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The global transition to a clean and sustainable energy infrastructure does not stop

at aviation. The European Commission defined a set of environmental goals for the

“Flight Path 2050”: 75% CO2 reduction, 90% NOx reduction, and 65% perceived noise

reduction. Hydrogen as an energy carrier fulfills these needs, while it would also offer

a tenable and flexible solution for intermittent, large-scale energy storage for renewable

energy networks. If hydrogen is used as an energy carrier, there is no better device than

a fuel cell to convert its stored chemical energy. In order to design fuel cell systems for

passenger aircraft, it is necessary to specify the requirements that the system has to fulfill.

In this paper, a statistical approach to analyze these requirements is presented, which

accounts for variations in the flight mission profile. Starting from a subset of flight data

within the desired class (e.g., mid-range inter-European flights) a stochastic model of the

random mission profile is inferred. This model allows for subsequent predictions under

uncertainty as part of the aircraft design process. By using Monte Carlo-based sampling

of flight mission profiles, the range of necessary component sizes, as well as optimal

degrees of hybridization with a battery, is explored, and design options are evaluated.

Furthermore, Monte Carlo-based sensitivity analysis of performance parameters explores

the potential of future technological developments. Results suggest that the improvement

of the specific power of the fuel cell is the deciding factor for lowering the energy system

mass. The specific energy of the battery has a low influence but acts in conjunction with

the specific power of the fuel cell.

Keywords: stochasticmodel, fuel cell, aviation, sensitivity analysis, hydrogen storage, flightmission profile, energy

system design, Monte Carlo analysis

1. INTRODUCTION

The aviation sector is a significant player in the global energy crisis and toward climate change.
Since the 1980s, CO2 emissions from aviation have increased by 3.6% per year, i.e., twice the world’s
total growth rate (International Energy Agency, 2017). As a result, aviation currently accounts for
12% of transport-related CO2 emissions and 2-3% of all anthropogenic emissions (Air Transport
Action Group, 2016). In order to tackle this challenge, the European Commission formulated
reduction targets in the “Flight Path 2050”: 75% CO2 reduction per passenger kilometer relative
to the capabilities of typical new aircraft in 2000, as well as 90% NOx and 65% perceived noise
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reduction (Darecki et al., 2011). Similarly, two US government
agencies, the International Air Transport Association (IATA) and
the International Civil Aviation Organization (ICAO), pursue
an average improvement in fuel efficiency of 1.5% per year
until 2020, a cap on net aviation CO2 emissions from 2020
(carbon-neutral growth) and a 50% CO2 reduction until 2050
(Air Transport Action Group, 2016).

Considering the increasing amount of air travel, these goals
are unlikely to be reached by evolutionary improvements of
existing aviation technology. Recently, Müller et al. (2018)
analyzed the influence of modern and fuel-efficient aircraft and
retrofit options on fleet planning and fleet emissions. The latest
generation of aircraft has a 15% lower fuel burn by using geared
turbofans and composite materials. Retrofit options of existing
aircraft yield 9–12% less fuel burn by using blended winglets,
cabin weight reduction, electric taxing, or replacing the engine
with a more efficient one. In their analysis, a low-cost carrier,
as well as a full-service network carrier, were analyzed. While
moderate CO2 emission reductions of 12% and 7% compared
to the “business as usual” scenario could be achieved with such
measures, the overall CO2 emissions are predicted to increase
further until 2025.

A tenable solution would be the use of hydrogen as fuel,
as already pointed out at the end of the 1970s by Bockris and
Justi (1980) and references therein. Because of its three times
higher gravimetric energy density (33.3 kWh/kg), using hydrogen
can reduce the overall weight of the aircraft. This effect is
pronounced in fuel-intensive aircraft like long-distance, large
passenger number, or hypersonic aircraft (Brewer and Morris,
1976; Bockris and Justi, 1980; Khandelwal et al., 2013; Verstraete,
2013; Kadyk et al., 2018). However, the volumetric energy density
of hydrogen is four times lower than hydrocarbons, giving some
grievance for fitting the tanks into the aircraft. Nevertheless,
aerodynamically volume efficient aircraft designs, such as the
blended-wing-body or twin-tail-boom can compensate this effect
(Guynn et al., 2004).

Once hydrogen is used as a fuel, there is no better converter
than a fuel cell. The increased efficiency of a fuel cell leads to
a further reduction of the fuel load. Fuel cells enable additional
advantages of electric aircraft such as distributed propulsion,
which increases the aerodynamic efficiency. Furthermore,
multifunctional integration of the fuel cell into airplanes via
harvesting by-products such as water, heat or oxygen-depleted
exhaust air, allows using the fuel cell to provide vital processes like
de-icing, cabin air conditioning, water supply or fire suppression
of luggage compartment or fuel tanks (Friedrich et al., 2009).
Polymer electrolyte fuel cells (PEFC) are the most promising
fuel cell type due to their high power density, high efficiency,
longevity, robustness, design flexibility, high technical maturity,
and established use in similar applications (e.g., automotive).
However, aircraft design studies during the early 2000s revealed
that the gravimetric power density of PEFC is at least a factor of
3 too low for the usage in airplanes (Guynn et al., 2004). Since
then the performance of electrocatalysts, which are the “heart”
of a fuel cell, has increased by a factor of 10, with performance
doubling about every 5.4 years (Eslamibidgoli et al., 2016). To
unlock PEFC’s potential, advances made on the materials level

have to be transferred across the multiscale hierarchy, i.e., over
the cell and stack levels toward the systems level. Fuel cell system
(FCS) modeling and analysis, as employed in this study, can
direct this transformation process and guide future research and
development on the sub-levels (Kadyk et al., 2018).

