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To accurately evaluate the influence of the uncertainty and correlation of photovoltaic

(PV) output and load on the running state of power system, a probabilistic optimal power

flow (POPF) calculation method based on adaptive diffusion kernel density estimation is

proposed in this paper. First, based on the distribution characteristics of PV output, the

adaptive diffusion kernel density estimation model of PV output is constructed, which

can transform the kernel function into a linear diffusion process to achieve self-tuning

of the bandwidth of the nuclear density estimation. This model can fit the distribution

of arbitrary distribution of PV power, improve the local adaptability of PV output model,

and reflect the uncertainty and volatility of PV output more accurately. Therefore, it can

provide more accurate input for POPF calculation. Second, the Kendall rank correlation

coefficient and the least Euclidean distance are used as correlation measure and index

of fitting to select the optimal Copula function, and the joint probability distribution model

of PV output and load is constructed. After extracting the correlated PV output and load

samples, a POPF calculation method considering the correlation of PV output and load

is proposed by using genetic algorithm (GA), which takes the lowest fuel cost of power

generation as the objective function. Finally, simulation studies are conducted with the

measured data of a PV power plant of China and the IEEE 30-bus power system. The

results show that considering the correlation between PV output and load can improve

the accuracy of POPF calculation and effectively reduce the power generation cost of

the power system.

Keywords: PV output, adaptive diffusion kernel density, Copula theory, correlation, probabilistic optimal

power flow

INTRODUCTION

Photovoltaic (PV) power generation has developed rapidly in recent years due to its advantages of
green environmental protection and renewable capacity. Up to the end of 2018, the total installed
capacity of PV power generation in China has exceeded 174GW. However, PV power generation is
a typical intermittent energy, and its output is susceptible to external factors, such as light intensity,
temperature, weather, and PV panel materials and has strong uncertainty and volatility (Ke et al.,
2016; Liu et al., 2017; Lujano-Rojas et al., 2018). Moreover, the correlation between PV output
and load will also affect the running state of the power system. Probabilistic optimal power flow
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(POPF) is an effective method for analyzing power system
uncertainty and optimizing power system operation. It can be
used to evaluate the reliability and economy of power systems
with PV power generation (Wang et al., 2018; Duan et al., 2019).
Therefore, it is of great significance to conduct in-depth research
on the POPF calculation method for power systems containing
PV power generation.

Power scholars at home and abroad have carried on a lot of
research on the PV output probabilisticmodel and the calculation
method of POPF. In Wang and Ding (2010), the probability
distribution model of PV output is established by using beta
distribution, and the parameter value of beta distribution is
obtained by the maximum likelihood method according to the
measured historical data of PV output. In Xie et al. (2018), a
non-parametric kernel density estimation model for distributed
energy is established, and the optimal bandwidth is selected
by the asymtotic mean integrated squared error (AMISE).
The correlation between distributed energy output and load is
processed based on Copula theory. On the basis of Xie et al.
(2018) and Miao and Xie (2016) established a mixed kernel
density estimation model for distributed energy, introduced the
weight coefficient to represent the proportion of each kernel
density estimation, and obtained the AMISE of the mixed kernel
density estimation method. And then applied it to the Lagrange
multiplier method to obtain the optimal weight coefficient.
In Zhu and Jin (2018), considering the dependent structure
between PV power plants, a stochastic probabilistic power flow
calculation method considering the correlation between multiple
PV power plants is proposed based on Copula theory. The
digital interlacing technology is integrated into the quasi-Monte
Carlo algorithm to improve calculation speed. Li et al. (2017)
and Wu et al. (2017) established a correlation coefficient matrix
between distributed PV power plants based on measured data
and distribution network structure and obtained correlation
samples of PV output by NATAF transformation. Multiple
integration algorithms and Gram-Charlier series are used to
perform power system probabilistic load flow calculation. Sadjad
and Mahmoud (2019) used Cholesky factorization to form input
variables and dealt with the correlation between random variables
quickly and accurately through data clustering. In addition, it
used genetic algorithm (GA) as an optimization tool to calculate
the probability optimal power flow. Ullah et al. (2019) predicted
the output power of wind turbines and PV generators based on
real-time measurements and probability models of wind speed
and solar irradiance. Combined with phasor particle swarm
optimization (PPSO) and GSA algorithm, an optimal power flow
calculation method for power system considering the correlation
between PV and wind power generation is proposed.

