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The China’s crude oil futures market (INE market), as it was first launched in late

March of 2018, quickly draws much attention from global investors. In reference to

the high frequency data, this research explores how well this new product reacts

efficiently to international influences and to what extent it can be integrated with

traditional benchmarks, such as WTI and Brent. The multivariate GARCH models are

employed to capture the cross-market time-varying correlations, return and volatility

spillovers, which aremodified by incorporating the detected structural breaks in the return

dynamics to improve the accuracy of model estimates. Empirical results indicate a strong

integration of INE market with these international benchmarks. A high but time-varying

correlation is observed with recurring highs around 0.7. Spillover effects have

included significant bidirectional return and volatility spillovers between the INE and the

international benchmark markets. Secondly, INE market appears to interact better with

the Brent market than with the WTI market. Thirdly, structural breaks can influence

correlations, the portfolio weights and hedge ratios. Lastly, the correlation between

crude oil futures markets decreases significantly during the periods when structural

breaks caused by economic and/or geopolitical events are identified. These findings

have important implications in policy makings and economic decisions on portfolio

management and hedging strategies.

Keywords: crude oil, integration, structural breaks, dynamic correlation, volatility transmission

INTRODUCTION

Crude oil is not only a crucial source of energy resource for economic growth and national security,
but also one of the most valuable assets traded in the international commodity markets (Ding et al.,
2017; Ma et al., 2019; Xu et al., 2019). In retrospect, reference benchmarks for crude oil prices have
been dominated by the West Texas Intermediate (WTI) and the European Brent markets (Mensi
et al., 2014). The lack of an effective benchmark market in Asia is responsible for the well-known
“Asian premium” (AlKathiri et al., 2017; Shen et al., 2018). Although China has become the largest
oil importer and the seventh major producer of crude oil in the world1, the Chinese crude oil
market can only passively follow the pricing mechanisms of these international markets and cannot
reliably reflect its own supply and demand information in domestic markets (Shi and Sun, 2017).

1https://www.eia.gov/todayinenergy/detail.php?id=34812 (accessed September 15, 2019).
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Consequently, the RMB-denominated crude oil futures of China
was launched in the Shanghai International Energy Exchange
(INE) in late March of 2018. As the first international futures
product induced in China, the INE futures is traded to
overseas investors and has attracted much attention by overseas
institutions and investors. The success of this international
product will depend on how well it will integrate with existing
international crude oil futures markets. The present paper aims
to model the Chinese newly introduced crude oil futures under
global influence and assess the extent to which this product
integrates with international benchmark markets, namely WTI
and Brent.

The extent to which the Chinese crude oil futures market
links to the international markets has great implications for
the domestic energy security and overseas investors. China has
actually surpassed the U.S. to become the largest net importer
of crude oil in the world (EIA, 2018). The country’s oil import
dependency is expected to rise (Wang and Wei, 2016; Wang
et al., 2017; Cheng et al., 2019), implying that China’s oil market
and oil security may be vulnerable to fluctuations in oil prices
from the international oil markets. If the crude oil futures market
in China is highly integrated into the international benchmark
markets, the expected returns of China’s crude oil futures will
mainly be determined by the world’s undiversifiable risk which
further deteriorate energy security concerns over the country.
Meanwhile, the conditions of oil demand and supply in China
will likely substantially influence the international oil markets
(Li and Leung, 2011). Given other things remaining unchanged,
China will be more influential as the degree of integration into
the international markets increases. If, on the contrary, the
crude oil futures market in China is only weakly integrated
into the world markets, international economic conditions will
have less influence on the Chinese market. If the returns of the
Chinese market do not move together with those of international
markets, then global investors may benefit from the reduction
of diversifiable risk (i.e., portfolio risk) by diversification that
includes the Chinese crude oil futures. Moreover, the level of
integration could insightfully reflect the position and power of
China’s newly introduced crude oil futures market in the global
oil market.

Furthermore, the success of China’s crude oil futures has
important implications for introduction of additional advanced
financial derivative products. International institutions are
interested in such opportunities in China’s opening financial
markets (Shi et al., 2018). This is a critical issue for investors
to realize potential gains from diversifying their international
portfolio, and for policy makers to make proper market policies
and deal with contagion risks as a result of international shock
transmissions (Jouini, 2015). In the foreseeable future, Shanghai
crude oil futures are likely to remain as the only financial
product on which investors can hedge against or speculate on
China’s crude oil market. The interactions between the Chinese
and the international crude oil futures markets may directly
influence the investment decisions and profitability of those
market participants who heavily rely on the signs and directions
of information flow.

Research on the integration among oil markets in the world
dates back to the 1980s, Adelman (1984) argued that the oil
markets around the world were highly integrated and thus there
is a global market for crude oil like “one great pool.” This
globalization hypothesis indicates that changes in oil prices in
a regional oil market will spread to the other markets, which
has been verified in subsequent empirical studies (see Rodriguez
and Williams, 1993; Hammoudeh et al., 2008; Fattouh, 2010;
Ji and Fan, 2016; Kuck and Schweikert, 2017; Klein, 2018,
among others). Although there is no unanimously agreeable
definition of market integration, following Bhar and Nikolova
(2009), markets are considered to be integrated when assets
in different locations or markets but with identical risk have
the same expected return. Related to this definition, this paper
focuses on two types of integration: the commonality of oil
return movements over time among different markets and cross-
market information transmission that measures through return
and volatility spillovers.

In this paper, using intraday 5min data for April 26, 2018,
to July 23, 2019, we investigate the level of integration of the
China’s crude oil futures market with international benchmark
markets by examining their time-varying correlations, return and
volatility spillovers, with the VAR-DCC-GARCH and the VAR-
BEKK-GARCH models. The DCC model measures the variation
of the conditional correlations over time. The BEKK model
captures the effects of past innovations and variance on the
current conditional variance as well as the cross-market shocks
and volatility transmission. The information obtained from these
models can be used to computing optimal asset allocation and
developing global hedging policies. In addition, the Bai and
Perron (2003) test is applied to detect structural breaks in the
crude oil futures return series, the detected breaks are then
incorporated into the VAR-GARCH-type models to improve
the accuracy of model estimates and examine the influence of
structural breaks on cross-market relationships.

In this way, the contributions of our study are 3-fold. First,
to the best of our knowledge, it is the first study to explore
time-varying correlation and information transmission between
China’s newly crude oil futures market and the international
markets. Although some stylized facts of the Chinese new crude
oil futures have been reported in a pioneer work by Ji and Zhang
(2018), they did not emphasize the cross-market relationships.
Our empirical results reveal a strong evidence for integration of
China’s crude oil futures market with international benchmarks.
For each pair, we find a high but time-varying correlations
with recurring highs around 0.7 within the sample period. In
particular, the INEmarket integrates better with the Brent market
than with the WTI market. Although international benchmark
markets play a dominate role in cross-market information
transmission, the shocks of the INE market will have an impact
on the volatility of the international markets.

Second, unlike previous studies using monthly data (Weiner,
1991; Rodriguez and Williams, 1993), weekly data (Reboredo,
2011; Liu et al., 2013; Ji and Fan, 2016; Kuck and Schweikert,
2017), or daily data (Zhang and Wang, 2014; Chan and
Woo, 2015; Jiang et al., 2017; Scheitrum et al., 2018), we
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employ intraday data in examining correlation and information
transmission among crude oil futures markets. In the financial
market, the discrete collection of data will inevitably result in
a loss of information. Since the crude oil market has become
an important part of the global financial market, it has strong
liquidity and can reflect more new information according to
price dynamics within minutes (Liu and Wan, 2012; Elder
et al., 2013; Wang et al., 2019). Studies based on low-frequency
data cannot incorporate information implied in intraday price
movements (Phan et al., 2016). Moreover, the economic benefits
of using intraday data in modeling volatility and analyzing cross-
market relationships among different financial markets have been
explained in the literature (Wu et al., 2005; Rittler, 2012; Yang
et al., 2012; Huo and Ahmed, 2018).

Third, we will detect structural breaks in crude oil futures
price movements and incorporate them into the analytical
procedures to improve the accuracy of volatility estimates. It has
been acknowledged that certain economic and/or geopolitical
events may cause structural changes in crude oil price dynamics
(Zhang, 2008; Broadstock et al., 2016; Liu et al., 2019).
The persistence of the volatility may be overestimated when
the structural breaks are ignored (Lamoureux and Lastrapes,
1990). Several studies give further theoretical background and
empirical evidences, documenting that structural breaks should
be considered when modeling financial market volatility (see
Mikosch and Stărică, 2004; Charles and Darné, 2014; Ewing and
Malik, 2017, among others). In this study, structural breaks are
found to influence the performance of the modeling estimates,
and further have an impact on cross-market correlations, the
portfolio weights and hedge ratios.

The remainder of this paper is structured as follows.
The econometric methodology in this paper is explained in
section related literature. Then section Methodology reviews
related literature. Section Data Description describes the data
and reports preliminary analyses. The empirical results are
presented in section Empirical Results and section Discussion
and Economic Significance of the Results includes the discussion
and economic significance of the results. Section Conclusions
and Policy Implications provides the concluding remarks and
policy implications.

RELATED LITERATURE

Oil Market Integration
The question whether different crude oil markets located in
various countries or regions are integrated has long been focused
on in energy related literature. This can date back to the
1980s, when Adelman (1984) argued that the oil market around
the world were highly integrated and thus there is a global
market for crude oil like “one great pool.” By contrast, Weiner
(1991) supports the regionalization hypothesis across oil markets,
claiming that the movements of oil prices depend on the local
factors, e.g., government’s energy policy and regional shocks and
thus oil prices vary in an independent way.

