)

General Overview of Depot and Biorefinery
Site Selection Process
Potential depot and biorefinery locations are first identified
in a region of interest based on their compatibility with the
biorefinery feedstock and proximity to other facilities. For
example, in a wood-based biofuel supply chain, potential depots
are identified as active sawmills and potential biorefineries are
identified as active or recently decommissioned pulp mills,
since all are compatible with woody feedstock. All facilities are
then assessed to ensure their site acreage is sufficient for the
design depot and biorefinery footprints as well as for storing a
percentage of the annual feedstock demand.

A Total Transportation Cost Model (TTCM) is used to
determine the least-cost routes between biomass (feedstock)
sources, depots, biorefineries, and the end user. The model is
developed in a geographic information system (GIS) platform,
and includes a networked road dataset with a cost per road
segment for each truck type that will haul the biomass in its
various forms along the supply chain. Point locations (or nodes)
are added to represent the biomass sources, depots, biorefineries,
and the end user. Results from the model include a total cost to
transport the material along the shortest distance between each
node of the supply chain.

Facility siting criteria selection andweight derivations for both
the biorefinery and depot decision matrices are performed using
their respective TEAs. Depot siting criteria are derived from
the operational expenditures (OpEx) that vary geospatially, such
as feedstock, energy, and labor. From the TTCM, a weighted
average delivered feedstock cost is determined for each depot at
a set annual feedstock demand. To develop criteria weights, the
average of all depot weighted average delivered feedstock costs is
determined and input into the depot TEA as the feedstock cost,
along with regional average energy rates. The annual expense for
each criterion is determined, and the percentage of each expense
out of the sum of all geospatial expenses is calculated (Equation
1). These percentages are normalized and represent the criteria
weights for use in the decision matrix.

One depot decision matrix is developed for each potential
biorefinery to identify the top-ranking depots that will contribute
biomass to the biorefinery most efficiently. Each potential depot
is assessed using the depot decision matrix, and a scale value is
assigned for each criterion in the matrix based on the depot’s
location-specific value relative to the range of values used to
define the criterion. Each criterion scale value is multiplied by
the respective criterion weight, and the numbers are summed to
develop the facility score (Equation 2). The facilities are ranked
from highest to lowest score, with the highest-ranking depots
having lower energy, feedstock, and labor costs as compared to
the range of potential locations assessed. The number of depots
selected to provide preprocessed feedstock to a biorefinery is
dependent on the size (i.e., feedstock demand) of the design depot
modeled in the TEA and the annual feedstock demand of the
biorefinery.

If top-ranking depots are located in close proximity to one
another, only one will be chosen and the next-ranked depot
on the list will be selected. This removes biomass competition
between proximal facilities that would force feedstock costs
higher. Each depot’s delivered feedstock cost is initially
determined without consideration for biomass competition from
other depots. Once the final depots are selected for inclusion in a
biorefinery supply chain, biomass source nodes must be assigned
to each of the final depots to determine their final weighted
average delivered feedstock cost. This can be performed using an
optimization model.

A total cost for each depot-and-biorefinery supply chain
is developed by first summing each selected depot’s biomass
processing cost with the cost to transport densified biomass to
the biorefinery, then averaging the resulting costs, and finally,
summing with the cost to transport biofuel to the end user. Each
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depot’s processing cost is determined by inputting the depot-
specific delivered feedstock cost and energy/labor rates into the
TEA and calculating the minimum selling price of the densified
feedstock.

The depot-and-biorefinery supply chain total cost is used
as a siting criterion in the biorefinery decision matrix, along
with other geospatial operational siting criteria identified in the
biorefinery TEA, such as energy and labor. An additional siting
criterion is included for assessing facility repurpose potential, as
we assume that capital expenditure (CapEx) cost savings may be
gained through repurposing an existing facility as opposed to
constructing a greenfield biorefinery. Biorefinery siting criteria
and weights are derived similarly as for the depot decisionmatrix,
and the depot-and-biorefinery supply chains are assessed and
scored similarly as well. The top-ranked depot-and-biorefinery
supply chain procures, processes, and transports material at the
least-cost for the region of interest. It must be noted that in
this analysis depots are considered to be co-located with an
existing facility, and the depot decision matrix may include a
siting criterion to reflect facility repurpose potential if needed.

Total Transportation Cost Model, TTCM
The TTCM determines the delivered feedstock cost and volume
between two nodes along the supply chain using a multiple-
origin, multiple destination algorithm based on Dijkstra’s
algorithm for finding the shortest path between two points
(Dijkstra, 1959; Esri, 2015). Nodes are locations of biomass
procurement or processing, and linkages are the road or rail
network that connect nodes.

A networked road dataset is utilized in a GIS environment,
and includes a transport cost for each road or rail segment used in
the analysis. The general form of the TTCM between two nodes
for road or rail transport is represented in Equation (4) (Sultana
and Kumar, 2012; Martinkus et al., 2017a).

TCbj = Fb + Vbj (4)

where TCbj is the total delivered feedstock cost between nodes
b and j, Fb is the fixed cost associated with node b, and Vbj is
the total variable transport cost for the least-cost route between
nodes b and j. Each road segment is assigned a cost per unit of
biomass based on the road type, truck type, biomass moisture
content and density, and speed limit of the assumed truck type
on the given road type. Variable cost is distance- and/or-time
dependent, therefore Vbj is represented by an equation to solve
for the cost along each road segment. Equation (5) represents
the generic form of a variable cost equation, where 2∗Vx is the
roundtrip transport cost for road segment x, and n is the total
number of road segments in the least-cost path between nodes b
and j. If rail transport is used, Vx is not doubled as we assume
there is no backhaul.