Most of the above references used parametric estimation
methods such as beta distribution and non-parametric kernel
density estimation to model the PV output. The local adaptability
of PV output estimation is not enough, and there are a few
studies considering the impact of PV output and load correlation
on probability optimal power flow calculation. Aiming at the
above problems, a POPF calculation method is proposed based
on adaptive diffusion kernel density estimation in this paper.
First, based on the distribution characteristics of PV output,

an adaptive diffusion kernel density estimation model suitable
for PV output is proposed. The Gaussian kernel function
is converted into a linear diffusion process to achieve self-
adjustment of the bandwidth of the kernel density estimation,
and the model can accurately fit the actual output of the PV
power station. Therefore, it can provide more accurate input for
POPF calculation. Second, Kendall rank correlation coefficient
and least Euclidean distance are used as correlation measure and
index of fitting to select the optimal Copula function to construct
the joint probability distribution of PV output and load. And then
a POPF calculation method considering the correlation of PV
output and load is proposed by using GA, which takes the lowest
fuel cost of power generation as the objective function. Finally,
the simulation is performed on the IEEE 30-bus system with the
actual measured data of a PV power plant in China. The accuracy
and effectiveness of the POPF calculation method that considers
the correlation between PV output and load are verified.

PROBABILISTIC MODEL OF PV OUTPUT

Non-parametric Kernel Density Estimation
Model
The non-parametric kernel density estimation model f (x) of PV
output can be expressed as (1):

f
(

x,Xi; h
)

=
1

nh

n
∑

i=1

K

(

x− Xi

h

)

(1)

Where X1, X2, ..., Xn are measured data of PV output, x is the
non-parametric kernel density estimation independent variable,
n is the sample capacity, h is the bandwidth, and K(•) is the
kernel function.

Select the Gaussian function as the kernel function, which can
be written as (2):

K
(

x,Xi; h
)

=
1

√
2π

e
−(x−Xi)

2

2h2 (2)

When the PV output sample is given, f (x) is determined by
the kernel function K(•) and the bandwidth h. The effect of
bandwidth h on f(x) is much greater than the effect of kernel
function K(•) on f (x). Therefore, the selection of the optimal
bandwidth is particularly important in the non-parametric kernel
density estimation. To balance the effects of kernel density
estimation bias and variance, the AMISE method is generally
used to select the optimal bandwidth (Fan et al., 2012):

AMISE =
h4

4

{∫

u2K (u) du

}2∫
{

f ′′ (x)
}2

dx+
1

nh
R (K) (3)

R (K) =
∫

K2 (u) du (4)

Where f (x) is the non-parametric kernel density estimated
probability density function, u = (x – Xi)/h, AMISE is the
estimated asymptotic mean integrated square error.

The bandwidth obtained by minimizing the operation with
AMISE as the objective function is the optimal bandwidth
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hAMISE. Although this method can select the overall fixed
optimal bandwidth of PV output non-parametric kernel density
estimation, the actual PV output has uncertainty and volatility,
and its overall data density is not uniform. The overall
optimal bandwidth cannot adjust itself according to the PV
output data density of the local interval, which will result in
poor local adaptability. To solve this problem, the traditional
non-parametric Gaussian kernel density estimation method is
improved in this paper. The transformation density of linear
diffusion is used instead of the Gaussian kernel function
to achieve adaptive adjustment of the bandwidth of the
non-parametric kernel density estimation and improve its
local adaptability.

Fourier Heat Equation
Because the Fourier heat equation has the adaptive feature of
smoothing variables, it has been widely used in various fields.
Based on this, Chaudhuri and Marlon proved that the Gauss
kernel density estimation is the unique solution of the Fourier
heat equation (Chaudhuri and Marron, 2000). The expression of
the Fourier heat equation is as follows:

{

∂
∂t f (x; t) = 1

2
∂2

∂2x
f (x; t)

t = h2
(5)

Where x is the measured data (x ∈ [0, 1]), t > 0. The initial
condition is the empirical probability density of the dataf (x; 0) =
1(x) = 1

N

∑N
i=1 δ(x−xi), and δ(x−Xi) is the Diracmeasure ofXi.

By solving Equation (5), the analytical solution of Fourier heat
equation can be obtained as follows:

f
(

x; h
)

=
1

N

N
∑

i=1

K
(

x,Xi; h
)

(6)

The kernel function K in the above equation can be expressed as:

K
(

x,Xi; h
)

=
∞
∑

k=−∞

∅

(

x, 2k+ Xi; h
)

+∅

(

x, 2k− Xi; h
)

(7)

The asymptotic analysis of formula (7) shows that the properties
of formula (7) in the domain [0, 1] are consistent with those of
Gauss kernels.

In conclusion, the non-parametric Gaussian kernel density
estimation problem of PV output can be transformed
into the unique solution problem of the diffusion partial
differential equation.