More modern studies provide empirical evidence in favor of
the assumption articulated by Adelman (1984) that oil markets
in the world behave in a similar way and can be seen as one

common market. “One great pool” hypothesis is also supported
by Rodriguez andWilliams (1993) and Hammoudeh et al. (2008).
Using weekly data of crude oil spot prices for 24 major producers
and consumers around the world, Ji and Fan (2016) further verify
that the global crude oil markets are integrated. In a recent study,
Kuck and Schweikert (2017) investigate long-term equilibrium
relationships across five major crude oil spot prices, namely
WTI, Brent, Bonny Light, Dubai, and Tapis, from 1987 to 2015.
They find strong evidences to support that the crude oil markets
are globally integrated, and the relationship between crude oil
markets changes dynamically over time. Klein (2018) surveys
the interconnectedness of WTI and Brent markets on different
resolutions of price movements. Long-term movements of WTI
and Brent confirm “one-great-pool” hypothesis.

The increasing degree of integration of global crude oil futures
markets enable information transmission across markets that can
be captured by return and variance spillovers. Lin and Tamvakis
(2001) investigate variance spillovers across crude oil futures
in New York Mercantile Exchange and London’s International
Petroleum Exchange, the authors find the existence of substantial
spillover effects when both markets are traded simultaneously.
Similarly, Kang et al. (2011) explore information transmission
and volatility spillover between WTI and Brent market. Chang
et al. (2010) reveal variance spillovers and asymmetric effects
on conditional volatilities for most of the world oil markets.
Magkonis and Tsouknidis (2017) find significant spillover effects
across commodities based on petroleum and among their spot-
future markets variances. As China has become the leading
importer of crude oil in the world, its oil import dependence
continues to rise. The interaction between Chinese and the
international crude oil markets has recently attracted more
attention in the literature. Li and Leung (2011) and Song and
Li (2015) show that China’s oil market is integrated into the
international oil market. Liu et al. (2013) investigate volatility
spillovers between China’s crude oil spot price and four major
crude oil spot prices in the world market from 2001 to 2011
with weekly data, their empirical results provide evidence for
unidirectional risk spillover from the international benchmark
markets to the oil market in China. The authors attribute the
dominance of international benchmark markets over domestic
market to the absence of China’s crude oil futures market.

Intraday Periodicity
The ubiquitous intraday periodicity in the return volatility
in financial markets may exert a significant influence in the
statistical features of high-frequency returns (Andersen and
Bollerslev, 1997). This issue can be addressed by standardizing
the return series through the average absolute returns as well
as the flexible Fourier form (FFF) first proposed by Andersen
and Bollerslev (1997)2. Indeed, modern research draws attention
to employ the framework combining high frequency data
and GARCH-type models to analyze volatility spillovers across
different financial markets (see Rittler, 2012; Yang et al., 2012;
Nishimura et al., 2015; Huo and Ahmed, 2018, among others).

2For more details on comparison between the two seasonal adjustment methods,

see Martens et al. (2002).
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In a pioneer work, Ji and Zhang (2018) find that intraday
periodicity indeed exists in high-frequency returns of China’s
crude oil futures, which is described as a multi-U-shape pattern.
Thus, it is necessary to take account of intraday periodicity in
order to reveal the complex intraday return dynamics across oil
futures markets.

Structural Breaks
Lamoureux and Lastrapes (1990) prove that, the volatility
persistence obtained from the standard GARCH model may
be overestimated if the structural breaks are ignored. Mikosch
and Stărică (2004) provide further theoretical explanations that
structural breaks should be considered when modeling financial
market volatility, which has been verified by following empirical
research (see Stărică and Granger, 2005; Charles and Darné,
2014; Ewing and Malik, 2017, among others). In recent studies,
Lee et al. (2010), Ewing and Malik (2017), and Liu et al. (2019)
reveal that certain economic and/or geopolitical eventsmay cause
structural changes in crude oil dynamics. Although some studies
have considered structural changes in analyzing oil markets, these
studies use structural breaks only as the basis for dividing the
sample periods; they do not incorporate structural breaks into
the used empirical models (Gülen, 1999; Chen et al., 2015; Ji and
Fan, 2015). One exception is Kang et al. (2011), who examine
the volatility spillover between WTI and Brent by using a bi-
variate GARCH model with and without dummies accounting
for structural changes. The authors conclude that the directions
of information flows and volatility spillovers across crude oil
markets may be distorted if structural changes are ignored.
In the GARCH-type model, the conditional variance relies on
the estimates of conditional mean process. Unlike Kang et al.
(2011) considering structural changes in the conditional variance
estimates, in a recent study, Tule et al. (2017) endogenously and
sequentially detect structural breaks in return series with Bai and
Perron (2003) test and modify the VARMA-AGARCH model by
incorporating break points into conditional mean equation, to
investigate information transmission between world oil markets
and the sovereign bond market of Nigerian. Their results
indicate that volatility spillover between markets is sensitive to
structural breaks.

METHODOLOGY

The purpose of this study is to examine the time-varying
correlations and spillover effects between China’s crude oil
futures market and international benchmark markets. The
research framework includes (a) detection of structural breaks
in the crude oil futures return series using the Bai and Perron
(2003) test, (b) inclusion of structural breaks as dummy variables
into the mean equation of the VAR model to determine the
cross-market return spillovers, and (c) use of DCC-GARCH
and BEKK-GARCHmodels to calculate the dynamic conditional
correlations and volatility spillovers between the crude oil futures
markets. Although the VAR model can reasonably estimate
return spillovers, incorporating structure breaks into the VAR
model can help improve the estimates of volatility.

Structural Break Test
Ignoring structural breaks in the financial time series may
lead to bias in the estimation of the GARCH model due to
overestimates of volatility persistence (Lamoureux and Lastrapes,
1990; Mikosch and Stărică, 2004; Charles and Darné, 2014;
Tule et al., 2017). Several methods are available to detect
structural breakpoints in financial time series, such as the
Chow test (Chow, 1960), the cumulative sum (CUSUM) test
(Brown et al., 1975), and the Bai and Perron (2003) test.
However, the Chow test requires a priori knowledge of the exact
data points of the structural breaks (McLeod and Haughton,
2018; Taghizadeh-Hesary et al., 2019). The CUSUM test cannot
provide information on the number of breakpoints and their
corresponding dates (Mensi et al., 2016). Therefore, the Bai
and Perron (2003) test is employed in this paper. This test
can detect multiple breakpoints in a time series based on least
squares techniques and endogenously locate the date on which
a breakpoint occurred. If the number of structural breakpoints
detected is m, the full sample period can be divided into m +

1 regimes. This test can be expressed by the following linear
regression equation:

yt = δjzt + γ ϕt + ǫt for t = Tj−1 + 1, · · · ,Tj,

j = 1, · · · , m+ 1 (1)

In Equation (1), yt denotes the dependent variable at time t; zt
is a constant term; ϕt is the independent variable; δj and γ are
the corresponding coefficients; and ǫt is the disturbance at time
t. T1, · · · , Tm are indices that represent the break points, which
by assumption are unknown. In this study, we use the sequential
test developed by Bai and Perron (2003).

VAR Model for the Conditional Mean
Specification
The VAR model can be used to forecast interconnected
time series systems, analyze the dynamic shocks of random
disturbances on variable systems, and assess the impact of
economic shocks or events on economic variables (Zhang and
Sun, 2016). In this study, we use the VAR model to examine the
return spillover between crude oil futures markets. We choose
the VAR (1) model based on the principle of minimum Akaike
information criterion (AIC) values. The bivariate VAR model
with structural break dummy variables is shown in Equations (2)
and (3).

rct = µc + acrct−1 + bcr
g
t−1 + d1D1 + · · · + dpDp + εct (2)

r
g
t = µg + agr

g
t−1 + bgrct−1 + e1D1 + · · · + eqDq + ε

g
t (3)

where rct and r
g
t are the logarithmic returns of China’s crude oil

futures price (INE) and the international crude oil futures prices

(WTI and Brent), respectively, calculated by rt = 100∗ ln
(

Pt
Pt−1

)

;

Pt is the closing price of each crude oil futures market at time
t; µc and µg are the conditional mean series; and ac and ag

can measure the return spillover of each market on their own,
whereas bc and bg measure the return spillover across markets.
εct and ε

g
t are the residual series of the VAR (1) model. p and
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q, respectively, represent the number of structural breakpoints
in INE return and WTI (Brent) return series; Di(i = p, q)
denote the dummy variables corresponding to structural breaks,
in line with Tule et al. (2017), and Di = 1 if t ≥ break dates;
otherwise, Di = 0.

MGARCH Models for the Conditional
Variance Specification
Twomultivariate GARCH-type models are employed to examine
the dynamic correlation and volatility spillovers between
different crude oil futures markets. The first is the DCC-GARCH
model proposed by Engle (2002), which not only measures the
volatility persistence of each market but also flexibly models the
variance-covariance matrix to describe the time-varying linkages
between markets3. Although the rolling window approach can
estimate the time-varying correlation coefficients, the time-
varying results can be affected by the selection of the window
length to allow a trade-off between noisy and smooth data
for small and large window widths, respectively. The DCC-
GARCH model can address the disturbance of window length
selection (Ji and Fan, 2016). The second is a full BEKK-GARCH
model defined in Engle and Kroner (1995), which measures the
volatility spillover effects of the two markets on their own and
across markets.