Vbj = 2

n
∑

x=1

Vx (5)

Equation (6) represents the weighted average delivered feedstock
cost, WAj, to a given depot j at a set facility design capacity

(Sultana and Kumar, 2012).

WAj =

(
∑y

i=1 TCbjBb
)

Bj
(6)

where TCbj is the total delivered feedstock cost of biomass source
point b to depot j, Bb is the biomass volume at source point b,
y is the total number of biomass source points supplying depot j
to meet facility demand, and Bj is the total volume of feedstock
delivered to depot j (i.e., facility demand). Where rail and road
are compared along a linkage, the minimum of the two transport
methods is selected to provide the least-cost route along the
supply chain.

CASE STUDY

The depot-and-biorefinery siting model is applied in the Inland
Northwest region of the United States, including western
Montana, the panhandle of Idaho, and eastern Washington
(Figure 2). Forest residues as a by-product of logging operations
are assessed as a feedstock for the creation of isoparaffinic
kerosene, or aviation biofuel. In this region where the Federal
Government is the major landholder, forest residue is generated
in significantly less quantities than regions where forests are
primarily privately owned and where the climate is wetter
(Martinkus et al., 2017a). Therefore, depots are proposed in this
region to preprocess/pretreat residue.

The depots are modeled here using a three-stage dry-milling
process to create micronized wood particles (∼30 microns) as
a means of pretreatment (Wang et al., 2018). This process
is utilized as no chemicals are necessary to break down the
crystalline microstructure of lignocellulose, thus producing a
clean sugar with no potential for causing catalyst poisoning or
enzyme inhibitors (Brandt et al., 2018). Additionally, water is not
needed, which lowers the environmental impact and the need for
a wastewater treatment plant at the depot.

The depots must collectively meet an annual biorefinery
demand of 300,000 bone drymetric tons (BDMT), accounting for
9% losses through the depots. We assume one large depot with an
annual demand of 180,000 BDMT is co-located at the biorefinery
to capitalize on nearby biomass, while two smaller satellite depots
each procure 60,000 BDMT of forest residue annually. The
biorefinery will create ∼11.3 million liters of aviation biofuel per
year using an enzymatic hydrolysis, fermentation, and separation
process (Gao and Neogi, 2015; Hawkins and Ley, 2016). The
biofuel will supplement the Spokane, WA regional annual jet
fuel demand with ∼20% of their year 2025 demand (Macfarlane
et al., 2011; Federal Aviation Administration, 2016). A petroleum
terminal located near the town’s airport and military base is
assumed to receive, blend, and store the fuel.

Biorefinery site requirements include a minimum lot size of
40.5 ha, access to natural gas, and a rail spur. Three facilities are
evaluated as potential biorefineries: a decommissioned pulp mill
in Frenchtown,MT; an active kraft pulpmill in Lewiston, ID; and,
a greenfield site in Spokane,WA. The greenfield site is included to
assess the hypothesis that repurposed facilities provide significant
capital cost savings over greenfields. Primary wood processors
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FIGURE 2 | Biomass source nodes and potential biorefinery and depot locations.

(e.g., sawmills and plywood mills) are considered as potential
depot locations. Satellite depot siting considerations include
access to natural gas, at least 5 ha of unused land for depot site
development, and a rail spur. Additionally, where multiple mills
reside in the same town or in close proximity, one representative
mill is selected for analysis. Of the 27 primary processors in the
region, 11 meet the siting requirements. The IFG Lewiston saw
mill is co-located with the Lewiston pulp mill, therefore it acts as
the large co-located depot as well as a potential satellite depot in
this analysis. A large theoretical depot is assumed at the Spokane
greenfield and at the Frenchtown Mill for co-location with the
biorefineries (Figure 2).

Total Transportation Cost Model, TTCM
U.S. Forest Service Forest Inventory and Analysis (FIA) plots
represent biomass source nodes (United States Forest Service,
2016). The Land Use Resource Allocation (LURA) bioeconomic
model determines the projected 20-year average annual forest
residue volume available at each FIA plot based on future timber
market influences (Martinkus et al., 2017a; Latta et al., 2018).
Similar to Chung and Anderson (2012), each FIA point is
assumed to be a forest landing and is projected onto the nearest
road for use in the TTCM. Each road segment is assigned a
variable cost based on the material being hauled and associated

truck type. Fixed and variable cost calculations for the three
supply chain linkages are discussed below. See Martinkus et al.
(2017a) for more detail on supply curve development.

Biomass Source-to-Depot
Based on work by Zamora-Cristales et al. (2013) and Martinkus
et al. (2017a), a 6x4 chip van truck pulling a 13.7m (45 ft)
long drop center trailer is assumed for wood chip transport.
The wood chips are assumed to have a moisture content of
35%, which translates into a payload of 14.1 BDMT. Fixed costs
include transporting unmerchantable residue to a forest landing
($16.5/BDMT), grinding the residue into chips ($22.4/BDMT),
and loading the chips onto a waiting chip van ($3.9/ BDMT).
The speed limit of the networked road dataset was modified
based on average chip van speed and tractor-trailer weight loaded
and unloaded on paved (70 km/h), gravel (15 km/h), and dirt
(10 km/h) roads (Zamora-Cristales et al., 2013). The roundtrip
variable unit trucking cost for each road type is based on known
truck operating costs when loaded and unloaded (Zamora-
Cristales et al., 2013; Martinkus et al., 2017a) (Equation 7).