Fuel cell systems are composed of various auxiliary
components formedia and heat management. These components
and their arrangement influence efficiency as well as weight.
A good system design minimizes weight, complexity, and the
number of system components, while assuring operation over
the whole load range and high efficiencies (Jenssen et al., 2017).
Furthermore, robustness to the strongly changing environmental
conditions, especially temperature and humidity of the inlet
air is crucial. The model-based analysis allows a systematic
evaluation and quantification of the effects of environmental
conditions (Zenith et al., 2010) and process integration for
weight minimization (Na et al., 2017).

1.1. Goal and Outline of the Paper
This work seeks to develop a methodology to guide the design
process of fuel cell systems for aviation. As a first step, a design
target needs to be specified. The main idea is to analyze existing
flight data statistically to find a representative mission profile.
The statistical modeling is done by filtering a subset of flight
data within a desired class (e.g., flights of a specific aircraft type,
a desired range or servicing a specific region) and inferring
a discrete stochastic model. In the literature, such stochastic
models were successfully used to describe track irregularities
for dynamic train modeling (Perrin et al., 2011, 2013, 2015;
Funfschilling et al., 2012; Lestoille et al., 2014) as well as the
description of driving cycles for sizing of fuel cell electric vehicles
(Ravey et al., 2010, 2011).

This stochastic model allows predicting mission profiles
under uncertainty, which are then used in the energy system
design process. By using Monte Carlo-based sampling of
mission profiles, the design range (necessary component sizes,
hybridization of multiple energy sources) is explored, and
design options are evaluated. Furthermore, Monte Carlo-based
sensitivity analyses are performed, starting with a simple one-
factor-at-a-time approach toward a variance-based sensitivity
analysis. In particular, the sensitivities of the most significant
component performance parameters, i.e., the specific power of
fuel cells and the specific energy of batteries, are analyzed. The
sensitivity analysis allows to estimate the future potential of
these technologies and derive advise for future research and
development efforts.

Section 2 explains the methods used, starting with the
generation of the flight mission profile data, the fuel cell
system design including fuel cell and hydrogen tank model, the
stochastic model of the flight mission profiles and finally the
Monte Carlo sampling and sensitivity analysis. In section 3, the
histogram-based analysis and design process are demonstrated
on a single mission profile. Then, flight data for the two most
relevant types of aircraft, the mid-range Airbus A320 and the
long-range Boeing B772, are analyzed. After that, the stochastic
model is applied to explore the range of energy system designs
for A320 and B772. Finally, the sensitivity analysis of technology
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performance parameters discusses the influence and potential of
future technology developments.

2. METHODS

A MatLab implementation of the models, tools, and analyses
used in this work is available from the repository BitBucket
under https://bitbucket.org/rschenken/mc_paper/. This
implementation includes the flight mission profile data as
well as all parameter values used for the fuel cell, hydrogen tank,
and hybrid energy system models. The implementation is free,
open source software and allows the reproduction of all results
in this paper. In the following sections, the models and methods
are explained in detail.

2.1. Flight Mission Profiles
For the generation of the mission profiles a software tool was
developed that calculates 4D aircraft flight trajectories using the
EUROCONTROL Model 1 flight information. This information
is captured in the Enhanced Tactical Flow Management System
(ETFMS) and is the last saved flight plan from the airline after
all the modifications with Initial Flight Plan Processing System
(IFPS) messages (EUROCONTROL, 2018).

The software tool is based on a modular design and allows the
operator to simulate and visualize different air traffic scenarios.
A point-mass model of the forces applied to the center of
gravity is utilized for modeling the aircraft dynamics. This model,
sometimes called total energy model, requires knowledge of the
aircraft state such as weight and thrust, which are obtained from
data contained in the Base of Aircraft Data (BADA) family 3
(EUROCONTROL, 2012).

BADA specifies operation performance coefficients and
airline procedure parameters for different aircraft types.
These parameters include those used to calculate engine
thrust, aerodynamic drag, and fuel consumption (Operation
Performance Model) and those used to specify nominal cruise,
climb and descent speeds (Airline Procedure Model). An
atmosphere model provides atmospheric properties as a function
of altitude. BADA is widely used within the domain of Air Traffic
Management (ATM) for prediction and simulation of aircraft
flight trajectories.

The set of input parameters for the software tool consists of
aircraft type and weight, origin and destination, and the flight
segments or waypoints (i.e., initial flight plan Model 1). Two
data sets of 100 flight plans each were arbitrarily chosen for
an Airbus A320-200 (A320) and a Boeing B777-200 ER (B772)
on August 25, 2018 (see Figure 1A). For the calculation of
the corresponding flight trajectories, the impact of wind was
neglected, and an average reference mass for both aircraft types
was assumed. Figure 1B shows an example of a calculated 4D
flight trajectory associated with the initial flight plan (waypoints).

2.2. Fuel Cell System Design
2.2.1. Fuel Cell Model
In this work, we employ a well-known fuel cell performance
model and its analytical, approximated solution for the design
process. In the model, the main losses of the fuel cell stem

from the cathode catalyst layer (CCL). The anode losses are
considered negligible. Additionally, ohmic losses like membrane,
electric, and contact resistances are combined into one ohmic
resistance, R�.