(1) DCC-GARCHmodel
The DCC-GARCH model is estimated in two stages. The first

is to perform a series of univariate GARCH estimates, and the
second is to compute the dynamic conditional correlations based
on the first stage.

First, a typical univariate GARCH (1,1) model can be
described as follows:

εt |�t−1 ∼ N (0,Ht) , εt =

[

εct
ε
g
t

]

,Ht =

[

hcct h
cg
t

h
gc
t h

gg
t

]

(4)

ht = ω + αε2t−1 + βht−1 (5)

where εt is a 2× 1 vector of residuals obtained from the VAR (1)
model, and �t−1 is the information set available up to time t− 1.
Ht is the conditional variance-covariance matrix of residuals. h

cg
t

and h
gc
t are the covariance between the INE and WTI (Brent)

returns. hcct and h
gg
t are derived from the univariate GARCH

process and are conditional variances of the INE andWTI (Brent)
returns series. ω > 0, α ≥ 0, and β ≥ 0 ensure the positive
definite of the conditional variance (ht). ω is a constant term,
while the sum of α and β measures the volatility persistence of
a given shock.

Second, DCC coefficients for the two markets are estimated.
The conditional variance-covariance matrix of the residuals can
be described as follows:

Ht = DtRtDt (6)

Dt = diag

(

√

hcct ,

√

h
gg
t

)

(6a)

3We leave the application of fractionally integrated specifications allowing for long

memory in the variance equation (see Conrad et al., 2011) for future research.

Rt = diag (Qt)
− 1

2 Qtdiag (Qt)
− 1

2 (6b)

Qt = (1− θ1 − θ2)Qt + θ1
(

zt−1z
′
t−1

)

+ θ2Qt−1 (6c)

zt =
(

εct , ε
g
t

)

′ (6d)

where Rt is the dynamic conditional correlation (DCC)
coefficient matrix; Dt is a 2 × 2 diagonal matrix of the
conditional standard deviation of the residuals; Qt is the 2 × 2
conditional variance-covariance matrix, with its unconditional

variance-covariance matrix Qt ; and zt is a 2 × 1 standardized
residual matrix. θ1 and θ2 denote the short-term and long-term
persistence of shocks to the DCC, respectively. θ1 and θ2 are both
non-negative and satisfy θ1 + θ2 < 1.

The parameters of the DCC-GARCH model are estimated
using the quasi-maximum likelihood method, where the
conditional distribution of εt is assumed to follow a joint
Gaussian log-likelihood function for a sample of T observations
and k = 2 in a bivariate model, as in Equation (7).

Log Likelihood = −
1

2

∑T

t=1

[

k log (2π) + 2 log |Dt| + log |Rt|

+ε′tR
−1
t εt

]

(7)

(2) BEKK-GARCHmodel
Note that different specifications of Ht will lead to different

multivariate GARCHmodels. Engle and Kroner (1995) introduce
the BEKK representation of the multivariate GARCH models by
specifying the positive definite covariancematrix. Specifically, the
bivariate full BEKK-GARCH for INE and WTI (Brent) returns
takes the following form.

Ht = CC′ + A′εt−1ε
′
t−1A+ B′Ht−1B (8)

C =

[

ccc 0
ccg cgg

]

,A =

[

acc acg

agc agg

]

, B =

[

bcc bcg

bgc bgg

]

(9)

where C is a 2 × 2 lower triangular matrix of constants, and C′

is a transposed matrix of C. acg and bcg capture short-term and
long-term volatility spillover from INE to WTI (Brent) returns,
respectively; agc and bgc capture short-term and long-term
volatility spillover fromWTI (Brent) to INE returns, respectively.
acc and agg capture the impacts of past shocks of INE to WTI
(Brent) returns on their own current volatility, respectively; bcc

and bgg capture the impacts of past volatility of INE to WTI
(Brent) returns on their own current volatility, respectively.

Similarly, the parameters of the BEKK-GARCH model
are estimated by the quasi-maximum likelihood method in
Equation (10):

Log Likelihood = −
1

2

∑T

t=1

[

k log (2π) + ln |Ht| + εt
′H−1

t εt
]

(10)

DATA DESCRIPTION

Data
In financial markets, sampling frequency has an important
impact on the estimation of volatility. Several studies suggest
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FIGURE 1 | INE, WTI, and Brent trading sessions.

FIGURE 2 | INE, WTI, and Brent price series.

that the 5-min interval is short enough that most of the
volatility information in a day is guaranteed, and long enough
that the confounding effects from market microstructure noise
are not overwhelming (Andersen, 2000; Gong and Lin, 2018).
Following the works of Liu and Wan (2012), Rosa (2014), and
Wen et al. (2016), we choose a 5-min sampling frequency.
For China’s crude oil futures market, we include prices for the
nearby month contract on INE. For the international benchmark
markets, we include prices for the nearby month contract on
the New York Mercantile Exchange (NYMEX) and the London
Intercontinental Exchange (ICE). The 5min high-frequency data
were collected from Bloomberg and cover the period from
March 26, 2018, to July 23, 2019. Price records of the INE
crude oil futures in the first month of futures trading (i.e.,
from March 26, 2018, to April 25, 2018) were excluded from
the sample because this period is regarded as the learning
stage where the market is not stable (Hou and Li, 2016). To
facilitate data screening, we convert the trading hours of WTI
and Brent crude oil futures to Beijing time for a typical day (see

Figure 1). Additionally, INE crude oil futures priced in RMB
(yuan) are converted into US dollars. After removing periods
with either a shortened trading session or too few transactions,
we obtain 20,701 5min high-frequency observations. From the
econometric point of view, 5 months of intraday 5min data (a
total of 20,701 observations) are long enough to yield meaningful
estimation results without a serious small sample bias issue
(Yang et al., 2012; Huo and Ahmed, 2018).

Figure 2 shows the trend of INE, WTI and Brent crude
oil futures prices, in which the prices of the three crude oil
futures markets tend to move similarly. This implies that crude
oil futures prices are largely driven by common fundamental
factors, such as the conditions of supply and demand, geopolitics,
economic growth and financial markets (Ji and Fan, 2016; Zhang
et al., 2019). The common trend for the price dynamics of these
crude oil futures markets can initially indicate that there may
be shock and volatility correlations between markets; hence,
multivariate methods are needed to further reveal the correlation
and spillover effects between markets.
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FIGURE 3 | Intraday average absolute returns at 5min intervals during a trading day. (A) INE, (B) WTI, (C) Brent. The absolute values of original 5min returns are

averaged across days over the entire sample period. There are 112 such values per day.

FIGURE 4 | Autocorrelation coefficients of intraday absolute returns. Autocorrelation coefficients of the absolute values of original 5min returns are displayed by the

upper figure and those of the filtered values by the lower figure. The horizontal axis measures lags up to 560 (5 days times 112 per day).

Removal of Intraday Periodicity
A well-known stylized fact about the intraday dynamic
characteristics of many financial markets is that return volatility
follows aU-shaped pattern (Tse, 1999). Figure 3 plots the average

absolute returns, fk = 1
T

∑T
t=1

∣

∣rt,k
∣

∣, t = 1, · · · ,T and k =

1, · · · , K, where rt,k denotes the percentage returns for each
crude oil futures at the end of the kth interval at day t. T is the
total number of trading days and K is the number of equidistant
intervals during a trading day. As evident from Figure 3, the
usual U-shaped patterns in return volatility of all crude oil futures
are observed. Taking the INE crude oil futures as an example,
significantly higher return volatility can be observed in each
starting period of morning hours (9:00–11:30), afternoon hours
(13:30–15:00), and night trading sessions (21:00–2:30). These

results parallel the study of Ji and Zhang (2018), they reveal that
intraday periodicity indeed exists in high-frequency returns of
China’s crude oil futures and it can be described as a multi-U-
shaped pattern.

Figure 4 presents the pattern of the autocorrelation of
absolute crude oil futures returns at 5min intervals for five
consecutive days, that is a lag of 560 5min intervals. The sample
autocorrelations exhibit a declining U-shaped pattern, though
somewhat distorted, across each day. As shown, each short-term
cycle of the autocorrelations is spaced a day (i.e., 112 5-min
intervals) apart. The same periodicity pattern is observed for
the following days. Hence, one urgent problem in using high-
frequency data is that such ubiquitous intraday periodicity in
the return volatility in financial markets may have a significant
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TABLE 1 | Statistical properties of 5min filtered returns.

Variables INE returns WTI returns Brent returns

Mean 0.0017 0.0053 0.0070

Standard deviation 2.2492 1.7620 1.7404

Skewness 1.7131 1.6522 2.1941

Kurtosis 200.1113 130.9842 142.8540

Jarque-Bera 3.4547E+07*** 1.4806E+07*** 1.7617E+07***

Q (10) 1260.0240*** 91.724*** 90.303***

Q2 (10) 9137.7050*** 3465.7010*** 4121.7880***

ADF −122.4840*** −103.5710*** −104.5520***

PP −186.0730*** −140.0410*** −142.3940***

KPSS 0.0874 0.0654 0.0720

ARCH-LM test 5686.3500*** 2562.0600*** 3106.3720***

The Jarque-Bera tests for normal distribution. The Ljung-Box Q2 (10) statistic checks for

the presence of serial correlation in squared returns up to the 10th order. The ARCH-

LM test refers to the Engle (1982) test for conditional heteroscedasticity. The asterisks ***

denote the rejection of the null hypothesis at the 1% significance levels.

impact on the dynamic features of high-frequency returns; Only
taking account of intraday periodicity is it possible to reveal
the complex intraday return dynamics across financial markets
(Andersen and Bollerslev, 1997).