Adaptive Diffusion Kernel Density
Estimation Model
The adaptive diffusion kernel density estimation method
proposed in this paper is based on the smoothing property of
linear diffusion process. Select the most common linear diffusion
process, and its partial differential equation can be written as (8):

∂

∂t
f (x; t) = Lf (x; t) =

1

2

∂

∂x

(

a (x)
∂

∂x

(

f (x; t)
P (x)

))

(8)

Where x ∈ [0, 1], t = h2 > 0, a(x) and p(x) can be any
positive function with a second derivative in the domain. The
initial condition is f (x; 0) = 1(x) = 1

N

∑N
i=1 δ(x − xi). Let

a(x) = 1 and p(x) = 1, the simplified model of linear partial
differential (Equation 9) for Gaussian kernel density estimation
can be obtained:

Lf (x; t) =
1

2

∂2

∂2x
f (x; t) (9)

By comparing formula (5) and formula (9), we can see that
the Fourier heat equation can be connected with the linear

diffusion partial differential equation by using 1
2

∂2

∂2x
f (x; t) as the

intermediate medium, such as Equation (10):

∂

∂
f (x; t) = Lf (x; t) =

1

2

∂2

∂2x
f (x; t) (10)

From Equation (10), we can see that the solution of Fourier
heat equation is the same as that of diffusion partial differential
equation. In conclusion, the problem of estimating the Gauss
nuclear density of PV output can be solved by solving the
diffusion partial differential equation.

This research will be expanded in this paper. The analytical
solution of Equation (8) can be obtained as follows:

f (x; t) = 1
N

N
∑

i=1
KD (x,Xi; t)

KD

(

x, y; t
)

= p(x)√
2π t[p(x)a(x)a(y)p(y)]1/4

× exp

(

− 1
2t

[

∫ x
y

√

p(s)
a(s)ds

]2
)

(11)

Where: KD () represents diffusion kernel function; f (x; t)
represents diffusion kernel density estimation; x, y, s are random
variables in the definition domain of kernel function; and a() and
P() can be any positive function with a second derivative in the
definition domain.

It can be imagined that the kernel function is changing, but
according to the previous paper, the influence of kernel function
on non-parametric kernel density estimation is small and can
be ignored. The diffusion kernel function should satisfy the
following conditions:











∂
∂t k

(

x, y; t
)

= L∗KD

(

x, y; t
)

∂
∂t k

(

x, y; t
)

= LKD

(

x, y; t
)

L∗ (·) = 1
2p(y)

∂
∂y

(

a
(

y
)

∂
∂y (·)

)

(12)

Where: L
∗
is the adjoint operation of L.

The optimal bandwidth is selected according to the criteria
of AMISE, and f is assumed to be a second-order continuous
differentiable function. The integrated squared bias of this
method can be calculated as:

∥

∥Ef
[

f (·;t) − f
]∥

∥=
1

4
t2
∥

∥

∥

∥

(

a
(

f /p
)′
)′
∥

∥

∥

∥

2

(13)
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The integrated variance can be calculated as:

∫

Varf
[

f (x; t)
]

dx =
Ef
[√

p (Xi) /a (Xi)
]

2N
√

π t
(14)

Therefore, the diffusion kernel density estimation AMISE can be
obtained. The expression is as follows:

AMISE =
1

4
t2
∥

∥

∥

∥

(

a
(

f /p
)′
)′
∥

∥

∥

∥

2

+
Ef
[√

p (Xi) /a (Xi)
]

2N
√

π t
(15)

The minimum value of AMISE can be obtained by derivation
of the above formula (Botev et al., 2010). The bandwidth
h ∗ corresponding to the minimum value of AMISE is the
optimal bandwidth:

h∗ =
√
t∗ =











Ef
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]

2N
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∥
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(

f /p
)′
)′
∥

∥

∥

∥

2











1/5

(16)

The optimal bandwidth can be adaptively selected by using linear
diffusion by using the formula (16).

The measured data of the PV power station in China are used
to simulate the Gaussian kernel density estimation probability
density curve and the adaptive diffusion kernel density
estimation probability density curve. The curve comparison is
shown in Figure 1. It can be seen that the diffusion kernel density
estimation model has a better fitting effect on the measured
data and can reflect the uncertainty and volatility of the PV
output better.

FIGURE 1 | Probability density of photovoltaic (PV) output.

JOINT PROBABILITY DISTRIBUTION
MODEL

Copula Theory
Copula theory states that a multidimensional joint probability
distribution can be replaced by the cumulative probability
distribution Fi(xi) of each variable and a connection function C
(Wu et al., 2015; Zhang et al., 2016; Widen et al., 2017). Let F(x1,
x2) be the joint cumulative probability distribution function of
PV output and load. There is

F (x1, x2) = C [F1 (x1) , F2 (x2)] (17)

Where x1, x2represent the data of PV output and load; F (x1,
x2)is the joint cumulative probability distribution function of
PV output and load; and F1 (x1), F2 (x2) is the marginal
distribution function of PV output and load. C is the optimal
Copula connection function to be selected.