TC bj = 47.2+ 0.258

n
∑

p=1

tp + 0.194

n
∑

g=1

tg + 0.184

n
∑

d=1

td (7)
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where TCbj is the total delivered feedstock cost ($/BDMT) along
a least-cost route between FIA point b and depot j, tp is the travel
time (min) along all paved road segments, tg is the travel time
(min) along all gravel road segments, td is the travel time (min)
along all dirt road segments, and n is the total number of road
segments by type in the route.

Depot-to-Biorefinery
A 30,280 liter liquid tanker truck is assumed for transporting
micronized wood to the biorefinery. This truck type was selected
as a sealed vessel is needed to transport the wood particles and it
must be pneumatically loaded and unloaded. Micronized wood
has a moisture content of 10% and bulk density of 585 kg/m3

(Wang et al., 2018) which translates to a payload of 16.3 BDMT.
The road network wasmodified with speeds representative of this
truck type (interstate-−96.5 km/h, U.S. highways-−80.5 km/h,
and local roads, state, and county highways-−48 km/h). Fixed
and variable transportation costs are derived from Parker et al.
(2008), with liquid truck capacity converted to dry capacity
(Equation 8). The fixed cost represents loading and unloading
wait time.

TCjk,t = 8.54+ 2

[

1.98

n
∑

t=1

xt + 0.05

n
∑

d=1

xd

]

(8)

where TCjk,t is the total delivered feedstock cost ($/BDMT)
between depot j and biorefinery k using truck transport, xt is the
travel time (hrs) along road segment x, xd is the distance (km)
along road segment x, and n is the total number of road segments
in the least-cost route.

Rail transport was also assessed for this linkage using an
equation derived from Parker et al. (2008). A 124,740 liter rail
tanker is assumed to haul the micronized wood with a payload of
the 80.5 BDMT. The fixed cost includes loading, unloading, and
a charge for use of the railcar (Equation 9).

TCjk,r = 50.13+ 0.023

n
∑

r=1

yr (9)

where TCjk,r is the total delivered feedstock cost ($/BDMT)
between depot j and biorefinery k using rail transport, yr is the
distance (km) along rail segment y, and n is the total number of
rail segments in the least-cost route.

Biorefinery-to-Petroleum Terminal
The same rail and truck tanker types are assumed to transport
aviation biofuel to the petroleum terminal in Spokane, WA.
Therefore, the equations are the same with unit costs modified
based on biofuel volume (Equations 10, 11).

TCkl,t = 0.56+ 2

[

0.10

n
∑

t=1

xt + 0.003

n
∑

d=1

xd

]

(10)

TCkl,r = 2.92+ 0.001

n
∑

r=1

yr (11)

where TCkl,t ($/BDMT) and TCkl,r ($/BDMT) are the total
delivered feedstock cost between biorefinery k and petroleum

terminal l for truck and rail, respectively, xt is the travel time (hrs)
along road segment x, xd is the distance (km) along road segment
x, yr is the distance (km) along rail segment y, and n is the total
number of road or rail segments in the least-cost route.

Satellite Depot TEA and Decision Matrix
Table 2 lists the operational cost components as identified in the
satellite depot TEA, which was developed through modifying
Brandt et al. (2018)’s TEA based on depot size and regional
energy rates. The Brandt et al. (2018) TEA may be viewed
in that manuscript’s Supplemental Information. The first four
cost components vary geospatially, thus are the siting criteria
in the depot decision matrix. The resulting annual geospatial
operational costs are converted into percentages of the total
cost and then into weights (Table 2, Equation 1). TEA inputs
include average county-level energy data (2011-2015) (U.S.
Energy Information Administration, 2014a,b), weekly labor rates
(2012-2015) (U.S. Bureau of Labor Statistics, 2015), and the
average of all weighted average delivered feedstock costs for
60,000 BDMT of forest residue to each potential satellite depot.

Each criterion’s range of regional or depot-specific values is
additionally used to determine the depot decision matrix bin
values (Equation 3) for use in facility assessments. The region
is defined as all counties from which biomass is utilized in
the supply chain or a potential depot resides (Figure 2). The
feedstock criterion is measured as the weighted average delivered
feedstock cost, WAj, for 60,000 BDMT of forest residue to
depot j plus the transportation cost to deliver micronized wood
from depot j to biorefinery k, TCjk (Equation 12). One depot
decision matrix is created for each potential biorefinery, since the
transportation cost from the depots to each biorefinery changes
based on biorefinery location. Table 3 shows the decision matrix
used to assess all potential depots for the Spokane biorefinery
supply chain. See the Supplemental Information (SI) for the
Lewiston and Frenchtown depot decision matrices, associated
potential depot scaled values and final scores, and breakdown
of transportation costs between biomass source points-to-depots,
and depots-to-biorefineries.

TCbk = WAj + TCjk (12)

While the regional weighted average delivered feedstock cost is
used in the TEA, the “feedstock” criterion here gives preference to
those facilities that are efficient at procuring biomass, processing
it into micronized wood and transporting preprocessed material
to a biorefinery. Depot-specific criterion values (Table 4) are
translated into scale values based on their position relative
to the range of regional values (Table 5). Facility scores are
determined using Equation (2), and are ranked from greatest to
least (Table 6). Facilities with the highest scores would operate at
lesser annual operational costs than those with lower scores.