However, there are several ways to address the issue for the
intraday periodicity (see e.g., Martens et al., 2002). Following
Conrad et al. (2012), we employ a simple but very effective
method is to remove the intraday periodicity by standardizing
rt,k according to the following rule:

Rt,k =
rt,k

fk
.

The standardization simply scales each return rt,k by the average
absolute return of the interval k. Figure 4 displays the effect
of filtering by depicting the sample autocorrelation function
of

∣

∣Rt,k
∣

∣ for five consecutive days. As shown, the recurring
intraday periodical patterns indeed disappear, implying that the
filtering method is quite effective in removing the intraday
periodic pattern.

The above results indicate that the clear intraday periodicity
has a significant impact on the autocorrelation patterns of
intraday returns. Thus, distortion in the GARCH modeling of
the high-frequency return volatility is likely to occur when the
intraday periodicity is ignored (Andersen and Bollerslev, 1997).

Descriptive Statistics for Filtered Data
Table 1 demonstrates the descriptive statistics of filtered returns
on the different crude oil futures prices under investigation. The
INE return is more volatile than the WTI and Brent return,
as supported by their corresponding standard deviations. All
skewness coefficients are significantly different from 0, and the
kurtosis coefficients are higher than 3, implying that each return
series has a leptokurtic distribution with asymmetric tails. The
Jarque-Bera test provides further evidence that the data do not
satisfy the normality assumption. The Ljung-Box Q and Ljung-
Box Q2 statistics confirm the presence of serial autocorrelations

TABLE 2 | Unconditional correlations among crude oil futures returns.

INE returns WTI returns Brent returns

INE returns 1.0000

WTI returns 0.4908*** 1.0000

Brent returns 0.5109*** 0.8961*** 1.0000

The asterisks *** denote the rejection of the null hypothesis at the 1% significance level.

in both returns and squared returns series. Augmented Dickey-
Fuller (ADF) (Dickey and Fuller, 1979), Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) (Kwiatkowski et al., 1992) and Phillips-
Perron (PP) (Phillips and Perron, 1988) unit root tests are
employed in this paper. The results suggest that all return series
are stationary at the 1% significance level. Finally, the results
of the ARCH-LM test (Engle, 1982) provide evidence of the
ARCH effect for these return series, which leads us to employ the
GARCH-type models to investigate the dynamic correlation and
volatility spillovers among markets.

Next, we take a glance at unconditional correlations among
returns of these crude oil futures, as shown in Table 2. It can be
found that the INE market is positively correlated with WTI and
Brent markets, indicating that the trends of different oil futures
markets are relatively consistent on the whole. Moreover, the INE
market is more correlated with the Brent market than with the
WTI market.

EMPIRICAL RESULTS

In this section, we present the results of structural breakpoints
detected in the crude oil futures return series using the Bai and
Perron (2003) test as well as the estimates of dynamic conditional
correlations and volatility spillovers between markets without
and with structural breaks.

Structural Break Tests: Bai and Perron
(2003)
The results of Bai and Perron (2003) tests for structural break,
including the number of breakpoints and their corresponding
dates, are collected in Table 3. The Bai and Perron (2003) test
determines five structural breaks for each of the INE, WTI,
and Brent returns. One interesting finding is that the dates of
the detected structural breakpoints are very close, indicating
a timely flow of information among the crude oil futures
markets. Moreover, the break dates coincide with economic
events, geopolitics and energy policies that have great impacts on
the supply and demand of crude oil. The first structural break
in the crudes occurred in June 2018 may be attributed to rising
tensions between U.S. and Iran and surprise drop in U.S. crude
stocks; these factors add to fears of a deepening conflict and
potential disruption to oil supplies4. The second structural break
occurred in October 2018 is related to financial markets and
economic conditions. More specifically, during this period, the

4https://www.nytimes.com/2018/07/04/business/energy-environment/oil-prices-

opec.html (accessed October 31, 2019).
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TABLE 3 | Results of structural break tests and related events.

Series Breakpoints Locations Break dates (Beijing) Related events

INE returns 5 4,549 2018/06/30 02:15 Rising tensions between U.S. and Iran and surprise drop in U.S. crude stocks.

8,136 2018/10/17 22:05 Global stock market turmoil and weak demand.

11,324 2018/12/19 21:25 OPEC’s oil production cuts and geopolitics in the Middle East.

14,428 2019/03/19 23:40 Fed keeps interest rates unchanged.

17,536 2019/05/25 00:50 Global trade uncertainty and fears of a global economic downturn.

WTI returns 5 3,676 2018/06/19 22:40 Rising tensions between U.S. and Iran and surprise drop in U.S. crude stocks.

8,126 2018/10/10 00:55 Global stock market turmoil and weak demand.

11,303 2018/12/19 10:00 OPEC’s oil production cuts and geopolitics in the Middle East.

14,483 2019/03/21 09:40 Fed keeps interest rates unchanged.

17,595 2019/05/31 23:25 Global trade uncertainty and fears of a global economic downturn.

Brent returns 5 3,968 2018/06/22 22:25 Rising tensions between U.S. and Iran and surprise drop in U.S. crude stocks.

8,126 2018/10/10 00:55 Global stock market turmoil and weak demand.

11,303 2018/12/19 10:00 OPEC’s oil production cuts and geopolitics in the Middle East.

14,409 2019/03/19 21:50 Fed keeps interest rates unchanged.

17,550 2019/05/28 11:00 Global trade uncertainty and fears of a global economic downturn.

global stock markets suffer worst losing streak for the last 5 years
and economic data weakens demand outlook5, as Zhang (2017)
and Zhang and Wang (2019) argue that there is a significant
risk transmission between oil market and stock market. Thus,
the fear sentiment in financial markets quickly spreads to the
oil market, leading to a sharp decline in crude oil prices. The
third structural break occurred in December 2018 is caused by
OPEC’s oil production cuts and geopolitics in the Middle East
threatened to hurt oil supply6. As a result, these three crude oil
markets prices rise simultaneously. The fourth structural break
occurred in March 2019 is related to the announcement that
Fed keeps interest rates unchanged, this economic policy plays
a role in supporting oil prices. The last structural break occurred
in May 2019 can be attributed to global trade uncertainty and
fears of a global economic downturn, especially the trade conflict
between the two major economies, the US and China, which
brings more uncertainty to the global trade7. The trade war
environment pushes expectations for global growth to lower
levels, thus pressing oil price movements. Consequently, INE
crude falls by $12, or 16% within 10 days, WTI crude and Brent
crude fall by $7 (12%) and $8 (12%), respectively. This decline is
the biggest drop since December 2018.

Dynamic Conditional Correlations Without
and With Structural Breaks
We estimate the dynamic conditional correlation coefficients
between China’s crude oil futures market and the international
benchmark markets using a bivariate VAR-DCC-GARCH model
without and with dummy variables accounting for structural
breaks. The results are compiled as Table 4. In this subsection, we

5https://edition.cnn.com/2018/10/31/investing/stocks-markets-october/index.

html (accessed October 31, 2019).
6https://www.cnbc.com/2018/12/07/opec-meeting-saudi-arabia-and-russia-

look-to-impose-production-cuts.html (accessed October 31, 2019).
7https://ihsmarkit.com/research-analysis/crude-oil-trade-uncertainty-causing-

pressure-on-oil-prices.html (accessed October 31, 2019).

first report the estimates when the structural breaks are ignored
and then report the results after incorporating structural breaks.

The estimated results of the conditional mean equation
(Table 4 panel A) show that returns of all the three markets are
related to their own past returns (ac and ag), implying that these
market returns are predictable in the short term. In terms of
cross-market return spillovers, there is a significant bidirectional
positive return spillover (bc and bg) between the INE market
and Brent market, indicating that the rise of Brent oil futures
prices will increase INE market returns and vice versa. However,
there is unidirectional positive return spillover running from the
WTI market to the INE market (bc). The findings show that the
interaction of the INE market with the Brent market is stronger
than that with the WTI market at the return level.

The variance equation estimates (Table 4 panel B) show that
all crude oil futures return series have ARCH and GARCH
effects that are statistically significant. For each return series,
the sum of the coefficients on the lagged innovation (α) and
the lagged condition volatility (β) is close to 1, which implies
that shocks to the conditional volatility are highly persistent. In
addition, β is significantly larger than α, indicating that past
volatility is more important than past shocks for forecasting
future market volatility.

Panel C of Table 4 summarizes the resulting DCC coefficients
for crude oil futures returns. The short-term (θ1) and long-
term (θ2) persistence of shocks on the DCC are statistically
significant in all cases. This suggests that the correlations
between markets are time-varying. With θ2 close to unity,
the long-term persistence of the shock plays an important
role in predicting the DCC coefficients. More importantly, as
displayed in Figure 5, the plots of the DCCs for the INE market
and each of the international market pairs exhibit significant
variability in the conditional correlations across the full sample
period, with important phases of decreases and increases. For
example, the decrease of the conditional correlations across
markets is more apparent starting from August 7, 2018,
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TABLE 4 | Estimation results of the bivariate VAR-DCC-GARCH model for crude oil futures price returns without and with structural breaks.