When the marginal cumulative distribution function is
continuous, the connection function C can be uniquely
determined. In this paper, the least Euclidean distance between
the empirical Copula function and the theoretical Copula
function is used as the index of fitting to select the optimal
theoretical Copula function.

Using the measured data to establish the empirical Copula
function and various theoretical Copula function models, the
least Euclidean distance of various Copula functions can be
obtained just as shown inTable 1. It can be seen that the t-Copula
function has the smallest Euclidean distance, so the t-Copula
function is selected as the optimal Copula function.

Furthermore, the frequency histogram of empirical Copula
function and the joint probability density graph of t-Copula
function are obtained, as shown in Figures 2, 3. The comparison
shows that the t-Copula function has a better fitting effect.

The Kendall rank correlation coefficient τ of the PV output
and load can be calculated from the selected t-Copula function
to describe the correlation. When −1 ≤ τ ≤ 1, the correlation
between PV output and load increases with |τ | approaching 1,
and the following conclusions can be drawn:

1. When 0 < τ ≤ 1, the PV output is positively correlated with
the load.

2. When−1≤ τ ≤ 0, the PV output is negatively correlated with
the load.

3. When τ = 0, the correlation between PV output and load
cannot be determined.

TABLE 1 | The minimal Euclidean distance.

Type The minimal Euclidean distance

Normal-Copula 10.852087271655069

t-Copula 0.317845959734499

Clayton-Copula 4.298800999871705

Frank-Copula 3.089802647148638

Gumbel-Copula 1.081102776170080
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According to the t-Copula function model, the correlation
coefficient between PV output and load can be obtained τ =
0.4399. As a result, PV output is positively correlated with load.

Sampling Method of Relevant PV Output
and Load
The joint probability distribution function obtained by t-Copula
function can obtain PV output and load samples with correlation
by sampling and inverse function transformation, thus avoiding
the tedious process of state space transformation (Chen et al.,
2013; Aien et al., 2014; Ren et al., 2017; Xiao et al., 2018).
According to the statistical principle, the marginal function
transforms a random variable from any domain to the uniform
distribution of [0, 1].

FIGURE 2 | Joint probability density of empirical Copula.

FIGURE 3 | Joint probability density of t-Copula.

Themarginal cumulative distribution functions u= F1(x) and
v = F2(y) of the PV output and load are obtained as shown in
Equations (18) and (19).

u = F1 (x) =
∫ x

−∞
f1 (x ) dx (18)

v = F2
(

y
)

=
∫ y

−∞
f2
(

y
)

dy (19)

Where x is the measured PV output data; y is the measured load
data; u = F1 (x) and v = F2 (y) are the marginal cumulative
distribution functions of PV output and load output, respectively;
and f 1 (x) and f 2 (y) are the probability density estimation
functions of PV output and load, respectively.

The cumulative probability distribution curves of Gauss
kernel density estimation and diffusion kernel density estimation
are obtained, as shown in Figures 4, 5. The joint probability
distribution of PV output and load was sampled N times to

FIGURE 4 | Probability distribution of photovoltaic (PV) output.

FIGURE 5 | Probability distribution of load.
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obtain N sets of correlation samples (ui, vi) (i = 1, 2, ..., N). By
substituting the obtained correlation samples into the PV output
and load accumulation probability distribution inverse functions
xi = F−1

1 (ui) and yi = F−1
2 (vi), N sets of correlated PV output and

load samples can be obtained.

POPF CONSIDERING THE CORRELATION
OF PV OUTPUT AND LOAD

POPF Model
In this study, the minimum fuel cost of the system is taken as
the objective function, and the GA is used to calculate the POPF
(Guo et al., 2018; Lin et al., 2019), which can take into account
the correlation between PV output and load, to optimize the
operation status of the power system. Optimal power flow model
is composed of objective function and power system constraints,
in which power system constraints can be divided into equality
constraints and inequality constraints.

• Objective function

f = min

[

m
∑

i=1

(

ai + biPGi + ciPGi
2
)

]

(20)

FIGURE 6 | Flowchart of probabilistic optimal power flow.

Where the objective function f of POPF is to minimize the total
fuel cost of thermal power units without considering the outage
cost of units; ai, bi, ci are the cost coefficients of the power system;
PGi is the active power of the generator at bus i; and m is the
number of generator buses in the power system.

• Power system constraints

The POPF needs to be calculated based on the probabilistic
power flow equation, considering the upper and lower limits of
line load power, the upper and lower limits of generator output,
and other constraints of the system operation (Kazemdehdashti
et al., 2018; Morshed et al., 2018).