The top two depots for both the Spokane, WA and Lewiston,
ID biorefineries are IFG Moyie Springs and Vaagen Brothers
Lumber, and the top depots for Frenchtown, MT are Plum Creek
Evergreen and Vaagen Brothers Lumber. IFG Moyie Springs was
selected as a depot for both Spokane and Lewiston because of
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TABLE 2 | (A) Satellite depot operational costs and (B) conversion into decision matrix weights.

(A)

TEA operational cost components

Annual operating expenses (OpEx) Manufacturing cost (MM$/yr) % of Total Cost

Feedstock 2.9 27%

Electricity 4.2 39%

Natural Gas 0.9 8%

Labor 0.9 9%

Other (diesel) 0.4 4%

Fixed Costs (Overhead, Property Tax, Insurance, Maintenance) 1.4 13%

Total Operating Costs 10.7 100%

(B)

Criteria weightings

Geospatial siting criteria Manufacturing cost (MM$/yr) % of Total criteria cost Normalized to 20

Feedstock 2.9 33% 6.6

Electricity 4.2 47% 9.3

Natural Gas 0.9 10% 2.0

Labor 0.9 11% 2.1

Total Criteria Cost 8.9 100%* 20

*Values may not sum exactly due to rounding.

TABLE 3 | Satellite depot decision matrix for spokane biorefinery.

Feedstock cost,

TCbk ($/BDMT)

Electricity

($/kWh)

Natural gas

($/k.c.m.)

Avg. wage

($/week)

SCALE

5 $66 0.036 0.19 452

4 $78 0.047 0.21 527

3 $90 0.058 0.23 603

2 $102 0.069 0.26 678

1 $114 0.080 0.28 753

weights 6.6 9.3 2.0 2.1

its significantly lower electricity cost as compared to all other
locations, and Vaagen Brothers Lumber was selected as a depot
for all three cases because of the low feedstock transportation
and lower electricity costs. Even though feedstock transportation
costs are higher, Vaagen Brothers Lumber was selected as a depot
for Frenchtown because of its lower electricity and natural gas
costs as compared to other locations. Further details are provided
in the Supplemental Information.

After the initial depot ranks are completed, an optimization
model is then used to assign biomass source points to each of
the top two satellite depots and biorefinery co-located depot to
meet the overall biorefinery demand of 300,000 BDMT based on
minimizing the total delivered feedstock cost from each biomass
source point to the biorefinery gate (Figure 3).

Biorefinery TEA and Decision Matrix
The biorefinery TEA used in this analysis is a modified version
a TEA developed by Marrs et al. (2016) for a large integrated
biorefinery (757,500 BDMT/year of feedstock) that creates
aviation biofuel using a mild bisulfite solution to pretreat wood
chips. The major changes to the original TEA include removal

of the chemical pretreatment technology to reflect pretreatment
occurring at depots, and scaling each department to the smaller
biorefinery size used in this analysis.

In addition to energy, labor, and feedstock as biorefinery siting
criteria, the infrastructure present at each potential biorefinery is
included as a siting criterion (Table 7). This criterion is quantified
as the estimated percent reduction in capital construction costs
from a greenfield biorefinery through repurposing an existing
facility. Percent reductions are determined using a method
presented by Martinkus and Wolcott (2017), where a factored
analysis is used to estimate cost savings through similarities in
infrastructure and assets to a greenfield biorefinery. The total
delivered equipment cost for all major processing components
in a greenfield biorefinery are required, and all other ancillary
assets and infrastructure are estimated as percentages of the total
delivered equipment cost. A yes/no analysis is employed for all
facilities assessed, where equipment cost is assigned to those
components in the assessed facility that are not similar to the
greenfield, and no cost is assigned to equipment that is present.
All costs are summed to determine the estimated percent savings
over constructing a greenfield biorefinery.

Weights for the biorefinery decision matrix are developed
using Equation (1). Regional average energy rates are input into
the biorefinery TEA. The feedstock cost for the TEA (Equation
13) is the average of all potential biorefinery weighted average
delivered feedstock costs (Equation 14).

TCbjk = PCj + TCjk (13)

WAk =

(
∑y

i=1 TCbjkBj
)

Bk
(14)

where TCbjk is the total delivered feedstock cost from depot j
to biorefinery k, PCj is the processing cost, or minimum selling
price, of micronized wood at depot j, TCjk is the transportation
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TABLE 4 | Location-specific criterion values for each potential depot.

Potential depot Depot-to-spokane

biorefinery feedstock

cost, TCbk ($/BDMT)

Depot-to-lewiston

biorefinery feedstock

cost, TCbk ($/BDMT)

Depot-to-frenchtown

biorefinery feedstock

cost, TCbk ($/BDMT)

Electricity

($/kWh)

Natural gas

($/k.c.m.)

Avg. wage

($/week)

Bennett Lumber Products 69.1 69.8 107.4 0.0589 0.24 521

Ceda Pine Veneer 75.6 77.8 109.1 0.0851 0.24 614

IFG Laclede 68.6 70.8 106.9 0.0851 0.24 614

IFG Lewiston 75.0 63.9 113.3 0.0589 0.24 720

IFG Moyie Springs 89.2 91.4 120.4 0.0397 0.24 577

Idaho Veneer Co. 66.1 68.5 101.9 0.0851 0.24 624

Plum Creek Columbia Falls 121.0 123.2 103.6 0.0574 0.31 687

Plum Creek Evergreen 115.5 117.7 98.3 0.0574 0.31 687

Riley Creek Chilco 68.3 70.7 101.6 0.0851 0.24 624

Sun Mountain Lumber 126.6 132.4 94.9 0.0717 0.31 584

Vaagen Bros. Lumber 65.8 68.0 104.2 0.0573 0.27 641

TABLE 5 | Potential depot scaled values for spokane biorefinery supply chain.