Variables INE and WTI returns INE and Brent returns

Without breaks With breaks Without breaks With breaks

PANEL A: MEAN EQUATION

µc 0.0062 (0.0055) 0.0208*** (0.0065) 0.0057 (0.0055) 0.0229** (0.0099)

µg 0.0104 (0.0064) 0.0104 (0.0065) 0.0115* (0.0062) 0.0256** (0.0113)

ac −0.1151*** (0.0075) −0.1156*** (0.0059) −0.1366*** (0.0081) −0.1370*** (0.0072)

ag −0.0741*** (0.0078) −0.0744*** (0.0069) −0.0855*** (0.0084) −0.0857*** (0.0074)

bc 0.0403*** (0.0066) 0.0402*** (0.0062) 0.0607*** (0.0072) 0.0605*** (0.0061)

bg 0.0080 (0.0070) 0.0078 (0.0067) 0.0175** (0.0075) 0.0172*** (0.0065)

PANEL B: VARIANCE EQUATION

ωc 0.0755*** (0.0056) 0.0755*** (0.0053) 0.0753*** (0.0051) 0.0753*** (0.0055)

ωg 0.0790*** (0.0062) 0.0790*** (0.0060) 0.0893*** (0.0061) 0.0894*** (0.0061)

αc 0.1589*** (0.0073) 0.1587*** (0.0071) 0.1516*** (0.0064) 0.1513*** (0.0062)

αg 0.1425*** (0.0073) 0.1422*** (0.0072) 0.1492*** (0.0069) 0.1489*** (0.0060)

βc 0.8208*** (0.0066) 0.8209*** (0.0061) 0.8196*** (0.0063) 0.8198*** (0.0064)

βg 0.8426*** (0.0067) 0.8428*** (0.0062) 0.8290*** (0.0063) 0.8291*** (0.0059)

PANEL C: CORRELATION PARAMETERS

θ1 0.0639*** (0.0041) 0.0644*** (0.0040) 0.0659*** (0.0035) 0.0659*** (0.0034)

θ2 0.9339*** (0.0044) 0.9333*** (0.0042) 0.9319*** (0.0036) 0.9318*** (0.0036)

PANEL D: RESIDUAL DIAGNOSTIC TESTS

Q2
c (10) 8.3141 8.2737 8.0385 8.0115

Q2
g (10) 4.3831 4.3567 7.4098 7.3833

ARCHc (10) 8.2600 8.2200 8.0000 7.9700

ARCHg (10) 4.5000 4.4700 7.6300 7.6000

PANEL E: MODEL SELECTION CRITERIA

AIC 5.4360 5.4357 5.3460 5.3450

SBC 5.4460 5.4420 5.3560 5.3510

Log likelihood −56240.6675 −56228.6179 −55304.4703 −55295.9425

The figures in parentheses are standard errors. The asterisks *, **, and *** denote significance at the 10, 5, and 1% levels, respectively.

which may be related to the prospect of lower exports from
Iran due to American sanctions and uncertainty about Saudi
Arabia’s oil output strategy; these events have increased market
uncertainty. These findings have important implications for
energy risk management. Specifically, using constant conditional
correlations to compute optimal portfolio weights and hedge
ratios can lead to biased estimates. Energy investors should
be aware that correlations change dynamically over time, and
therefore, portfolios should be dynamically adjusted (Mensi
et al., 2015). Additionally, we find high degree of co-movements
between the INE market and the international markets. For
each pair, the time-varying cross-market correlation coefficient
reverts to the mean of 0.7. The results of the diagnostic test
(Table 4 panel D) reveal that the residuals of the VAR-DCC-
GARCH model estimates are free of serial correlation and the
ARCH effect, indicating that the VAR-DCC-GARCH model is
correctly specified.

Modeling volatility by ignoring the structural breaks in
the time series may result in spurious regressions due to
overestimation of volatility (Lamoureux and Lastrapes, 1990).
Therefore, we incorporate the structural break dummy variables
into the mean equation to more accurately estimate the

conditional volatility of crude oil price returns and the DCCs
across crude oil futures markets. Model selection criteria
can determine whether the modified model optimizes model
estimates. These model selection criteria include the AIC, the
Schwarz Bayesian criterion (SBC), and log likelihood. By looking
at the results of the model selection criteria in panel E of
Table 4, we conclude that the bivariate VAR-DCC-GARCH
model with structural breaks is superior to the same model
without structural breaks.

The empirical results show that the estimates of cross-
market return spillovers are similar to those of the case without
structural breaks. However, it is worth mentioning that the
significance level for parameter bg–denoting the return spillover
from the INE market to the Brent market—has changed from
5% without breaks to 1% with breaks. This finding indicates
that structural breaks have an impact on modeling cross-market
return spillovers.

The estimating results of variance equations (Table 4 panel B)
show that the volatility persistence of all crude oil futures return
series decreases after the structural breaks are included, which
indicates that ignoring these structural changes in return series
may distort the degree of volatility persistence in each market
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FIGURE 5 | DCCs between crude oil futures returns without and with structural breaks. (A) INT-WTI, (B) INT-Brent.

TABLE 5 | Descriptive statistics of correlation coefficients for crude oil futures

returns without and with structural breaks.

Descriptive

statistics

DCC between INE

and WTI returns

DCC between INE

and Brent returns

Without

breaks

With

breaks

Without

breaks

With

breaks

Mean 0.6852 0.6849 0.7111 0.7109

Median 0.7253 0.7247 0.7562 0.7560

Maximum 0.9861 0.9864 0.9835 0.9836

Minimum −0.2845 −0.2873 −0.2632 −0.2694

Standard

deviation

0.1737 0.1739 0.1774 0.1774

and volatility spillovers across markets. This finding is consistent
with those of Kang et al. (2011) and Ewing and Malik (2016).
More interestingly, Figure 5 shows that the correlation between
the INEmarket and each of the international benchmarkmarkets
decreases significantly for each period when structural breaks are
identified. This result implies that, energy policy, economic and
geopolitical events that cause structural breaks, will significantly
reduce the correlation between the crude oil futures markets.

Table 5 summarizes the descriptive statistics of the DCC
coefficients between the INEmarket and each of the international
benchmark markets. As shown, the mean value of the DCC
coefficients between the INE market and the Brent market is
greater than that of the DCC coefficients between the INEmarket
and the WTI market, regardless of whether the structural breaks
are included. Figure 5 also shows that the conditional correlation
between the INE market and the Brent market is higher than
that between the INE market and the WTI market for most of
the sample period. These findings indicate a stronger linkage
between the INE market and the Brent market. This is consistent
with Song et al. (2019), who use the crude oil spot price to
examine the linkage between the Chinese crude oil market and
the international crude oil markets during the period 1997–2011.
They find that the correlation between the Chinese crude oil
market and the Brent crude oil market is significantly higher than
that between the Chinese crude oil market and theWTI crude oil
market after 2003. Two main reasons for this can be summarized
as follows. First, although both WTI and Brent crudes are
international benchmark crude oil prices, the WTI crude mainly
reflects the supply and demand of the crude oil market in the
United States, whose crude oil mainly comes from Canada and
Mexico. Meanwhile, the Brent crude mainly reflects the supply
and demand in the European crude oil markets, whose crude oil
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TABLE 6 | Results of paired t-tests.

Variables Conditional correlations Portfolio weight Hedge ratio

INE-WTI INE-Brent INE-WTI INE-Brent INE-WTI INE-Brent

Without breaks 0.6852 0.7111 0.5955 0.6329 0.6871 0.7090

With breaks 0.6849 0.7109 0.5962 0.6331 0.6868 0.7088

Difference 0.0003 0.0002 −0.0007 −0.0002 0.0003 0.0002

T-test 16.2161*** 15.0242*** −9.7088*** −3.5111*** 6.5554*** 6.6865***

Observations 20,698 20,698 20,698 20,698 20,698 20,698

This table reports the paired t-test results on the conditional correlations, portfolio weight and hedge ratio of INE-WTI and INE-Brent. The paired t-test performs t-tests on the equality of

means of two samples, assuming paired data and constant variance. For example, in the case of conditional correlation of INE-WTI, it tests that the estimated conditional correlations

between INE and WTI returns from the VAR-DCC-GARCH models without and with breaks have the same mean. The asterisks *** denote significance at the 1% level.

comes mainly from the Middle East and North Africa. As most
of China’s crude oil is imported from the Middle East, Africa, and
Russia (BP, 2018), whose oil pricing mainly refers to the Brent
crude oil price, China’s crude oil market is more correlated with
the Brent market. Second, in recent years, the United States has
implemented an independent energy strategy and is vigorously
developing alternative energy sources, such as shale gas; this has
resulted in a decline in oil demand, which weakens the leading
role of the WTI crude in global benchmark crude oil markets.
However, the Brent crude oil price is more sensitive to changes in
fundamentals; it can more directly represent the trend of global
oil prices. In particular, WTI behaved as the price setter before
2010, while Brent has played the leading role in the crude oil
market since 2011 (Ji and Fan, 2015).

In addition, following Yin et al. (2018), we employ a paired t-
test to measure whether there is a significant difference in DCC
coefficients between crude oil futures markets without and with
structural breaks. The results of the paired t-test shown inTable 6
provide evidence that the difference between the estimated mean
values of conditional correlation coefficients is significant at the
1% level.