Equality constraint







PGi − PLi − Ui
∑

j∈i Uj

(

Gij cos θij + Bij sin θij
)

= 0

QGi − QLi − Ui
∑

j∈i Uj

(

Gij sin θij + Bij cos θij
)

= 0

iǫNB

(21)

Where PGi and QGi, respectively represent the active power and
reactive power of the generator at bus i, PLi, and QLi, respectively
represent the active power and reactive power of the Load at bus i,
andUi andUj represent the voltage amplitudes of bus i and bus j,
respectively. θij represents the phase angle difference between bus
i and bus j,Gij, and Bij represent the conductance and admittance
between bus i and bus j, respectively, and NB is a set of power
system buses.

Inequality constraint























PGimin ≤ PGi ≤ PGimax, i ∈ NG

QGimin ≤ QGi ≤ QGimax, i ∈ NG

Timin ≤ Ti ≤ Timax, i ∈ NT

Uimin ≤ Ui ≤ Uimax, i ∈ NB

Plimin ≤ Pli ≤ Plimax, i ∈ Nl

(22)

Where PGimax, PGimin, QGimax, QGimin, respectively represent the
upper and lower limits of the active power of the generator
and the upper and lower limits of the reactive power at bus
i. Timin and Timax, respectively represent the upper and lower
limits of the adjustable ratio of the transformer at bus i, and NT

represents the number of transformers in the system. Uimax and
Uimin, respectively represent the upper and lower limits of the bus
voltage, Plimax and Plimin, respectively represent the upper and
lower limits of the active power of the branch, NG represents the
set of generator buses, and Nl is the set of power lines. Based on
this, the GA is used to calculate the POPF.

Calculation Steps of POPF
This chapter proposes a POPF calculation method that considers
the correlation between PV output and load. The specific
calculation steps are shown in Figure 6.

1. Based on the measured data of PV output and load, an
adaptive diffusion kernel density estimation model that can
reflect the PV output and load distribution characteristics
is proposed.

2. Based on the Copula theory and taking the least Euclidean
distance as index of fitting, the joint probability distribution
model of PV output and load is obtained, and Kendall rank
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correlation coefficient is selected to describe the correlation
between them.

3. The joint probability density distribution is sampled to obtain
N groups of probability distribution samples with correlation.
And then the PV output and load samples of N groups are
obtained by inverse transformation using xi = F−1

1 (ui) and yi
= F−1

2 (vi).
4. N times deterministic optimal power flow calculation is

carried out by GA, and the results of power flow calculation
are counted to obtain the results of POPF calculation.

CASE STUDY

The proposed POPFmethod is tested on the IEEE 30-bus system,
and the specific network structure is shown in Figure 7. The
solid bus is the load bus, and the hollow is the generator bus.
The number of buses in the network is NB = 30, the number of
branches is Nl = 41, and the number of generator buses is NG

= 6. PV power station with diffusion nuclear density probability
distributionmodel is connected to bus 29 (Quan et al., 2019). The
load bus adopts a Gaussian distribution model. The load mean is
the load steady state value of the bus, and the variance of the bus
load is 10%.

POPF Performance Evaluation Considering
Correlation
The corresponding PV output and load data are respectively
connected to buses No. 29 and No. 30, and the Monte Carlo
probability optimal power flow calculation result with a sampling
size of 30,000 times is used as an accurate result to judge the
error of the proposed method. Table 2 gives the results of two
POPF calculations.

According to the comparison, the calculation results of the two
are less error. It is verified that the proposed POPF calculation
method that considers the correlation between PV output and
load has higher accuracy.

Simulation Analysis of POPF
To further analyze the influence of the correlation between
PV output and load on power system POPF calculation, the
simulation is carried out on IEEE 30-bus system with the
measured data of a PV power station and the corresponding
measured data of the load in China. The output probability
density distribution curve of generator No. 3 is shown in
Figure 8. The comparison shows that the POPF calculation
results considering the correlation between PV output and load
are closer to Monte Carlo calculation results, and the accuracy
is higher.

Figures 9, 10 are the system power generation cost probability
density curve and the system network loss probability density
curve, respectively. As shown in Figure 9, the power generation
cost curve that accounts for PV output and load correlation is
closer to the Monte Carlo power generation cost curve. It can be
seen that taking into account the correlation between PV output

TABLE 2 | The results of probabilistic optimal power flow.

Calculation

method

The mean of

bus No. 27

voltage

The standard

deviation of

bus No. 27

voltage

The mean of

No. 2

generator

output

The standard

deviation of No.

2 generator

output

Proposed method 1.0341 0.004979 49.93666 4.956546

Monte Carlo 1.0157 0.005042 49.91201 5.147843

Error 1.811% 1.523% 0.049% 3.716%

FIGURE 7 | The IEEE 30-bus power system.
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FIGURE 8 | Probability density of No. 3 generator output.