For the cathode performance, a well-known model based
on pioneering works of Perry et al. (1998) as well as
Eikerling and Kornyshev (1998) is used. The model consists
of governing equations for the rate of the oxygen reduction
reaction (ORR) in the cathode catalyst layer, i.e., electrochemical
current generation,

dj

dx
= i∗

(
c

cref

)

exp
(η

b

)

, (1)

Ohm’s law for proton conduction,

−σt
dη

dx
= j, (2)

as well as oxygen diffusion through gas diffusion layer (GDL)
and CCL,

D
dc

dx
=

j0 − j

4F
. (3)

Here, j is the local proton current density, x is the distance
from the membrane, i∗ is the volumetric exchange current
density (per unit CCL volume, A cm−3), c is the local oxygen
concentration, cref is its reference (inlet) concentration, η is the
local overpotential, b is the Tafel slope, σt is the CCL proton
conductivity, j0 = j(x = 0) is the applied current density (per
electrode area, A cm−2), and η0 = η(x = 0) is the overpotential.

The boundary conditions for equations (1) – (3) are the
applied current density (j(x = 0) = j0), no protons can flow into
the GDL (j(x = L) = 0) and no oxygen flows into the membrane
(Ddc/dx|x=0 = 0), respectively.

The CCL model is 1D in the through-plane direction and
assumes steady-state and isothermal conditions. It is valid for
large overpotentials, η≫b. Since the diffusion coefficients in CCL
and GDL, i.e., D and Db, are effective parameters, polarization
curves for flooded conditions could be simulated if necessary.
However, a changing water balance, i.e., a dependency of the
diffusion coefficients on current, is not modeled in detail here.
Under these assumptions, Kulikovsky (2014) was able to obtain
the analytical solution for the polarization curve η0(j0),

η0 = b arcsinh

(
(j0/jσ )2

2(ch/cref)(1− exp(−j0/(2j∗)))

)

+
σtb

2

4FDch

(
j0

j∗
− ln

(

1+
j20

j2∗β
2

))(

1−
j0

j∗lim(ch/cref)

)−1

− b ln

(

1−
j0

j∗lim(ch/cref)

)

(4a)
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FIGURE 1 | (A) Flight trajectories for two different aircraft types (August 25, 2018), (B) Calculated 4D aircraft flight trajectory using waypoints from initial flight plan.

with the three characteristic current densities

j∗ =
σtb

lt
, (4b)

jσ =
√

2i∗σtb, (4c)

j∗lim =
4FDbch

lb
, (4d)

where lt and lb are the thickness of CCL and GDL, respectively.
The constant of integration β is a solution to the equation
β tan(β/2) = j0/j∗, which can be accurately approximated
(Kulikovsky, 2014) by

β ≈

√

2(j0/j∗)

1+
√

1.12(j0/j∗) exp(
√

2(j0/j∗))
+

π(j0/j∗)

2+ (j0/j∗)
. (5)

The first term on the right-hand side of Equation (4a) gives
the overpotential due to the combined effect of ORR activation
and proton transport. The second and third terms describe the
potential losses due to oxygen transport in the CCL and GDL,
respectively.

With Equation (4a), the cell voltage Vcell can be calculated as

Vcell = Voc − η0 − R�j0, (6)

where Voc is the effective open circuit voltage. Nernst losses
are included in Voc, which is taken from experiments. The
power density,

P = Vcellj0, (7)

and electric efficiency,

υ =
1G

1H
︸︷︷︸

thermodynamic

efficiency

·
Vcell

Veq
︸︷︷︸

voltage

efficiency

, (8)

complete the set of equations.

While the model solution, Equation (4a), looks rather
complex, the model itself is relatively simple. It contains only
seven parameters, all of which are effective and physically
meaningful parameters that are intuitive to understand. The
open circuit voltage Voc includes Nernst losses and hydrogen
permeation through the membrane. Four parameters describe
the transport properties of the fuel cell’s materials, i.e., R� and σ

describe the ability of the membranes and catalysts to transport
protons, D and Db characterize the oxygen transportability of
the catalyst and the gas diffusion layer, the Tafel slope b and
the exchange current density i∗ give the activity of the catalyst.
The parameter values in this paper are taken from the literature
Kulikovsky (2014) and are based on experimental data of Dobson
et al. (2012). This parameter set leads to a polarization curve with
a moderate performance for a single cell, which is assumed to
represent the performance of a state-of-the-art fuel cell stack.

Auxiliary components are included by reducing the specific
power of the fuel cell system. This way, the weight and parasitic
power demand of the auxiliary components are implicitly
modeled in a very simplistic, linear way. More detailed modeling
of auxiliary components is beyond the scope of this work, as we
only seek to explain the approach and demonstrate its abilities
and gain some first fundamental insights. Of course, the fuel cell
design process can be extended to obtain more realistic results
and include other important aspects like safety, maintenance,
life-cycle, and cost.

2.2.2. Hydrogen Tank Model
In long-range aircraft with a high fraction of fuel weight, liquid
hydrogen storage is the most viable option in terms of weight
and volume, as explained in the literature (Brewer and Morris,
1976; Verstraete et al., 2010; Winnefeld et al., 2018). The first step
for the design of the tank system is to determine the required
mass of hydrogen and the minimum hydrogen mass flow rate
from the generated flight mission histogram, as will be explained
in Section 3.1. Subsequently, the densities of liquid and gaseous
hydrogen are calculated, using the Equation of State of Leachman
et al. (2009). We assume that the hydrogen is kept at a constant
pressure of 1.2 bar. This slight overpressure prevents an oxygen
inflow. Keeping the pressure constant during the flight, i.e.,
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isobaric operation, prevents mechanical stress on the tank walls.
Additionally, we assume isothermic conditions with hydrogen
having boiling temperature.