Volatility Spillovers Without and With
Structural Breaks
Analysis of volatility spillovers between crude oil futures
markets helps improve the understanding of information and
risk transmission across markets as well as the computation
of optimal portfolio weights and hedge ratios. Therefore, we
further analyze the volatility spillover effect between the INE
market and each of the international benchmark markets by
using the bivariate full VAR-BEKK-GARCH model, and the
estimated results are reported in Table 7. The estimates of the
mean equation are similar to those of the VAR-DCC-GARCH
model, we will not interpret them here. The results of the
conditional variance equation (Table 7 panel B) show that the
volatility of these crude oil markets in the current period
depends on the past shocks and their past volatilities. These
findings indicate that unexpected events in the oil market can
increase the volatility of their own markets; current volatility
in the oil market has the potential to drive higher volatility in
subsequent periods.

Results pertaining to cross-market volatility spillover indicate
that there are significant bidirectional short-term and long-
term volatility spillovers between the INE market and each of
the international benchmark crude oil markets. These results
indicate significant bidirectional volatility transmission between
the INE market and the international oil markets; the shocks
of the INE market will have an impact on the volatility of the
international markets. Part of our results differ from Liu et al.
(2013), who use weekly data for crude oil spot prices to examine
volatility spillovers between China’s crude oil market (Daqing)
and four international crude oil markets (WTI, Brent, Dubai
and Sandi Arabia’s Medium) during the period of 2001–2011.
They find that there is only unidirectional volatility spillover from
the international markets to China’s crude oil market. The main
reason for these differences is that on the one hand, the crude
oil futures market plays an important role in price discovery; on
the other hand, China’s crude oil futures market shows a certain
influence in the world oil market.

After incorporating structural breaks, the estimates of cross-
market volatility spillovers are similar to those of the case
without structural breaks. Thus, we will not interpret them
here. The results of the diagnostic test (Table 7 panel C)
reveal that the residuals are free of serial correlation and
the ARCH effect, indicating that the employed model is
correctly specified. Finally, as evidenced from themodel selection
criteria (Table 7 panel D), the VAR-BEKK-GARCH model
with structural breaks is superior to the same model without
structural breaks.

DISCUSSION AND ECONOMIC
SIGNIFICANCE OF THE RESULTS

Our empirical results have important economic implications
because decisions regarding asset allocation and portfolio
risk management require accurate estimations of conditional
volatility (Ewing and Malik, 2013). The overall essence of
portfolio management is to show how an investor can potentially
benefit from portfolio diversification between the two asset
markets (Tule et al., 2017). In portfoliomanagement, the inherent
uncertainties can be mitigated by considering the following two
important indicators: (i) the optimal portfolio weight and (ii)
the hedge ratio. In this section, we present estimates of these
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TABLE 7 | Estimation results of the bivariate BEKK-GARCH model for crude oil futures returns without and with structural breaks.

Variables INE and WTI returns INE and Brent returns

Without breaks With breaks Without breaks With breaks

PANEL A: MEAN EQUATION

µc 0.0084 (0.0070) 0.0312** (0.0137) 0.0056 (0.0073) 0.0204 (0.0135)

µg 0.0073 (0.0075) 0.0104 (0.0140) 0.0101 (0.0083) 0.0119 (0.0147)

ac −0.0980*** (0.0095) −0.0997*** (0.0093) −0.1180*** (0.0098) −0.1189*** (0.0096)

ag −0.0444*** (0.0092) −0.0448*** (0.0087) −0.0656*** (0.0092) −0.0661*** (0.0092)

bc 0.0876*** (0.0090) 0.0888*** (0.0084) 0.1098*** (0.0086) 0.1099*** (0.0086)

bg 0.0266 (0.0081) 0.0263 (0.0083) 0.0443*** (0.0087) 0.0440*** (0.0088)

PANEL B: VARIANCE EQUATION

ccc 0.1829*** (0.0061) 0.1830*** (0.0058) 0.1613*** (0.0065) 0.1611*** (0.0065)

ccg 0.0796*** (0.0077) 0.0786*** (0.0076) 0.0770*** (0.0081) 0.0769*** (0.0081)

cgg −0.1158*** (0.0046) −0.1159*** (0.0046) −0.1089*** (0.0053) −0.1090*** (0.0048)

acc 0.4386*** (0.0089) 0.4424*** (0.0092) 0.4545*** (0.0081) 0.4549*** (0.0082)

acg 0.0303*** (0.0064) 0.0307*** (0.0066) 0.0262*** (0.0064) 0.0266*** (0.0062)

agc −0.1491*** (0.0104) −0.1541*** (0.0104) −0.1733*** (0.0078) −0.1738*** (0.0080)

agg 0.2476*** (0.0080) 0.2467*** (0.0077) 0.2226*** (0.0071) 0.2226*** (0.0071)

bcc 0.9009*** (0.0037) 0.8993*** (0.0039) 0.8951*** (0.0032) 0.8949*** (0.0033)

bcg −0.0174*** (0.0025) −0.0178*** (0.0025) −0.0183*** (0.0023) −0.0184*** (0.0023)

bgc 0.0511*** (0.0037) 0.0529*** (0.0037) 0.0605*** (0.0028) 0.0606*** (0.0029)

bgg 0.9744*** (0.0024) 0.9748*** (0.0023) 0.9814*** (0.0020) 0.9815*** (0.0020)

PANEL C: DIAGNOSTIC TESTS

Q2
c (10) 13.9458 13.9764 15.3284 15.3668

Qg
2 (10) 5.2156 5.3180 14.9008 14.7545

ARCHc (10) 13.6600 13.6900 15.0800 15.1100

ARCHg (10) 5.1300 5.2300 14.6600 14.5300

PANEL D: MODEL SELECTION CRITERIA

AIC 5.8990 5.8980 5.7600 5.7600

SBC 5.9090 5.9050 5.7710 5.7670

Log likelihood −61029.3500 −61007.8397 −59597.2190 −59583.4394

The figures in parentheses are standard errors. The asterisks *, **, and *** denote significance at the 10, 5, and 1% levels, respectively.

indicators and provide several economic implications for asset
allocation and risk management.

Optimal Portfolio Weights and Hedge
Ratios
To manage crude oil risks more efficiently, we compute the
optimal portfolio weights and hedge ratios for designing the
optimal hedging strategies based on the estimates of our bivariate
VAR-BEKK-GARCH with and without structural breaks.

We consider a portfolio that can minimize risk without
lowering expected returns. We assume that an investor is holding
INE crude oil and hope to hedge against the adverse effects of
price changes in the international crude oil markets. Following
Kroner and Ng (1998), the portfolio weight is expressed as

wt =
h22, t − h12,t

h11,t − 2h12,t + h22,t
(11)

wt =







0 if wt < 0
wt if 0 ≤ wt ≤ 1
1 if wt > 1

(12)

where wt is the weight of INE crude oil in a $1 portfolio
of two asset holdings, INE and WTI (Brent), at time t; h11,t
and h22,t denote the conditional volatility of the INE and WTI
(Brent) market, respectively; and h12,t represents the conditional
covariance between the returns of the INE and WTI (Brent)
markets. Therefore, the weight of the WTI (Brent) in the
considered portfolio is 1− wt .

For the hedge ratio, this paper follows Kroner and Sultan
(1993) and assumes that to minimize the risk of a portfolio, an
investor should short $B of the WTI (Brent) oil portfolio that is
$1 long in the INE portfolio, where “risk minimizes hedge ratio”
B is expressed as.

Bt =
h12,t

h22,t
(13)

Economic Implications for Portfolio
Management
The computed optimal portfolio weights and hedge ratios from
the VAR-BEKK-GARCH model without and with structural
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TABLE 8 | Summary statistics for the portfolio weights and the hedge ratios.

Portfolio weight Hedge ratio

Mean Std. Dev. Min Max Mean Std. Dev. Min Max

PANEL A: VALUES ARE CALCULATED USING ESTIMATES OF THE BIVARIATE VAR-BEKK-GARCH MODEL WITHOUT STRUCTURAL BREAKS

INE-WTI 0.5955 0.3211 0.0000 1.0000 0.6871 0.2468 −1.5130 6.3417

INE-Brent 0.6329 0.3217 0.0000 1.0000 0.7090 0.2250 −0.8781 6.2538

PANEL B: VALUES ARE CALCULATED USING ESTIMATES OF THE BIVARIATE VAR-BEKK-GARCH MODEL WITH STRUCTURAL BREAKS

INE-WTI 0.5962 0.3208 0.0000 1.0000 0.6868 0.2466 −1.5419 6.3689

INE-Brent 0.6331 0.3217 0.0000 1.0000 0.7088 0.2249 −0.8808 6.2329

breaks are presented in Table 8. From the table, we find a
difference in the portfolio weights after the inclusion of the
structural breaks. Specifically, in the portfolio of INE and WTI,
the average optimal weight of INE increases from 0.5955 without
structural breaks to 0.5962 with breaks. A portfolio weight of
0.5962 implies that an investor who is willing to invest $100
should have optimal holdings of $59.62 in INE oil and $40.38
in WTI oil. As for the portfolio of INE and Brent, the average
portfolio weight of INE increases from 0.6329 when the structural
breaks are ignored to 0.6331 after controlling for the breaks.
These results indicate that (1) ignoring the structural breaks
in the crude oil futures return series may lead to bias in the
estimation of the optimal portfolio weights, and (2) overall,
investors tend to invest in more INE crude oil futures in their
portfolio, which indicates more potential gains in the Chinese
newly launched crude oil futures market.

As for the hedge ratios, the mean values of the hedge ratio
between the INE and WTI (Brent) markets are 68.71% (70.90%)
without structural breaks and 68.68% (70.88%) with breaks. This
implies that an investor who is holding a long position of $100 in
the INE oil will short sellWTI (Brent) for $68.71 ($70.90) without
structural breaks and short sell $68.68 ($70.88) with breaks. The
minimum and maximum values indicate that each of the hedge
ratios shows considerable variability. Therefore, investors must
frequently adjust their hedging strategies.