FIGURE 9 | Probability density of generation cost.

and load can improve the accuracy of system power generation
cost calculation. It can be seen from Figure 10 that the system
network loss curve considering the correlation between the two is
closer to the Monte Carlo curve. It is proved that considering the
correlation between the two can accurately estimate the network
loss and the system power generation cost of the system and
provide reliable reference information for scheduling.

Figures 11, 12 are the system bus voltage mean curve and
the bus voltage standard deviation curve, respectively. As can
be seen from Figure 11, the three curves almost coincide. This
shows that the correlation between PV output and load has little
influence on the mean value of each bus in the power system.
As shown in Figure 12, the curve that considers the correlation
between PV output and load almost coincided with the Monte
Carlo curve and away from the curve without considering the

FIGURE 10 | Probability density of system loss.

FIGURE 11 | The mean of bus voltages.

correlation. This shows that the correlation between PV output
and load has great influence on the standard deviation of bus
voltage. In addition, as shown in Figure 12, buses 23–30 are
close to the buses with correlation, the standard deviation of
buses 23–30 changes greatly, while the standard deviation of
other buses changes little. This shows that the influence of the
correlation between PV output and load on the operation state of
the system is related to the distance. The closer the other buses
are to the buses with correlation, the stronger the impact on the
operation state is. The reason for this change is that considering
the correlation between PV output and load makes their changes
consistent and then strengthens the mutual influence of the
operation state of the internal buses of the whole system. The
closer the other buses are to the relevant PV and load buses, the
stronger the impact on their operation.
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FIGURE 12 | The standard deviation of bus voltages.

Supplementary Figures 1, 2 given in the supplementary
material is the voltage probability density distribution of buses
12 and 26. The abscissa of the voltage probability density graph
represents the variation range of the bus voltage. Bus 12 is far
away from the buses with correlation, and its voltage range is
1.024–1.028. Bus 26 is close to the buses with correlation, and
its voltage range is 0.962–0.980. It can be seen that the closer the
bus is to the buses with correlation, the larger the variation range
of bus voltage. One of the reasons for this change is that the PV
output has fluctuations, which will cause the fluctuation of the
system bus voltage. The closer other buses are to the PV buses, the
greater the impact on their operation status. The other reason is
that bus 26 is close to the buses with correlation. This change also
verifies that the influence of the correlation between PV output
and load on the system operation state is related to the distance.
The closer other buses are to the relevant buses, the greater the
impact on the operation status.

CONCLUSION

In this paper, a POPF calculation method based on adaptive
diffusion kernel density estimation is proposed. The following
conclusions can be drawn:

1. The traditional Gaussian kernel function is transformed by
linear diffusion, and an adaptive diffusion kernel density
estimation method suitable for arbitrary distributed PV

output is proposed. The adaptive characteristics of linear
diffusion improve the local adaptability of the PV output
estimationmodel, and themodel canmore accurately describe
the uncertainty and volatility of the actual output of the PV
power plant.

2. Based on the Copula theory, the joint probability distribution
model of PV output and load is established by using the
least square Euclidean distance as the criterion. Then, through
the sampling and inverse transformation of the function,
the correlated PV output and load samples are obtained,
which avoids the state space transformation of the correlation
coefficient matrix and reduces the sampling calculation.

3. POPF calculation method that considers the correlation
between PV output and load is proposed. The case study
shows that considering the correlation can improve the
accuracy of the probability optimal power flow calculation
and effectively reduce system power generation costs and bus
voltage deviations. And the closer to the correlation buses, the
higher the influence of the correlation between PV output and
load on the voltage deviation.

DATA AVAILABILITY STATEMENT

The datasets analyzed in this manuscript are not publicly
available. Requests to access the datasets should be directed to
the datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

GL: conceptualization. JB: methodology. WL: software. GL and
JB: validation. WL: formal analysis. FQ and JW: data curation.

FUNDING

This research was financially supported by the Science and
Technology Foundation of SGCC (Research and Application
of Multi-Spatial Scale Variation of Photovoltaic Output
Characteristics Considering Complex Factors such as Cloud and
Floating Dust: NY71-19-013).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fenrg.
2019.00128/full#supplementary-material

REFERENCES

Aien,M., Fotuhi-Firuzabad,M., and Rashidinejad,M. (2014). Probabilistic optimal

power flow in correlated hybrid wind–photovoltaic power systems. IEEE Trans.

Smart Grid 5, 130–138. doi: 10.1109/TSG.2013.2293352

Botev, Z. I., Grotowski, J. F., and Kroese, D. P. (2010). Kernel density

estimation via diffusion. Ann. Statist. Inst. Math. Statist. 5, 2916–2957.

doi: 10.1214/10-AOS799

Chaudhuri, P., and Marron, J. S. (2000). Scale space view of curve estimation. Ann.