Potential depot Depot-to-spokane biorefinery

feedstock cost, TCbk ($/BDMT)

Electricity

($/kWh)

Natural gas

($/k.c.m.)

Avg. wage

($/week)

Facility

score

Facility rank

Bennett Lumber Products 5 3 3 5 77.4 3

Ceda Pine Veneer 5 1 3 3 54.6 5

IFG Laclede 5 1 3 3 54.6 5

IFG Lewiston 5 3 3 2 71.1 4

IFG Moyie Springs 4 5 3 4 87.3 1

Idaho Veneer Co. 5 1 3 3 54.6 5

Plum Creek Columbia Falls 1 4 1 2 50.0 9

Plum Creek Evergreen 1 4 1 2 50.0 9

Riley Creek Chilco 5 1 3 3 54.6 5

Sun Mountain Lumber 1 2 1 4 35.6 11

Vaagen Bros. Lumber 5 4 2 3 80.5 2

cost to deliver micronized wood to biorefinery k, Bj is the volume
of feedstock at depot j, Bk is the total volume of feedstock to
meet biorefinery demand, and y is the total number depots in
the depot-and biorefinery supply chain. PCj is determined from
the depot TEA by inputting depot-specific weighted average
delivered feedstock cost and energy rates, which results in a final
unit cost to produce one BDMT of milled wood plus profit. To
determine the “facility infrastructure” criterion weight, the design
biorefinery’s total capital cost for construction, as identified in the
TEA, is converted to an annualized cost assuming a plant life of
20 years and a discount rate of 8% (Martinkus et al., 2017b).

One decision matrix is developed to assess all three depot-
and-biorefinery supply chains so the least-cost supply chain may
be identified. Bin values for energy and labor rates are the same
as for the depot decision matrix, as the region definition is
the same. Feedstock is now measured by the weighted average
total delivered feedstock cost of the two satellite depots and
one large depot to the biorefinery gate (WAk ) plus the cost to
transport biofuel to the petroleum terminal (TCkl). Processing
costs at the biorefinery are not included as they are reflected in
the siting criteria. The range of facility values for feedstock and

infrastructure assessment are used for their respective bin value
determinations. Scoring and ranking of the proposed biorefinery
supply chains is performed using the biorefinery decision matrix
(Table 8A).

RESULTS AND SENSITIVITY ANALYSIS

Table 8 displays the biorefinery decision matrix and facility
assessments. Spokane was found to be the least-cost location
for processing feedstock into aviation biofuel, although it is a
greenfield. Infrastructure was not found to be a significant annual
expense due to pretreatment occurring in the depots and not
at the biorefinery, as seen in the infrastructure criteria weight
of 1.0. As evidenced in Figure 3, Spokane is centrally located
among large amounts of biomass and near depots with lesser
energy rates, while Frenchtown incurs the greatest expenses
due to higher energy rates and its remote location, which
increases transportation costs. It must be noted that the feedstock
costs in Table 8B are higher than an integrated biorefinery
would pay for raw feedstock due to the milled wood being
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TABLE 6 | Top 5 depot facility scores per biorefinery.

Spokane - greenfield Lewiston - active pulp mill Frenchtown - decommissioned mill

Potential depot Score Potential depot Score Potential depot Score

IFG Moyie Springs 87.3 IFG Moyie Springs 87.3 Plum Creek Evergreen 76.4

Vaagen Bros. Lumber 80.5 Vaagen Bros. Lumber 80.5 Vaagen Bros. Lumber 73.9

Bennett Lumber Products 77.4 Bennett Lumber Products 77.4 Plum Creek Columbia Falls 69.8

IFG Lewiston 71.1 Plum Creek Evergreen 54.6 IFG Moyie Springs 67.5

Ceda Pine Veneer 54.6 Ceda Pine Veneer 54.6 Bennett Lumber Products 64.2

TABLE 7 | (A) Biorefinery operational expenses and (B) Conversion to decision

matrix weights.

A)

Annual operating expenses

(OpEx)

Manufacturing cost

(MM$/yr)

% of total OpEx

cost

Feedstock 60.4 56%

Electricity 5.1 5%

Natural Gas 11.2 10%

Labor 4.3 4%

Annualized Infrastructure 2.5 2%

Other (equipment, enzymes,

etc.)

13.6 13%

Fixed Costs (overhead,

property tax, insurance, etc.)

10.1 9%

Total 107.2 100%*

B)

Siting criteria Manufacturing

cost (MM$/yr)

% of Total

criteria Cost, ci

Criterion weight,

wi

Feedstock 60.4 72% 14.5

Electricity 5.1 6% 1.2

Natural Gas 11.2 13% 2.7

Labor 4.3 5% 1.0

Annualized Infrastructure 2.5 3% 0.6

Total Criteria Cost 83.5 100%* 20

*Values may not sum exactly due to rounding.

pretreated and the bulk density increased at the depot. Thus,
the cost for pretreatment is not represented in the capital and
operational expenditures of the biorefinery, but in the cost for
feedstock.

A sensitivity analysis was performed to assess the variables
and assumptions that influence the decision matrix results,
including biomass availability, bin designations, and weights.
Additionally, the decision matrix results are compared against
an optimization routine to assess the accuracy of the matrix
at selecting depots for each supply chain, and the least-cost
supply chain for supplying the Spokane market with aviation
biofuel.