With reference to Table 6 for robustness test, we can reject
the null hypothesis that the portfolio weight and the hedge ratio
series without and with structural breaks have the same mean
values since those differences are statistically significant at the
1% level.

CONCLUSIONS AND POLICY
IMPLICATIONS

The integration between crude oil futures markets can provide
several interrelated benefits for energy risk management, such
as risk sharing and diversification, as well as better allocation of
assets. In this paper, we use intraday 5min data to investigate
the dynamic conditional correlations, information transmission
and time-varying hedging strategies between China’s crude oil
futures market and the international benchmark markets (WTI
and Brent). Moreover, structural breaks in the crude oil futures

markets are detected and incorporated into themodels to provide
more accurate empirical results.

The results of the Bai and Perron (2003) test show a strong
evidence for the presence of structural breaks in all crude
oil futures return series. The correlation between crude oil
futures markets exhibits significant time-varying characteristics,
which indicates that portfolios should be dynamically adjusted
over time. In particular, the correlation between crude oil
futures markets decreases significantly during the periods when
structural breaks caused by economic and/or geopolitical events
are identified.

Our empirical results reveal strong evidence for the
integration of China’s newly crude oil futures market into
the international benchmark markets. On the one hand, the
mean values of the time-varying conditional correlations among
the INE market and the two international markets are both
around 0.7, regardless of whether the structural breaks are
included. On the other hand, there are significant bidirectional
return and volatility spillovers between the INE market and
the international benchmark crude oil markets. These findings
indicate that China’s crude oil futures market exhibits a certain
influence on the world’s oil markets. Another finding is that the
INE market integrates better with the Brent market than with
the WTI market, which confirms the leading role of Brent in the
world crude oil futures market in recent years (Ji and Fan, 2015).
In addition, we further compute the optimal portfolio weights
and time-varying hedge ratios for investors who aim to efficiently
reduce the investment risk by implementing asset allocations
and hedging strategies, by which we highlight the economic
significance of our empirical results. The results show that a $100
long position in INE can be hedged for $68.68 ($70.88) with a
short position in the WTI (Brent) market, implying that hedging
long INE positions by shorting the WTI is cheaper than shorting
Brent. The paired t-test results show that the mean values of
the DCCs, portfolio weights and hedge ratios estimated from
the models without and with structural breaks are statistically
significantly different at the 1% level. In summary, introducing
dummy variables into the models to account for structural breaks
improves our understanding of the correlations and volatility
spillovers between crude oil futures markets.

The policy implications of our empirical evidences are 3-fold.
First, portfolio managers should possess important information
about the directions of spillovers among markets when they

Frontiers in Energy Research | www.frontiersin.org 14 December 2019 | Volume 7 | Article 146

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Liu et al. Integration of Crude Oil Markets

allocate assets across crude oil futures markets to take preventive
measures to handle sudden events, especially major economic
events that may induce risk contagion across markets. Second,
investors can dynamically adjust their asset allocation and
hedging strategies based on time-varying correlations between
crude oil futures markets to maximize benefits and minimize
risks. Third, for policy makers, the uncertainty information
contained in the market can be obtained from the volatility
transmission between the markets, which can be used to forecast
future market volatility.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

ZL, ZD, and PZ: conceptualization and writing—original draft.
ZL and PZ: data curation, methodology, and software. ZD, TL,
JW, and KZ: supervision. ZL, PZ, and JW: writing—review and
editing. All authors read and approved this version.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the respected editors
and the referees for their suggestions in this article. Special
thanks are given for the financial support provided by the
Fundamental Research Funds for the Central Universities (No.
2017BSCXA04) and the Post-graduate Research and Practice
Innovation Program of Jiangsu Province (No. KYCX17_1504).

REFERENCES

Adelman, M. A. (1984). International oil agreements. Energy J. 5, 1–9.

doi: 10.5547/ISSN0195-6574-EJ-Vol5-No3-1

AlKathiri, N., Al-Rashed, Y., Doshi, T. K., and Murphy, F. H. (2017).

“Asian premium” or “North Atlantic discount”: does geographical

diversification in oil trade always impose costs? Energy Econ. 66, 411–420.

doi: 10.1016/j.eneco.2017.07.005

Andersen, T. G. (2000). Some reflections on analysis of high-frequency data. J. Bus.

Econ. Stat. 18, 146–153. doi: 10.1080/07350015.2000.10524857

Andersen, T. G., and Bollerslev, T. (1997). Intraday periodicity and

volatility persistence in financial markets. J. Empir. Finance 4, 115–158.

doi: 10.1016/S0927-5398(97)00004-2

Bai, J., and Perron, P. (2003). Computation and analysis of multiple structural

change models. J. Appl. Econom. 18, 1–22. doi: 10.1002/jae.659

Bhar, R., and Nikolova, B. (2009). Return, volatility spillovers and dynamic

correlation in the BRIC equity markets: an analysis using a bivariate

EGARCH framework. Glob. Finance J. 19, 203–218. doi: 10.1016/j.gfj.2008.

09.005

BP (2018). BP Energy Outlook Country and Regional Insights–China. London.

Available online at: https://www.bp.com/content/dam/bp/en/corporate/pdf/

energy-economics/energy-outlook/bp-energy-outlook-2018-country-insight-

china.pdf (accessed September 1, 2019).

Broadstock, D. C., Fan, Y., Ji, Q., and Zhang, D. (2016). Shocks and

stocks: a bottom-up assessment of the relationship between oil prices,

gasoline prices and the returns of Chinese firms. Energy J. 37, 55–86.

doi: 10.5547/01956574.37.SI1.dbro

Brown, R. L., Durbin, J., and Evans, J. M. (1975). Techniques for testing the

constancy of regression relationships over time. J. Royal Stat. Soc. Ser. B 37,

149–192. doi: 10.1111/j.2517-6161.1975.tb01532.x

Chan, H. L., andWoo, K.-Y. (2015). An investigation into the dynamic relationship

between international and China’s crude oil prices. Appl. Econ. 48, 2215–2224.

doi: 10.1080/00036846.2015.1117046

Chang, C.-L., McAleer, M., and Tansuchat, R. (2010). Analyzing and forecasting

volatility spillovers, asymmetries and hedging in major oil markets. Energy

Econ. 32, 1445–1455. doi: 10.1016/j.eneco.2010.04.014

Charles, A., and Darné, O. (2014). Volatility persistence in crude oil markets.

Energy Policy 65, 729–742. doi: 10.1016/j.enpol.2013.10.042

Chen, W., Huang, Z., and Yi, Y. (2015). Is there a structural change in the

persistence of WTI–Brent oil price spreads in the post-2010 period? Econ.

Model. 50, 64–71. doi: 10.1016/j.econmod.2015.06.007

Cheng, D., Shi, X., Yu, J., and Zhang, D. (2019). How does the Chinese economy

react to uncertainty in international crude oil prices? Int. Rev. Econ. Finance 64,

147–164. doi: 10.1016/j.iref.2019.05.008

Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear

regressions. Econometrica 28, 591–605. doi: 10.2307/1910133

Conrad, C., Karanasos, M., and Zeng, N. (2011). Multivariate fractionally

integrated APARCHmodeling of stockmarket volatility: a multi-country study.

J. Empir. Finance 18, 147–159. doi: 10.1016/j.jempfin.2010.05.001

Conrad, C., Rittler, D., and Rotfuß, W. (2012). Modeling and explaining the

dynamics of European Union Allowance prices at high-frequency. Energy Econ.

34, 316–326. doi: 10.1016/j.eneco.2011.02.011

Dickey, D. A., and Fuller, W. A. (1979). Distribution of the estimators for

autoregressive time series with a unit root. J. Am. Stat. Assoc. 74, 427–431.

doi: 10.1080/01621459.1979.10482531

Ding, Z., Liu, Z., Zhang, Y., and Long, R. (2017). The contagion effect of

international crude oil price fluctuations on Chinese stock market investor

sentiment. Appl. Energy 187, 27–36. doi: 10.1016/j.apenergy.2016.11.037

EIA (2018). China Surpassed the United States as the World’s Largest Crude

Oil Importer in 2017. Available online at: https://www.eia.gov/todayinenergy/

detail.php?id=34812 (accessed September 1, 2019).

Elder, J., Miao, H., and Ramchander, S. (2013). Jumps in oil prices: the role of

economic news. Energy J. 34, 217–237. doi: 10.5547/01956574.34.3.10

Engle, R. (2002). Dynamic conditional correlation: a simple class of multivariate

generalized autoregressive conditional heteroskedasticity models. J. Bus. Econ.