Statist. 28, 408–428. doi: 10.1214/aos/1016218224

Chen, Y., Wen, J., and Cheng, S. (2013). Probabilistic load flow method based on

nataf transformation and Latin hypercube sampling. IEEE Trans. Sust. Energy

4, 394–301. doi: 10.1109/TSTE.2012.2222680

Duan, S., Miao, S., Huo, X., Li, L., Han, W., and Yan, K. (2019). Modeling

and dynamic correlation analysis of wind/solar power joint output based on

dynamic Copula. Pow. Syst. Prot. Control 5, 35–42. doi: 10.7667/PSPC180149

Frontiers in Energy Research | www.frontiersin.org 9 November 2019 | Volume 7 | Article 128

https://www.frontiersin.org/articles/10.3389/fenrg.2019.00128/full#supplementary-material
https://doi.org/10.1109/TSG.2013.2293352
https://doi.org/10.1214/10-AOS799
https://doi.org/10.1214/aos/1016218224
https://doi.org/10.1109/TSTE.2012.2222680
https://doi.org/10.7667/PSPC180149
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Li et al. Probabilistic Optimal Power Flow Calculation

Fan, M., Vittal, V., Heydt, G. T., and Ayyanar, R. (2012). Probabilistic load

flow studies for transmission systems with photovoltaic generation using

cumulants. IEEE Trans. Pow. Syst. 27, 2251–2261. doi: 10.1109/TPWRS.2012.21

90533

Guo, X., and Renxi, G., and Bao, H. (2018). Mixed probabilistic and interval

optimal power flow considering uncertain wind power and dispatchable

load. IEEEJ Trans. Electr. Electron. Eng. 13, 246–252. doi: 10.1002/tee.

22520

Kazemdehdashti, A., Mohammad, M., and Seifi, A. R. (2018). The generalized

Cross-Entropy method in probabilistic optimal power flow. IEEE Trans. Pow.

Syst. 33, 5738–5748. doi: 10.1109/TPWRS.2018.2816118

Ke, D., Chung, C. Y., and Sun, Y. (2016). A novel probabilistic optimal

power flow model with uncertain wind power generation described by

customized gaussian mixture model. IEEE Trans. Sust. Energy 7, 200–212.

doi: 10.1109/TSTE.2015.2489201

Li, K., Tai, N., Zhang, S., and Chen, X. (2017). Multi-objective planning method

of distributed generators considering correlation. Autom. Electr. Pow. Syst. 9,

51–57. doi: 10.7500/AEPS20160805001

Lin, W., Yang, Z., Yu, J., Bao, S., and Daii, W. (2019). Toward fast calculation

of probabilistic optimal power flow. IEEE Trans. Pow. Syst. 34, 3286–3288.

doi: 10.1109/TPWRS.2019.2911050

Liu, S., Liu, P. X., Wang, X., and Meng, W. (2017). Effects of correlated

photovoltaic power and load uncertainties on grid-connected microgrid

day-ahead scheduling. IET Gen. Trans. Distrib. 11, 3620–3627.

doi: 10.1049/iet-gtd.2017.0427

Lujano-Rojas, J. M., Dufo-López, R., Bernal-Agustín, J. L., Domínguez-Navarro,

J. A., Catalão, J. P. S. (2018). Probabilistic methodology for estimating

the optimal photovoltaic capacity in distribution systems to avoid power

flow reversals. IET Renew. Pow. Gen. 12, 1045–1064. doi: 10.1049/iet-rpg.

2017.0777

Miao, S., and Xie, K. (2016). A mixture kernel density model for wind speed

probability distribution estimation. Energy Convers. Manage. 126, 1066–1083.

doi: 10.1016/j.enconman.2016.08.077

Morshed, M. J., Hmida, J. B., and Fekih, A. (2018). A probabilistic multi-objective

approach for power flow optimization in hybrid wind-PV-PSE systems. Appl.

Energy 211, 1136–1149. doi: 10.1016/j.apenergy.2017.11.101

Quan, D. M., Pham, D. P., Nguyen, T. T., Tuan, D. A., and Tran, H. T.

(2019). Determination of optimal location and sizing of solar photovoltaic

distribution generation units in radial distribution systems. Energies 12, 1–24.

doi: 10.3390/en12010174

Ren, Z., Wang, K., Li, W., Jin, L., and Dai, Y. (2017). Probabilistic power flow

analysis of power systems incorporating tidal current generation. IEEE Trans.