Sensitivity Analysis
Biomass Availability
Biomass availability is a function of biomass supply and the
trucking assumptions represented in the TTCM. Biomass supply
is considered to have a medium uncertainty due to the many
variables that comprise it, including the seasonality of harvest
operations and the amount of residue available and accessible
at varying slopes and distances from the forest landing (Miller
and Boston, 2017). Similar to Martinkus et al. (2017a), a high
feedstock cost scenario was run to determine the increase in
feedstock cost each biorefinerymay incur tomeet annual demand
during years of low biomass availability. A low-cost scenario was
run assuming the use of a blower for loading ground chips into
the chip van at the forest landing, which was found to increase
payload by 25% over traditional gravity-fed loading methods
(Zamora-Cristales et al., 2014). The resulting delivered feedstock
costs for each top-ranked depot were input into the depot TEA
along with their respective electricity and natural gas rates to
determine the revised fixed cost at each depot. This fixed cost was
summed with the transport cost for hauling the micronized wood
to each respective biorefinery to determine the total delivered
feedstock cost (Equation 13, Figure 4).

The fixed cost at the forest landing is based on an assumed
off-road diesel cost, equipment types and efficiencies, and a
landowner payment assuming a weak market for forest residue.
The variable cost for residue transport to depots is based on a 30-
year average diesel cost of $0.93/liter and a set chip van size. Han
and Murphy (2011) found that a 10 percent increase in fuel cost
resulted in a 3 percent increase in total transportation costs. The
fixed and variable costs for the forest-to-depot linkage are used
with low uncertainty, as time-motion studies were performed
to develop the costs (Zamora-Cristales et al., 2013, 2015). The
fixed and variable costs for the linkages between the depots,
biorefineries, and petroleum terminal are used with medium
uncertainty, as one reference was used (Parker et al., 2008) to
develop the tanker truck total cost equation and only a diesel cost
of $0.66/liter was provided as insight into their cost derivations.
The rail costs from Parker et al. (2008) were compared against
other sources (Gonzales et al., 2013; Lewis et al., 2015; USDA
Agriculture Marketing Service, 2015) and determined to be mid-
range among all costs and therefore acceptable for use.

Bin Designations
The importance of region definition on bin designations was
assessed through evaluating energy averages in the region defined
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FIGURE 3 | Biomass source point distribution and depot “woodshed” service areas for the (A) Spokane, (B) Lewiston, and (C) Frenchtown biorefinery.

by all counties in Oregon, Washington, Idaho, and Montana
(here called the Pacific Northwest, or PNW). The electricity
average increases marginally, from $0.061 to $0.064/kWh for
the PNW, with the increase in region boundary size, while the

natural gas average decreases slightly from $0.27 to $0.25/k.c.m.
for the PNW. While the means did not change significantly, the
minimum and maximum values for each is noticeably different.
The PNW electricity range was $0.028 to $0.131/kWh while the
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TABLE 8 | (A) Biorefinery decision matrix, (B) Location-specific values, and (C) Scaled values with final facility scores.

(A)

Scale Total milled wood + biofuel

transport cost ($/BDMT)

Electricity

($/kWh)

Natural gas

($/k.c.m.)

Infrastructure: % reduction from

greenfield cost

Avg. wage

($/week)

5 255.3 0.036 0.19 48 452

4 266.1 0.047 0.21 39 527

3 276.9 0.058 0.23 29 603

2 287.7 0.069 0.26 19 678

1 298.5 0.080 0.28 10 753

weights 14.5 1.2 2.7 1.0 0.6

(B)

Facility Total milled wood + biofuel

transport cost ($/BDMT)

Electricity rate

($/kWh)

Natural gas

($/k.c.m.)

Infrastructure: % reduction from

greenfield cost

Avg. Wage

($/week)

Frenchtown 309.3 0.066 0.31 9 672

Lewiston 273.7 0.059 0.24 48 720

Spokane 255.3 0.048 0.27 0 792

(C)

Facility Total milled wood + biofuel

transport cost ($/BDMT)

Electricity rate

($/kWh)

Natural gas

($/k.c.m.)

Infrastructure: % reduction from

greenfield cost

Avg. wage

($/week)

Score

Frenchtown 1 3 1 1 3 23.6

Lewiston 3 3 3 5 2 61.4

Spokane 5 4 2 1 1 84.3

study region range was $0.036/kWh to $0.091/kWh. Similarly,
the PNW natural gas range was $0.16 to $0.33/k.c.m while the
study region range was $0.19 to $0.31/k.c.m. The difference in
range affects bin designations in the decision matrices, and thus
affects the spread of scaled values. If the PNW range was used in
this analysis, the facility scaled values would lose their granularity
due to the larger range of values, and thus more facilities would
be assigned the same scale value. Electricity, natural gas, and
labor rates all come from reputable government agencies and are
considered to have low uncertainty.

Weighting Analysis
Aweight sensitivity analysis was performed by varying the cost of
feedstock, electricity, and natural gas rates (Table 9). In the depot
decision matrix, the only major change in weights occurs when
electricity is set at the lowest rate in the study region. Electricity
is the highest annual cost in the depot TEA; by lowering the rate
substantially, feedstock then becomes the highest annual cost. In
the biorefinery TEA, feedstock cost is significantly higher than all
other costs, therefore an increase in electricity or natural gas rates
is not significant in overall weighting.