Using the density of liquid hydrogen, the dimensions of the
tank can be calculated. An additional gas ullage of 3% (Verstraete
et al., 2010) is added. Based on the pressure of 1.2 bar, the
thicknesses of the tank wall in the cylindrical section, swc, and
the spherical section, sws, are determined, considering material
specific safety factors and the design guidelines of the AD 2000
(Verband der TÜV e.V., 2014). For simplicity, only the bare
tank structure is considered, i.e., peripherals like connectors, in-
and outlets or transitions between the cylindrical and spherical
sections, are neglected. Besides the tank wall and insulation, no
additional fairing is considered, because a functional integration
of the tank into the aircraft structure is assumed. Although
venting of hydrogen can be used to reduce the required insulation
(Winnefeld et al., 2018), the resulting weight gain is only small,
while the vented hydrogen could lead to safety issues. Hence, we
do not consider any venting strategy here.

For the design of the required insulation, we consider that the
hydrogen is extracted from the tank in gaseous form and needs
to be replenished by evaporating liquid hydrogen. In order to
keep the pressure in the tank constant, the heat of evaporation
has to be compensated by a heat flow Q̇req into the tank. This
required heat flow is supplied by the naturally occurring heat flow
through the tank wall and insulation, Q̇w, as well as an external
heat flow, e.g., from a heater or orthohydrogen-parahydrogen
catalysis (Leachman et al., 2012). To aid the design process, the
heat flow share ω is introduced. This characteristic ratio gives the
share of the natural heat flow in the entire heat flow Q̇req required
for hydrogen vaporization,

ω =
Q̇w

Q̇req
. (9)

To avoid pressure increase in the tank, the insulation has
to be designed such that ω ≤ 1 for all t. For the design
process, it is sufficient to consider the worst case during
the flight mission, i.e., the lowest hydrogen mass flow and
Q̇req. For this critical point, the insulation is designed such
that ω = 1, i.e., Q̇req = Q̇w for t = tcrit. Consequently, during all
other flight phases, ω < 1 and an additional external heat
flow is necessary to vaporize the required amount of hydrogen.
The advantage of this design heuristic is its simplicity and
computational efficiency, which makes it suitable for Monte
Carlo simulations.

The following equations complete the insulation design. The
required heat of evaporation, Q̇req, can be calculated as

Q̇req = ωṁH21H
vap
H2

(

1+
ρGH2

(

ρGH2 + ρLH2

)

)

Sf, (10)

where1H
vap
H2

= 451.9 J/g is the enthalpy of hydrogen evaporation.
Furthermore, we consider a reduction of the required heat by a
safety factor Sf due to vibration, stratification, and acceleration
effects as well as heat input by pumps, in- and outlets (Verstraete

et al., 2010). The heat flow into the tank through the metallic
tank wall, the insulation, and the heat transfer zone at the in- and
outside can be calculated as (Baehr and Stephan, 2013)

Q̇w =
1T

R

R =
1

αinAin
+

swc/ws

λwAwc/ws
+

sic/is

λiAic/is
+

1

αoutAout
,

(11)

where s denotes the thickness, λ the heat conductivity, and A
the surface area with the subscripts w for the metallic tank wall,

i for insulation, c for the cylindrical section of the tank and s

for the spherical tank section. The heat transfer coefficients on
the inside and outside of the tank, αin and αout, depend on the
Nusselt number, the heat conductivity of hydrogen (inside) and
air (outside) and a specific characteristic length lch (Baehr and
Stephan, 2013),

αin/out = Nu
λH2/air

lch
. (12)

At the tank’s inside, Nu = 17 (Verstraete et al., 2010), while at
cylindrical outside surfaces Nu = 0.3 and at spherical surfaces
Nu = 2 (Baehr and Stephan, 2013).

Equations (9–12) are solved for the insulation thickness sis/ic
and, using the density of the insulation and wall materials, the
tank mass is determined.

2.2.3. Fuel Cell and Hybrid System Model
The design target considered in this work is the total mass of the
energy system,mtot. For a fuel cell system,mtot mainly consists of
the fuel cell stack mass mfc, the mass of the fuel, mH2 , and of
the fuel tank, mtk. In case of a hybrid energy system, a part
of the required power is supplied by a battery with mass mbat.
For simplicity, further auxiliary components are included in the
power or energy density of the fuel cell stack or battery and are
not modeled explicitly. As hybridization strategy, simple peak
shaving is applied, i.e., high power peaks are partially delivered
by the battery. Hereby, the degree of hybridization is defined as
the ratio of the maximum power of the fuel cell to the maximum
total power required,

h = Pfc/Ptot. (13)

Thus, the total mass is

mtot = hmfc +mtk +mH2 + (1− h)mbat. (14)

The mass of the battery is determined either by energy demand,
E
req
bat and energy density ̺bat or by required power P

req
bat and

power density ρbat. Whichever demand is higher determines the
battery mass,

mbat = max
(

E
req
bat̺bat , P

req
batρbat

)

. (15)

Similarly, the mass of the fuel cell is determined by the
required power and the power density of the fuel cell system,
mfc = P

req
fc ρfc.
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2.3. Stochastic Model
AMonte Carlo analysis in the context of fuel cell design requires
a stochastic computational model of the random flight mission
profiles. To this end, we model the variability of the power
consumption histograms between different flights as a random
process and apply stochastic discretization techniques. The
discretization will introduce a vector of uncorrelated, possibly
dependent, random variables from which we can draw (pseudo)-
random numbers for a subsequent Monte Carlo analysis. In the
following, we describe the discretization procedure in a general
setting, before relating it to the random flight mission profiles.
Let f denote a general random process on a subinterval I on the
real line with finite second moments. Our aim is to derive an
approximation f ≈ fM(Y), whereY represents anM-dimensional
random vector with known joint density function fY, such that we
can draw random numbers from it. We denote with