Stat. 20, 339–350. doi: 10.1198/073500102288618487

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates

of the variance of United Kingdom inflation. Econometrica 50, 987–1007.

doi: 10.2307/1912773

Engle, R. F., and Kroner, K. F. (1995). Multivariate simultaneous generalized

ARCH. Econom. Theory 11, 122–150. doi: 10.1017/S0266466600009063

Ewing, B. T., and Malik, F. (2013). Volatility transmission between gold and

oil futures under structural breaks. Int. Rev. Econ. Finance 25, 113–121.

doi: 10.1016/j.iref.2012.06.008

Ewing, B. T., and Malik, F. (2016). Volatility spillovers between oil prices

and the stock market under structural breaks. Glob. Finance J. 29, 12–23.

doi: 10.1016/j.gfj.2015.04.008

Ewing, B. T., and Malik, F. (2017). Modelling asymmetric volatility

in oil prices under structural breaks. Energy Econ. 63, 227–233.

doi: 10.1016/j.eneco.2017.03.001

Fattouh, B. (2010). The dynamics of crude oil price differentials. Energy Econ. 32,

334–342. doi: 10.1016/j.eneco.2009.06.007

Gong, X., and Lin, B. (2018). Structural breaks and volatility forecasting in the

copper futures market. J. Futures Markets 38, 290–339. doi: 10.1002/fut.21867

Gülen, S. G. (1999). Regionalization in the world crude oil market: further

evidence. Energy J. 20, 125–139. doi: 10.5547/ISSN0195-6574-EJ-Vol20-No1-7

Hammoudeh, S. M., Ewing, B. T., and Thompson, M. A. (2008). Threshold

cointegration analysis of crude oil benchmarks. Energy J. 29, 79–95.

doi: 10.5547/ISSN0195-6574-EJ-Vol29-No4-4

Hou, Y., and Li, S. (2016). Information transmission between U.S. and China

index futures markets: an asymmetric DCC GARCH approach. Econ. Model.

52, 884–897. doi: 10.1016/j.econmod.2015.10.025

Frontiers in Energy Research | www.frontiersin.org 15 December 2019 | Volume 7 | Article 146

https://doi.org/10.5547/ISSN0195-6574-EJ-Vol5-No3-1
https://doi.org/10.1016/j.eneco.2017.07.005
https://doi.org/10.1080/07350015.2000.10524857
https://doi.org/10.1016/S0927-5398(97)00004-2
https://doi.org/10.1002/jae.659
https://doi.org/10.1016/j.gfj.2008.09.005
https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018-country-insight-china.pdf
https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018-country-insight-china.pdf
https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018-country-insight-china.pdf
https://doi.org/10.5547/01956574.37.SI1.dbro
https://doi.org/10.1111/j.2517-6161.1975.tb01532.x
https://doi.org/10.1080/00036846.2015.1117046
https://doi.org/10.1016/j.eneco.2010.04.014
https://doi.org/10.1016/j.enpol.2013.10.042
https://doi.org/10.1016/j.econmod.2015.06.007
https://doi.org/10.1016/j.iref.2019.05.008
https://doi.org/10.2307/1910133
https://doi.org/10.1016/j.jempfin.2010.05.001
https://doi.org/10.1016/j.eneco.2011.02.011
https://doi.org/10.1080/01621459.1979.10482531
https://doi.org/10.1016/j.apenergy.2016.11.037
https://www.eia.gov/todayinenergy/detail.php?id=34812
https://www.eia.gov/todayinenergy/detail.php?id=34812
https://doi.org/10.5547/01956574.34.3.10
https://doi.org/10.1198/073500102288618487
https://doi.org/10.2307/1912773
https://doi.org/10.1017/S0266466600009063
https://doi.org/10.1016/j.iref.2012.06.008
https://doi.org/10.1016/j.gfj.2015.04.008
https://doi.org/10.1016/j.eneco.2017.03.001
https://doi.org/10.1016/j.eneco.2009.06.007
https://doi.org/10.1002/fut.21867
https://doi.org/10.5547/ISSN0195-6574-EJ-Vol20-No1-7
https://doi.org/10.5547/ISSN0195-6574-EJ-Vol29-No4-4
https://doi.org/10.1016/j.econmod.2015.10.025
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Liu et al. Integration of Crude Oil Markets

Huo, R., and Ahmed, A. D. (2018). Relationships between Chinese stock market

and its index futures market: evaluating the impact of QFII scheme. Res. Int.

Bus. Finance 44, 135–152. doi: 10.1016/j.ribaf.2017.07.049

Ji, Q., and Fan, Y. (2015). Dynamic integration of world oil prices: a

reinvestigation of globalisation vs. regionalisation. Appl. Energy 155, 171–180.

doi: 10.1016/j.apenergy.2015.05.117

Ji, Q., and Fan, Y. (2016). Evolution of the world crude oil market

integration: a graph theory analysis. Energy Econ. 53, 90–100.

doi: 10.1016/j.eneco.2014.12.003

Ji, Q., and Zhang, D. (2018). China’s crude oil futures: introduction and

some stylized facts. Finance Res. Lett. 28, 376–380. doi: 10.1016/j.frl.2018.

06.005

Jiang, M., An, H., Jia, X., and Sun, X. (2017). The influence of global benchmark

oil prices on the regional oil spot market in multi-period evolution. Energy 118,

742–752. doi: 10.1016/j.energy.2016.10.104

Jouini, J. (2015). New empirical evidence from assessing financial market

integration, with application to Saudi Arabia. Econ. Model. 49, 198–211.

doi: 10.1016/j.econmod.2015.04.010

Kang, S. H., Cheong, C., and Yoon, S.-M. (2011). Structural changes and

volatility transmission in crude oil markets. Physica A 390, 4317–4324.

doi: 10.1016/j.physa.2011.06.056

Klein, T. (2018). Trends and contagion in WTI and Brent crude oil spot and

futures markets—the role of OPEC in the last decade. Energy Econ. 75, 636–646.

doi: 10.1016/j.eneco.2018.09.013

Kroner, K. F., and Ng, V. K. (1998). Modeling asymmetric comovements of asset

returns. Rev. Financ. Stud. 11, 817–844. doi: 10.1093/rfs/11.4.817

Kroner, K. F., and Sultan, J. (1993). Time-varying distributions and dynamic

hedging with foreign currency futures. J. Financ. Quant. Anal. 28, 535–551.

doi: 10.2307/2331164

Kuck, K., and Schweikert, K. (2017). A Markov regime-switching model

of crude oil market integration. J. Commodity Markets 6, 16–31.

doi: 10.1016/j.jcomm.2017.03.001

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., and Shin, Y. (1992). Testing

the null hypothesis of stationarity against the alternative of a unit root: how

sure are we that economic time series have a unit root? J. Econ. 54, 159–178.

doi: 10.1016/0304-4076(92)90104-Y

Lamoureux, C. G., and Lastrapes, W. D. (1990). Persistence in variance,

structural change, and the GARCH model. J. Bus. Econ. Stat. 8, 225–234.

doi: 10.1080/07350015.1990.10509794

Lee, Y.-H., Hu, H.-N., and Chiou, J.-S. (2010). Jump dynamics with

structural breaks for crude oil prices. Energy Econ. 32, 343–350.

doi: 10.1016/j.eneco.2009.08.006

Li, R., and Leung, G. C. K. (2011). The integration of China into the

world crude oil market since 1998. Energy Policy 39, 5159–5166.

doi: 10.1016/j.enpol.2011.05.048

Lin, S. X., and Tamvakis, M. N. (2001). Spillover effects in energy futures markets.

Energy Econ. 23, 43–56. doi: 10.1016/S0140-9883(00)00051-7

Liu, L., Chen, C.-C., and Wan, J. (2013). Is world oil market “one great pool”?: an

example from China’s and international oil markets. Econ. Model. 35, 364–373.

doi: 10.1016/j.econmod.2013.07.027

Liu, L., andWan, J. (2012). A study of Shanghai fuel oil futures price volatility based

on high frequency data: long-range dependence, modeling and forecasting.

Econ. Model. 29, 2245–2253. doi: 10.1016/j.econmod.2012.06.029

Liu, Z., Ding, Z., Lv, T., Wu, J. S., and Qiang, W. (2019). Financial factors affecting

oil price change and oil-stock interactions: a review and future perspectives.

Nat. Hazards 95, 207–225. doi: 10.1007/s11069-018-3473-y

Ma, Y. r., Ji, Q., and Pan, J. (2019). Oil financialisation and volatility

forecast: evidence from multidimensional predictors. J. Forecast. 38, 564–581.

doi: 10.1002/for.2577

Magkonis, G., and Tsouknidis, D. A. (2017). Dynamic spillover effects across

petroleum spot and futures volatilities, trading volume and open interest. Int.

Rev. Financ. Anal. 52, 104–118. doi: 10.1016/j.irfa.2017.05.005

Martens, M., Chang, Y.-C., and Taylor, S. J. (2002). A comparison of seasonal

adjustment methods when forecasting intraday volatility. J. Financ. Res. 25,

283–299. doi: 10.1111/1475-6803.t01-1-00009

McLeod, R. C. D., and Haughton, A. Y. (2018). The value of the US dollar and

its impact on oil prices: evidence from a non-linear asymmetric cointegration

approach. Energy Econ. 70, 61–69. doi: 10.1016/j.eneco.2017.12.027

Mensi, W., Hammoudeh, S., Nguyen, D. K., and Kang, S. H. (2016). Global

financial crisis and spillover effects among the U.S. and BRICS stock markets.

Int. Rev. Econ. Finance 42, 257–276. doi: 10.1016/j.iref.2015.11.005

Mensi, W., Hammoudeh, S., Nguyen, D. K., and Yoon, S.-M. (2014). Dynamic

spillovers among major energy and cereal commodity prices. Energy Econ. 43,

225–243. doi: 10.1016/j.eneco.2014.03.004

Mensi, W., Hammoudeh, S., and Yoon, S.-M. (2015). Structural breaks, dynamic

correlations, asymmetric volatility transmission, and hedging strategies

for petroleum prices and USD exchange rate. Energy Econ. 48, 46–60.

doi: 10.1016/j.eneco.2014.12.004
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