Labor was not assessed because national average salaries were
used for the various positions identified in the TEAs (such as
plant engineer, shift supervisor, yard employees, etc.) as opposed
to using county-level labor rates to calculate annual wages.
Additionally, changes in the percent reduction in infrastructure
was not assessed. Both of these criteria are low cost components
in the overall annual cost to operate the depot or biorefinery,
therefore changes in their values would not significantly affect

FIGURE 4 | Biomass sensitivity analysis with low-cost, average, and high-cost

results.

the other weights, as evidenced by evaluating a high natural
gas rate.

Validation of Decision Matrix Results
An optimization routine using binary integer programming
was created to identify the top two satellite depots for each
biorefinery as a comparison against the depots selected by the
decision matrix. The Supplemental Information describes the
optimization routine. The optimization model minimizes total
cost for each scenario including the total annual cost to procure,
purchase, process, and transport the biomass/biofuel to the
end user. The difference between this minimum cost and the
total cost associated with the depots selected by the decision
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matrix represents the opportunity cost, or forgone value, of the
approach. The results are displayed inTable 10. The optimization
model and depot decision matrix were in agreement for the
depots selected for Lewiston, ID, and were only marginally
different in total cost for the depots selected for Spokane, WA.
The depots selected by the decision matrix for Frenchtown, MT
would increase the total cost to operate the supply chain over the
optimizationmodel results by close to $1million dollars, however
this equates to only a 1% increase in total annual cost over the
optimized supply chain.

DISCUSSION

The results of the optimization comparison (Table 10) show the
strength of the decision matrix in its ability to take the complex
issue of multiple cost variables at a given site and simplify it
through applying weights to the costs based on their importance
in the facility’s operating budget. The Spokane supply chain had
the least annual cost of the potential biorefineries, and thus
would most likely be the best location for a biorefinery. The
optimization run for Spokane selected the second and third
depots from the decision matrix ranking list, for Frenchtown
it selected the second and fourth depots from the list, and
for Lewiston, the top two depots were identified as optimal
(Tables 6, 10). Vaagen Brothers and IFGMoyie were consistently
selected as top depots for each supply chain due to their ease of
procuring feedstock and low electricity rate, respectively. These
results, combined with the percent difference from optimized
cost (Table 10), validate the use of the decision matrix as a
strategic-level facility siting tool for identifying the top depots
that provide biomass to a facility at the least cost. Stakeholders
interested in using the decision matrix for biorefinery supply
chain development would engage representatives from the top
few-selected depots in discussions around contracts and pricing,
then from those conversations select the final depots for use in a
depot-and-biorefinery supply chain.

Both the depot and biorefinery geospatial cost components
comprise ∼80% of their respective total facility operational
costs (Tables 2, 7). Thus, their use as siting criteria is relevant
for assessing each potential facility’s location-specific cost
components and the effect it has on the total annual amount
spent on operational costs. The assessment of high-cost biomass
gives an indication of the additional amount biorefineries may
pay during years of low feedstock availability, and the low-cost
assessment shows how technological advances can translate into
reduced feedstock costs at the depot mill gate. Figure 4 indicates
that Frenchtown is the most vulnerable to years of high biomass
cost since it exhibits the largest range in feedstock pricing. The
Spokane biorefinery would operate at lower costs than Lewiston
or Frenchtown, even during years of low biomass availability, as
evidenced by the compactness of its biomass procurement and
transporting in Figure 4.

Region definition plays an important role in bin designations
and therefore in facility scores. When regions are defined to
be much larger than the study area, the range of each bin
may increase with an increase in the minimum and maximum
values for each criterion. This may result in more facilities being

assigned the same scale values, and thus will reduce the range of
facility scores.

Just as rates and assets vary geospatially, the annual amount
spent on each cost component varies based on the design of
the depot and biorefinery. For example, wood-based integrated
biorefineries require significant amounts of electricity and
natural gas for preprocessing woody biomass into pulp (Zhu
and Zhuang, 2012), whereas biorefineries in a depot model
require less energy due to preprocessing occurring at depots.
The feedstock cost at the biorefinery gate in this analysis was
larger than would be expected at an integrated biorefinery;
however, the feedstock cost reflects the cost of pretreatment
occurring at the depots. While the feedstock cost is larger,
the capital and operational costs of the biorefinery are less
than an integrated biorefinery due to the disaggregation of
pretreatment from the facility. This was evidenced by the
selection of Spokane as the least-cost location to construct
a biorefinery, even though it is a greenfield. The annualized
infrastructure (capital cost) to construct the biorefinery was
around 2% of the total operational costs (Table 7), whereas
in an integrated biorefinery, infrastructure may play a larger
role as pretreatment can be a significant capital cost depending
on the conversion technology. Additionally, feedstock costs are
a function of the size and number of depots used in the
supply chain model. This analysis was based on the a priori
assumption of two small satellite depots and one large co-
located depot at the biorefinery. Additional modeling through
either optimization runs or varying the assumption of depot
size and number, and creating decision matrices that reflect
these assumptions, will allow for identification of the depot-
and-biorefinery configuration that provides the least overall
supply chain costs. As depots become larger, economies of scale
allow for more efficient processing of biomass, which is seen
in a lower minimum selling price of preprocessed biomass
to the biorefinery. Larger depots may equate to fewer depots
in a supply chain, which can lessen transportation costs to
the biorefinery as well. Cost sharing that may occur between
depots and primary processors through co-location was not
modeled here. Significant depot operational cost savings may be
gained through sharing of staff, energy, residuals, etc.; however,
further research is necessary to quantify these potential cost
savings.