Ef (s) =

∫

�

f (s, θ) P(dθ), s ∈ I, (16)

Covf (s, t) =

∫

�

(f (s, θ)− Ef (s))(f (t, θ)− Ef (t)) P(dθ), s, t ∈ I,

(17)

the mean value and covariance function of f , where θ refers to a
random outcome and P to a probability measure. We discretize f
in space by introducing s1 < s2 < · · · < sN points in I, which are
assumed to be equally-spaced, for simplicity. Then, by evaluating
all the moments on this grid we obtain the vector of mean values
Ef = (Ef (s1), . . . ,Ef (sN))

⊤ and covariance matrix Covf with
entries (Covf)ij = Covf (si ,sj). Given real data, these quantities can
be approximated as

Ef ≈ E
K
f : =

1

K

K
∑

i=1

f(i), (18)

Covf ≈ CovKf : =
1

K − 1

K
∑

i=1

(f(i) − Ef)(f
(i) − Ef)

⊤, (19)

where f(i), i = 1, . . . ,K refers to the i-th realization of f on
the grid. We omit the superscript K in the following, keeping
in mind that the computations are always carried out with the
sample covariance in practice. With this notation at hand, we use
the decomposition

f = Ef + LY, (20)

where L is obtained from decomposing the covariance matrix
as Covf = LL⊤. Such a decomposition can be obtained
from a Cholesky factorization or from an eigendecomposition
Covf = VEV⊤ as L = VE1/2, where V stores the normalized
eigenvectors column-wise and E is a diagonal matrix, containing
the eigenvalues of Covf on the diagonal in decreasing order. It
should be noted that the eigendecomposition is also referred to
as principal component analysis, see Jones and Rice (1992). Since
Covf is symmetric, positive-definite, the eigenvalues are real-
valued and larger than zero. For a more detailed description, the
reader is referred, e.g., to D’Elia and Gunzburger (2013).

If the process f is strongly correlated, a low-rank
approximation may be obtained. For instance, in the case
of an eigendecomposition of the covariance matrix, we may
approximate VEV⊤ ≈ VMEMV⊤

M , where EM ,VM contain the
data related to the first M eigenvalues and eigenfunctions only.
The truncation is carried out such that the explained variance
is sufficiently large. For the A320 and B772 data, we obtained
satisfactory results with M = 75. No low-rank approximation
is applied for the Cholesky factorization (which could be based,
e.g., on coarse grid sampling) and hence,M = N = 100. In view
of this large number of random input parameters, a Monte Carlo
approach is a natural option.

For a Gaussian process, as (20) represents a linear
transformation, Y consists of M independent, standard
normal random variables. However, if f is non-Gaussian,
modeling Y in this way, the higher order moments or the
distribution of both sides of (20) are different, in general.
Relying on the orthogonality of the eigenvectors one can infer
the relation

YM = E
−1/2
M V⊤

M(f− Ef), (21)

which we will use to estimate the distribution of YM based on
kernel density estimation. In particular, kernel density estimation
can handle multiple modes in the distribution which we indeed
observed for the present data. For the Cholesky decomposition,
we simply assume a normal distribution for Y, which possibly
introduces a modeling error.

In the context of this work, s can be identified with the power
consumption, and f (s, ·) represents the (random) total amount of
time that power s has to be provided. Figure 2 depicts the mean
value and the standard deviation of the original B772 data and the
decomposition (20) with a Cholesky factorization. Bothmoments
are represented very accurately. It should be noted that negative
powers occasionally arising in the stochastic model are cut-off.
Similar results are obtained with the eigendecomposition, for
which we additionally observed improved approximations of the
distribution, which can mainly be attributed to the flexible kernel
density estimation. Hence, the results of section 3 are based on
principal component analysis.

2.4. Sensitivity Analysis
For a rigorous study of technology performance parameter
effects on the Quantity of Interest (QoI) (e.g., degree of
hybridization, total mass of the energy system, etc.), the analysis
of parameter sensitivities is an effective tool (Laoun et al., 2016;
Zhao and Howey, 2016; Lin et al., 2018; Zhou et al., 2018).
As local sensitivity measures address the effect of individual
parameters under the simplifying assumption of linear “cause-
effect” relations (Campolongo et al., 2000; Morio, 2011), the
global sensitivity analysis (GSA) is the method of choice in
this study. GSA quantifies the variation of the QoI caused
by individual parameters and parameter dependencies. In the
literature, Sobol’ indices are the standard for GSA (Campolongo
et al., 2000).

Following Saltelli et al.’s (2010) work, Sobol’ indices are
derived from a decomposition of the variance. For a general
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FIGURE 2 | Mean value (A) and standard deviation (B) of original B772 data (blue) and random process (red) defined in (20).