Sust. Energy 8, 1195–1202. doi: 10.1109/TSTE.2017.2669139

Sadjad, G., and Mahmoud, C. (2019). Data clustering based probabilistic optimal

power flow in power systems. IET Gen. Transm. Distrib. 13, 181–188.

doi: 10.1049/iet-gtd.2018.5832

Ullah, Z., Wang, S., Radosavljević, J., and Lai, J. (2019). A solution to the optimal

power flow problem considering WT and PV generation. IEEE Access 7,

46763–46772. doi: 10.1109/ACCESS.2019.2909561

Wang,M., and Ding, M. (2010). Probabilistic calculation of total transfer capability

including large-scale solar park. Autom. Electr. Pow. Syst. 7, 31–35

Wang, T., and Wang, C., and Li, C. (2018). Probabilistic load flow calculation

based on Copula function and Rosenblatt transformation considering

correlation among input variables. Pow. Syst. Prot. Control 21, 18–24.

doi: 10.7667/PSPC171534

Widen, J., Shepero, M., and Munkhammar, J. (2017). Probabilistic load flow

for power grids with high PV penetrations using Copula-based modeling

of spatially correlated solar irradiance. IEEE J. Photovoltaics 7, 1740–1745.

doi: 10.1109/JPHOTOV.2017.2749004

Wu, W., Wang, K., Han, B., Li, G., Jiang, X., and Crow, M. L. (2015). A versatile

probability model of photovoltaic generation using pair Copula construction.

IEEE Trans. Sust. Energy 6, 1337–1345. doi: 10.1109/TSTE.2015.2434934

Wu, W., Wang, K., and Li, G. (2017). Probabilistic load flow calculation

method based on multiple integral method considering correlation

of photovoltaic generation. Autom. Electr. Pow. Syst. 4, 568–574.

doi: 10.13334/j.0258-8013.pcsee.2015.03.008

Xiao, Q., Shaowu, Z., and Jurado, F. (2018). Probabilistic power flow

computation considering correlated wind speeds. Appl. Energy 231, 677–685.

doi: 10.1016/j.apenergy.2018.09.165

Xie, Z. Q., Ji, T. Y., Li, M. S., and Wu, Q. H. (2018). Quasi-Monte Carlo

based probabilistic optimal power flow considering the correlation of wind

speeds using copula function. IEEE Trans. Pow. Syst. 33, 2239–2247.

doi: 10.1109/TPWRS.2017.2737580

Zhang, N., Kang, C., Singh, C., and Xia, Q. (2016). Copula based dependent

discrete convolution for power system uncertainty analysis. IEEE Trans. Pow.

Syst. 31, 5204–5205. doi: 10.1109/TPWRS.2016.2521328

Zhu, X., and Jin, H. (2018). Probabilistic load flow method considering

correlation of photovoltaic power. Autom. Electr. Pow. Syst. 5, 34–40.

doi: 10.7500/AEPS20170614013

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

The handling editor declared a past co-authorship with one of the authors GL.

Copyright © 2019 Li, Lu, Bian, Qin andWu. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Energy Research | www.frontiersin.org 10 November 2019 | Volume 7 | Article 128

https://doi.org/10.1109/TPWRS.2012.2190533
https://doi.org/10.1002/tee.22520
https://doi.org/10.1109/TPWRS.2018.2816118
https://doi.org/10.1109/TSTE.2015.2489201
https://doi.org/10.7500/AEPS20160805001
https://doi.org/10.1109/TPWRS.2019.2911050
https://doi.org/10.1049/iet-gtd.2017.0427
https://doi.org/10.1049/iet-rpg.2017.0777
https://doi.org/10.1016/j.enconman.2016.08.077
https://doi.org/10.1016/j.apenergy.2017.11.101
https://doi.org/10.3390/en12010174
https://doi.org/10.1109/TSTE.2017.2669139
https://doi.org/10.1049/iet-gtd.2018.5832
https://doi.org/10.1109/ACCESS.2019.2909561
https://doi.org/10.7667/PSPC171534
https://doi.org/10.1109/JPHOTOV.2017.2749004
https://doi.org/10.1109/TSTE.2015.2434934
https://doi.org/10.13334/j.0258-8013.pcsee.2015.03.008
https://doi.org/10.1016/j.apenergy.2018.09.165
https://doi.org/10.1109/TPWRS.2017.2737580
https://doi.org/10.1109/TPWRS.2016.2521328
https://doi.org/10.7500/AEPS20170614013
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Probabilistic Optimal Power Flow Calculation Method Based on Adaptive Diffusion Kernel Density Estimation
	Introduction
	Probabilistic Model OF PV Output
	Non-parametric Kernel Density Estimation Model
	Fourier Heat Equation
	Adaptive Diffusion Kernel Density Estimation Model

	Joint Probability Distribution Model
	Copula Theory
	Sampling Method of Relevant PV Output and Load

	POPF Considering The Correlation OF PV Output and Load
	POPF Model
	Calculation Steps of POPF

	Case Study
	POPF Performance Evaluation Considering Correlation
	Simulation Analysis of POPF

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