Similar to Richardson et al. (2011), we found that fixed
costs account for a significant portion of the delivered
feedstock cost from the forest to the depot. Technological
advances may reduce this cost. However, as the biomass market
becomes commercialized, landowner payments may increase
(U.S. Department of Energy, 2011) and processing costs may
decrease due to economies of scale. Rail was found to be utilized
only for the furthest depot from the biorefinery in each supply
chain analysis. This is consistent with personal communication
with members of the freight industry that say rail is not feasible
until∼320 km.

The TEAs are constructed using ratio factors from
methodology presented by Peters et al. (2003) to estimate
total capital investment. Operational and capital expenses are
estimated from equipment quotes and literature references.
An economic analysis with a real discount rate of 10 and 2%
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TABLE 9 | Weighting sensitivity analysis for (A) depot and (B) biorefinery decision matrices.

(A)

Facility Cost component Cost variance Feedstock Electricity Natural gas Labor

Depot Average Rates Average Rates 6.4 9.5 2.0 2.1

Depot Feedstock Low Cost Biomass 6.5 9.4 2.0 2.1

Depot Feedstock High Cost Biomass 6.8 9.2 1.9 2.1

Depot Electricity Low Electricity 8.2 6.8 2.4 2.6

Depot Natural Gas High Natural Gas 6.5 9.1 2.3 2.1

(B)

Facility Cost component Cost variance Feedstock Electricity Natural gas Labor Infrastructure % reduction

Biorefinery Average Rates Average Rates 14.5 1.2 2.7 0.6 1.0

Biorefinery Feedstock Low Cost Biomass 14.5 1.2 2.7 0.6 1.0

Biorefinery Feedstock High Cost Biomass 14.6 1.2 2.6 0.6 1.0

Biorefinery Electricity Low Electricity 14.9 0.7 2.7 0.6 1.0

Biorefinery Natural Gas High Natural Gas 14.2 1.2 3.1 0.6 1.0

Average, study region and depot-specific averages; Low Cost Biomass, 25% increase in payload from loading ground chips with blower; High Cost Biomass, low yield; Low Electricity,

lowest electricity rate in study region (∼30% below regional average); High Natural Gas, highest natural gas rate in study region (∼10% above regional average).

TABLE 10 | Comparison of decision matrix and optimization model depot selections and total annual supply chain cost.

Potential

biorefinery

Decision matrix -selected

depots

Total annual supply

chain cost ($)

Optimization-selected

depots

Total annual supply

chain cost ($)

Opportunity

cost ($)

% Difference from

optimized cost

Spokane, WA • Vaagen Bros.

• IFG Moyie

74,369,666 • Vaagen Bros.

• Bennett Lumber

74,365,200 4,466 0.01%

Lewiston, ID • Vaagen Bros.

• IFG Moyie

79,604,637 • Vaagen Bros.

• IFG Moyie

79,604,637 0 0.00%

Frenchtown,

MT

• Plum Creek Evergreen

• IFG Moyie

86,413,982 • Vaagen Bros.

• IFG Moyie

85,571,696 842,286 0.99%

inflation was used to determine minimum selling price of both
the micronized wood and aviation biofuel (Petter and Tyner,
2014).

The decision matrices presented here require depot and
biorefinery sizes to be selected a priori. The most likely scenario
for use would be stakeholders that want to identify potential
depots for pre-selected potential biorefineries with a given annual
feedstock demand. If using an optimization routine is not feasible
for selecting the optimal size and location of facilities, then
multiple iterations of the decision matrices may be run to assess
the change in cost of the depot-and-biorefinery supply chain
with different sized facilities. This requires the use of multiple
TEAs, as each TEA is built for a specific facility size. The
biorefinery decision matrix can also be used independently for
siting an integrated biorefinery, as performed by Martinkus et al.
(2017b).

Overall, the proposed decision matrix design performs well
as a facility site selection tool. The advantage of the tool is
its simplicity in identifying, combining, and weighting cost
components that most affect the overall cost to construct and
operate a facility. While the decision matrix was shown to
perform well against more a complex optimization model, one
disadvantage is that optimization modeling is still necessary

to assign biomass source points to the final selected depots
to estimate the delivered feedstock cost. Additionally, a TEA
for each facility type (i.e., depot, biorefinery) is needed to
perform siting criteria identification and analysis. Many TEAs
exist online for biorefinery types, yet not all technologies
are represented and location specific details are not always
stated explicitly. Finally, the repurpose potential of existing
facilities may be difficult to estimate. Information used to
determine the presence or absence of equipment and assets
at each facility may be located in national/state sources or
datasets and from aerial imagery (Martinkus and Wolcott,
2017).

CONCLUSIONS

We propose a quantitative facility siting tool to identify the
least-cost regional biorefinery supply chain from an array
of potential depot and biorefinery locations. Co-location and
repurpose strategies are assumed for existing primary processors
and pulp mills, respectively, as a means to reduce capital and
operational costs. Decision matrices provide a quantitative,
transparent MCDA tool for assessing and prioritizing the various
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operational cost components that are present at each site. A total
transportation cost model is utilized to quantify the feedstock
procurement and processing costs at each linkage of the supply
chain. An optimization routine validated the results of the
decision matrices in the selection of depots for each biorefinery,
and for selecting the least-cost depot-and-biorefinery supply
chain.

By performing facility siting through assigning weights for
feedstock, energy, and labor costs based on their importance
in the operational costs of the facility, biorefinery supply chain
development can be better directed to select facilities that
provide the greatest cost reductions. Any cost reductions gained
during the early phase of commercialization may translate into
a more cost-competitive biofuel for cellulosic and advanced
biorefineries.
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