QoI Q which depends on the random input vector Y of size M,
there holds

Q(Y) = Q0 +
∑

i=1

Qi(Yi)+
∑

i=1

∑

j>i

Qi,j(Yi,Yj)+ · · ·

+ Q1,2,...,M(Y1, . . . ,YM), (22)

where

Q0 = E[Q], (23)

Qi(Yi) = EY∼i[Q|Yi]− E[Q], (24)

Qi,j(Yi,Yj) = EY∼i,j[Q|Yi,Yj]−Qi −Qj − E[Q], (25)

and EY∼i[Q|Yi] refers to the expected value with Yi fixed.
More details and the corresponding higher order expressions
can be found in Saltelli et al. (2010). This orthogonal
functional decomposition translates to the following variance
decomposition as

V[Q] =

M
∑

i=1

V[Qi(Yi)]+
M
∑

i=1

∑

j>i

V[Qi,j(Yi,Yj)]+ · · ·

+ V[Q1,2,...,M(Y1, . . . ,YM)]. (26)

The first sum on the right-hand side of the previous equation
contains the contribution of each individual input parameter to
the overall varianceV[Q]. This is the basis for sensitivity analysis
via Sobol’s indices, which are defined as

SGSA[i] =
V[Qi(Yi)]

V[Q]
. (27)

Note that the sum of all SGSA[i] values is less than or equal to one

1 =
∑

i

SGSA[i]+ δ, (28)

where δ accounts for joint parameter effects; i.e., δ = 0
means no parameter interaction, and δ > 0 correlates with
parameter interaction.

For most practical problems, the multi-dimensional integrals
in Equation (27) that are needed to calculate the expected value
and the variances are approximated numerically. Here, Monte
Carlo sampling is the standard (Kucherenko et al., 2009; Gong,
2015) and applied in this study. To perform the global sensitivity
analysis, MatLab R© and the UQLaB toolbox (Marelli and Sudret,
2014) are used.

2.5. Monte Carlo Sampling
This work employs Monte Carlo routines in two different
contexts. First, Monte Carlo simulations of random flight
profiles combined with model-based energy system design
give the range of required energy system designs necessary
to deliver the selected class of flights. In particular, no
integration, i.e., averaging over the sample, is involved in
this step. The distribution of these system designs is then
analyzed in terms of the overall system mass, the mass of the
systems component, and the degree of hybridization. Second,
a Monte Carlo-based sensitivity analysis of selected system
parameters (i.e., the performance parameters of battery and
fuel cell, specific energy and specific power, respectively) allows
the numerical approximation of the Sobol’ indices as global
sensitivity measures. Within this Monte Carlo method, for each
sample of performance parameters, the average over the random
flight missions is considered, i.e., the sensitivity analysis is based
on the marginal distributions of the performance parameters.

3. RESULTS AND DISCUSSION

3.1. Analysis of a Single Mission Profile
The fuel cell system is designed to deliver a required electrical
power profile shown exemplarily in Figure 3A. For the design
and analysis, this power profile is converted into the histogram of
the required electric power, shown in Figure 3B. By transforming
this histogram with the efficiency-power curve of the fuel cell
(i.e., dividing the x-axis values by the corresponding efficiency),
the histogram of the required hydrogen power (corresponding
to a hydrogen mass flow) that needs to be fed into the fuel
cell, is obtained. The resulting histogram in Figure 3B shows
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FIGURE 3 | Transformation of a single mission profile of an Airbus A320 short-range flight (A) into the corresponding electric power histogram (B), and by including

the fuel cell efficiency into the histogram of the required chemical power of hydrogen (C).

several power peaks, which can be attributed to different flight
phases or maneuvers. By integrating the area under such a peak,
the required fuel for the corresponding flight maneuver can
be obtained. Integrating the whole histogram gives the total
fuel consumption for the flight. The flight in Figure 3 can be
distinguished into take-off and climb (3,445 kWh), two cruise
phases at 2 different thrusts (2,762 and 1,357 kWh), descend (423
kWh), and approach (116 kWh).

For other analyses it might be beneficial to use different
normalization strategies of the histogram, as indicated by the
secondary x- and y-axes in Figure 3. For the x-axis, it can be
beneficial to normalize to the total power. This way, the degree
of hybridization h can be directly read off the axis. For a desired
hybridization, say 0.3, integrating the hydrogen power histogram
below 0.3 gives the required energy for the fuel cell system (i.e.,
the hydrogen mass that needs to be stored in the tank). At the
same time, integrating the electric power histogram above 0.3
gives the electric energy that needs to be supplied by the battery.
By including the battery efficiency, the required battery capacity
is obtained. Similarly, the y-axis can be normalized to the total
time. This way, the relative time spent in each flight maneuver
or power can be analyzed. Another typical normalization is such
that the total area under the curve equals 1. This corresponds
to normalizing the histogram to the total energy consumed
in the flight. This way of normalization might be useful for
comparing the relative fuel consumption in different flight phases
for different flights (e.g., for different aircraft types, or specific
flight connections).

3.2. Analysis of Mission Profile Data
Similar to the analysis of a single flight mission profile, it is
possible to analyze a whole data set of flight mission profiles and
convert them into the corresponding histogram as demonstrated
in Figure 4. The resulting histogram can then be used to design
the energy system that fulfills all the included flight missions. By
selecting an appropriate data set, histograms for desired design
applications can be found. For example, by filtering flight data of
a specific aircraft, a histogram-based design of the energy system
for that aircraft type can be performed. Similarly, it would be

possible to select, e.g., all inner-European flights, transatlantic
flights, flights with a desired range or servicing a specific region,
etc. and design the energy system for an aircraft optimized for
these flight missions.

In Figure 4, 100 flight missions of Airbus A320 and Boeing
B772 aircraft are analyzed. These aircraft are representative for
mid-range and long-range aircraft, respectively, in which future
hydrogen fuel cell technology is especially beneficial (Kadyk
et al., 2018). As can be seen, most of the fuel is spent at partial
load during the cruise phase. Comparatively, the long-range
B772 is designed toward lower partial loads. Overall, the sample
size may be insufficient for an accurate energy system design
and resampling should be applied. Here, instead, a stochastic
parameterized model as outlined in section 2.3 is inferred from
the data set, and Monte Carlo sampling is subsequently used
to generate a large number of flight mission profiles. In this
way, in addition to a much more refined energy system design,
parametric sensitivity analyses can be performed.

3.3. Stochastic Model and Monte Carlo
Sampling of Histograms
Random mission profiles were drawn from the stochastic
model. Subsequently, the fuel cell system design procedure
described above was applied. The obtained system designs are
analyzed statistically in Figures 5, 6. For these figures, the most
interesting set of performance parameters was selected: for the
fuel cell, a specific power of 1.6 kW/kg, corresponding to current
automotive fuel cell systems (Yoshida and Kojima, 2015; Kadyk
et al., 2018), and for the battery, a specific energy of 0.8 kWh/kg,
achievable in the future with lithium sulfur battery systems
(Zhang et al., 2017; Cerdas et al., 2018). An analysis of the full
parameter space of future energy technologies will be discussed
in the next section.

For the long-range aircraft B772, the overall energy system
mass in Figure 5A shows a relatively even distribution with a
long but low tail. The distribution of the tank system in Figure 5B
shows a similar characteristic, indicating that this tail is caused by
a small number of flights that require an unusually high amount
of fuel. In practice, one might consider to cut off this small
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FIGURE 4 | Histograms of the flight data of the A320 (A), and the B772 (B).

FIGURE 5 | Energy system design for the B772 for current fuel cell systems with a specific power of 1.6 kW/kg and advanced batteries with a specific energy of 0.8

kWh/kg. Distribution of: (A) the total mass of the energy system. (B) mass of the tank system (tank+hydrogen), (C) fuel cell mass and (D) battery mass.

number of flights and deliver them with the next larger aircraft
class, rather than over-sizing the tank and energy system to be
able to run this small number of flights, while delivering most
flights in an off-design point.

The distribution of the fuel cell mass and battery mass in
Figures 5C,D reveals that for about half the flights, hybridization
with a battery is not beneficial (i.e., the optimum battery mass

is zero). Correspondingly, Figure 5C shows a peak at about 40 t
fuel cell mass for this fuel-cell-only design, whereas the remaining
flights should be covered with a hybrid fuel cell + battery energy
system, in which the fuel cell mass would be reduced to 12–15 t.

For the mid-range A320, the distribution of the system mass
in Figure 6A shows a more asymmetric distribution, without a
clear “tail” to cut off. However, it could still be considered to split
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FIGURE 6 | Energy system design for the A320 for current fuel cell systems with a specific power of 1.6 kW/kg and advanced batteries with a specific energy of 0.8

kWh/kg. Distribution of: (A) the total mass of the energy system, (B) mass of the tank system (tank+hydrogen), (C) fuel cell mass, and (D) battery mass.

the energy system design, e.g., one lightweight design to provide
the lower 50% of flights and one heavier, more versatile design
to deliver the upper, more distributed 50% of flights. Another
remarkable feature is the single peak at the lower end. The
comparison with Figures 6B–D shows that these≈5% flights can
be delivered with a battery-only design without fuel cell and tank.
Figures 6C,D indicate further, that there are a small number of
flights for which a fuel cell-only design is optimal, while for most
of the flights a hybrid design with a reduced fuel cell size of 6.5 t
has the lowest weight.

3.4. Sensitivity Analysis of Performance
Parameters for Estimating Future
Technology Potential
As mentioned above, it strongly depends on the technology
performance parameters, which design routes emerge. The values
of these parameters, i.e., the specific energy of the battery
and specific power of the fuel cell, are determined by future
research and development outcomes. Hence, a sensitivity analysis
of these parameters can be used to explore the potential of
future technology as well as set a course for research and
development efforts.

As a first step, Figure 7 shows a parameter study of the
specific energy of the battery for a fuel cell system with state-
of-the-art power density. For the long-range aircraft B772, the
optimum degree of hybridization in Figure 7A is 1 for specific
energies up to about 0.8 kWh/kg. This shows that with lower
performing batteries, hybridization is not beneficial, and a fuel
cell-only system design should be used. This conclusion is
in accordance with the expectation that fuel cell systems are
especially beneficial in terms of weight for long-range aircraft
(Kadyk et al., 2018). Only with high specific energy batteries, the
degree of hybridization splits into two distinct values: part of the
flights are covered with fuel cell-only energy systems, while some
of the flights are best performed with a hybrid energy system.
The latter has the advantage of a considerably reduced size of
the fuel cell, i.e., the fuel cell size can be reduced by 70% while
the battery shaves off the high power peak demands. The specific
energies of the batteries required for this can be achieved in two
ways: either with better battery technologies like lithium-sulfur
or lithium-air batteries (Zhang et al., 2017; Cerdas et al., 2018)
or by integrating batteries into the structure of the aircraft, e.g.,
the laminates of the skin (Adam et al., 2018). Corresponding to
the degree of hybridization, the overall mass of the energy system
shown in Figure 7B splits into a distribution with two peaks for
specific battery energies above 0.8 kWh/kg. With an increasing
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FIGURE 7 | Parameter study of the specific energy of the battery. Left: A320, right B772. (A,B) Show the optimum degree of hybridization; (C,D) show the minimized

mass of the energy system, where the color code indicates the relative frequency.

specific energy, the peak of the fuel cell-only system declines and
the hybrid system peak dominates.

The analysis for the short range A320 in Figure 7 shows three
distinct degrees of hybridization, as discussed in the last section: a
fuel cell system, a hybrid system, and a battery system. Similar to
the B772 study, the threshold for the decline of the fuel cell system
is around 0.8 kWh/kg. However, for the A320 the fuel cell only
option vanishes above this point, and the system design splits
immediately into the hybrid system and battery-only option.
Increasing the specific energy further leads to a more and more
dominating battery option. For the design of future aircraft in this
mid-range region, this has serious implications: depending on the
development of fuel cell and battery performances, three very
different energy system designs could be dominating. Each of
these options leads to individual challenges for the overall design
of the aircraft, like the integration of the energy system into the
aircraft, electric networks, heat management and many more.

In the second step, a global sensitivity analysis for the two
technology performance parameters, i.e., the specific fuel cell
power and specific battery energy, was performed. Note that
for both parameters uniform distributions over the considered
ranges are used in Equation (27). The considered range of specific
fuel cell power is from state-of-the-art fuel cell systems with 1.6
kW/kg up to possible future lightweight fuel cell systems with
8 kW/kg, as estimated by Kadyk et al. (2018). The considered

FIGURE 8 | Averaged relative frequencies of the minimized system mass with

corresponding standard deviations given as error bars.

range of specific energies of the battery is from current batteries
with 0.5 kWh/kg up to the theoretical material limit of lithium-
sulfur batteries of 2 kWh/kg (Zhang et al., 2017). As discussed
above, a structural integration of the batteries could lead to
“effective” specific energy surpassing thismaterial limit. However,
the battery capacity that can be integrated into the aircraft
structure is limited.
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FIGURE 9 | First order Sobol’ indices of the two technology performance

parameters for the minimized system mass.

Figure 8 shows the mean frequency of the minimized system
mass with corresponding standard deviations given as error
bars, i.e., the probability that the optimized energy system has
a particular overall mass within the range of the performance
parameters and its variation. It can be seen that there is a sharp
lower limit at about 5 t, which cannot be undercut even by the
best technologies. Above the peak at about 7.5 t, the relative
frequency decreases steadily. It becomes unlikely that system
masses above 15 t will be necessary to power the A320 for most
flight missions and masses above 20 t are practically negligible.

The first order Sobol’ indices in Figure 9 show that battery
performance on its own has little influence on the system mass.
Only for systems with high systemmass, improving the battery is
beneficial. This is because only heavy systems contain significant
hybridization with batteries; lighter systems contain light fuel
cell systems which cannot be undercut significantly by batteries
in terms of specific performance. Moreover, for heavy systems
(> 10 · 103 kg) there is a strong dependency of two technology
performance parameters, i.e., the sum of the Sobol’ indices see
Equation (28) is considerably below one. In this particular case,
it might be an indicator that battery technology can play a
significant role in conjunction with the specific fuel cell power.
This role increases steadily toward systems with higher mass.

4. SUMMARY AND CONCLUSION

In this work, the statistical analysis of flight mission profiles
enabled a Monte Carlo-based design process of fuel cell energy
supply systems for aircraft. The design target was defined by
selecting a subset of flight data within a desired class. As
an example, flights from two aircraft types (mid-range Airbus
A320-200 and long-range Boeing B772-200 ER) were analyzed.
However, other classifications like inner-European flights, flights
with a desired range or servicing a specific region would be
possible, leading to energy system designs optimized for these
flight missions. From these flight data, a stochastic model was
inferred, allowing for a large number of random flight mission
profiles to be drawn for a Monte Carlo analysis.

The result of this Monte Carlo approach is not just a single
design for one operating point but a distribution of designs,
e.g., the distribution of component masses or the degree of
hybridization. From these distributions, design decisions can be
made to cover all or just part of the desired flights. For example,
for the long-range B772, the distribution of the total mass has
a “tail” toward higher masses, caused by a small fraction of
unusually energy-intensive flights. If these flights are delivered
with the next larger aircraft class, the overall energy system can be
kept significantly smaller, and off-design aircraft operations can
be reduced.

For mid-range A320, up to three distinct energy system
designs could be relevant: for longer flights, a fuel cell-only
energy system has the lowest mass, while in the mid-range a
hybridization with a battery can be beneficial and low-range
flights might be covered with a battery-only system. In the hybrid
system, the battery supplies the peak load during start and ascend,
which significantly reduces the size of the fuel cell. However,
during the flight, the battery is “dead weight,” which makes
hybridization less suitable for longer distances. The battery-only
energy system could become optimal for short flights if in future
batteries the high specific energy predicted in literature could
be achieved.

In order to explore the influence of technological
developments, a Monte Carlo-based sensitivity analysis of
the performance parameters of fuel cells and batteries, namely
the specific fuel cell power and the specific battery energy,
were performed. The results seem to indicate that the overall
system mass is more sensitive to the specific power of the fuel
cell and that the specific energy of the battery is sensitive only
in conjunction with the specific fuel cell power. This suggests
that the battery has a more supportive role for the analyzed
aircraft classes, which is in line with the expectation that fuel cell
technology is especially suitable for long-range aircraft.

Overall, the presented design and analysis method is a valuable
tool in the energy system design process, especially by supporting
decision making and allowing assessment of future technology
development trends.

A MatLab implementation of all models, tools,
data, and parameter values is available on BitBucket
(https://bitbucket.org/rschenken/mc_paper/) as free, open
source software.
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