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One of the greatest obstacles in the exploitation of wind and solar resources is the

uncertainty in their availability, usually known as intermittence. These effects can be

greatly diminished by combining wind and solar resources from different locations. In

this article we propose a numerical optimization of future renewable capacity additions

aimed to minimize the dispersion of the residual power, which is the remaining electricity

load after subtracting the contribution of renewables. Results show that penetration of

wind and solar power may increase in another 10% of energy share while keeping the

dispersion of the residual power constant, by adding capacity at sites most positively

correlated with electricity load. For further increments, an optimized distribution of wind

and solar facilities compensates variations between renewables. In this situation, wind

sites that anticorrelate with solar cycle play an important role.

Keywords: wind energy, solar energy, electricity load, numerical optimization, balancing

1. INTRODUCTION

Worldwide, energy systems are likely to become more dependent on weather due to the growing
share of renewable power sources such as wind and solar (Wan and Parsons, 1993; Widén,
2011; Grams et al., 2017; Staffell and Pfenninger, 2017). Both energy sources are considered as
“intermittent” due to their intrinsic variability. Wind power production exhibits variations on all
timescales (Holttinen, 2005; Albadi and El-Saadany, 2010). In this respect, Van der Hoven (1957)
identified three distinct peaks of wind speeds variability and their most important timescales:
(i) the turbulent peak in the subsecond to minute range, (ii) the diurnal peak, driven by the
heating and cooling of the earth surface, and (iii) the synoptic peak which depends on changing
weather patterns with a scale of variation which ranges from days to weeks (Nikolakakis and
Fthenakis, 2011; Coker et al., 2013; Grams et al., 2017). Annual and inter-annual (or decadal)
variability represent important peaks as well (Sinden, 2007; Isyumov, 2012). Thus, the variability of
wind power production might be classified into regular cycles (diurnal and seasonal/annual), and
irregular cycles (synoptic, inter-annual). In contrast to wind speed, solar irradiation presents more
defined annual and daily cycles (Coker et al., 2013). The observable irregular variations (synoptic
and inter-annual) are related to the movement and persistence of clouds and to temperature
gradients and drifts (Gueymard and Wilcox, 2009; Hoff and Perez, 2010; Mills, 2010; Kleissl
et al., 2012). In addition, electricity load usually shows well-defined annual, daily, and weekly
cycles (Wan, 2005; Coker et al., 2013) plus inter-annual and weekly variations (Wan, 2005; Wild
et al., 2015) associated with economic activity and changing weather patterns.
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For the reasons described above, the integration of these
resources into a power grid may affect several stages of its
operation and planning, such as grid frequency control (within
the second to minute range), electricity load following operations
(within the minutes to hours range), and the unit commitment
scheduling (over the weekly timescale). It may increase the
margin of spinning reserves to protect the system against sudden
variations in electricity load or renewable power fluctuations and
the need for flexibility in order to cope with higher ramping
rates in energy production (Wan and Parsons, 1993; Smith
et al., 2007; Nikolakakis and Fthenakis, 2011; Widén, 2011;
Huber et al., 2014).

Besides the temporal variations described above, wind and
solar resources also fluctuate geographically (Wan and Parsons,
1993). Studying these spatial variations of the wind and solar
outputs is important for two reasons. Firstly, the aggregation
of disperse intermittent power sources reduce their overall
variability (Beyer et al., 1989; Wan, 2005; Kempton et al., 2010;
Delucchi and Jacobson, 2011; Holttinen et al., 2011; Widén, 2011;
Monforti et al., 2014). Secondly, it may help to optimize the
complementarity between different renewable power sources and
the system load (Wan and Parsons, 1993; Widén, 2011; Monforti
et al., 2014; Grams et al., 2017).

The smoothing effect from geographical dispersion has
been widely studied for wind power (Wan, 2005; Heide
et al., 2010; Widén, 2011). It is well-known that a wider
geographical distribution of wind farms reduce their overall
variability (Milligan and Artig, 1999; Simonsen and Stevens,
2004; Fant et al., 2016). This smoothing effect is proportional to
the size of the area under consideration (Archer and Jacobson,
2007), since the correlation between wind patterns decrease
as the distance between sites increase (Wan, 2004; Sinden,
2007). In contrast, fewer studies have addressed the effect of
the geographical dispersion of solar generation (Widén, 2011).
Several studies show that there is also a smoothing effect on the
aggregation of dispersed solar power units, but less pronounced
than for wind power (Jewell, 1986; Mills, 2010; Delucchi and
Jacobson, 2011; Widén, 2011).

Studying the complementary of different renewable sources
(along with electricity load) is a complex matter. It is a different
perspective from traditional optimization schemes that seek to
improve the energy output of wind and solar sites (El-Shimy,
2010; Said et al., 2017). The aim, instead, is to consider all
renewable facilities as a whole. As pointed out by Sterl et al.
(2018), there are different criteria by which to plan an adequate
use of renewable resources. Some studies focus on smoothing the
renewable power output (Hoicka and Rowlands, 2011; Jerez et al.,
2013; Schmidt et al., 2016; Gunturu and Hallgren, 2017; Miglietta
et al., 2017), while other studies focus on shaping the renewable
power output so that it meets the seasonal and/or daily electricity
load curve (Heide et al., 2010; Coker et al., 2013; Becker et al.,
2014). The managerial implications of these approaches might
be different depending on the location and the timescale that is
analyzed, since wind and solar generation, and electricity load
timeseries show distinct temporal behaviors (Coker et al., 2013).
For example, some authors claim that solar generation usually
correlates better with electricity load than wind generation

over the diurnal (Wan and Parsons, 1993; Nikolakakis and
Fthenakis, 2011; Coker et al., 2013) and seasonal timescales
(Wan and Parsons, 1993).

The correlations between wind generation and electricity
load, on the contrary, are less certain and site-dependent. In
this sense, Holttinen (2005) found different seasonal and daily
average variations in wind power production over distinct
regions in Europe; and Grams et al. (2017) suggested that
deploying wind farms in the Balkans instead of the North
Sea would reduce synoptic-scale fluctuations over Europe.
Therefore, as mentioned above, the optimal solution is strongly
region-dependent. Heide et al. (2010) proposed for Europe
an optimal seasonal mix of 55% wind and 45% solar
generation since wind correlates better with the seasonal
electricity load curve than solar generation; and Coker et al.
(2013) also found that wind generation in UK correlates
better with the seasonal electricity load curve than solar
generation. Widén (2011) and Monforti et al. (2014) studied
the complementarity over different timescales of wind and solar
generation over Sweden and Italy, respectively. They found
negative distance independent correlations between solar and
wind power over all timescales, but stronger for monthly
averages. Becker et al. (2014) incorporates additional criteria to
this analysis. They used three different approaches to optimize
the wind and solar mix: minimizing the required storage
capacity, minimizing system imbalance and levelized costs of
renewable generation.

In this study we propose an optimization which reduces
the variability of residual power, defined as the difference
between electricity load and the solar and wind power output.
We apply it for the optimization of future renewable power
addition scenarios in Argentina. This country has an appreciable
potential for wind and solar power generation (Hoogwijk
et al., 2004; De Vries et al., 2007; Lu et al., 2009; Dupont
et al., 2018). The share of wind and solar power is likely to
increase in the incoming years. The country is committed to
raise the share of renewables up to 12% for the year 2019,
and up to 20% by the year 2025. Several tenders have been
celebrated: 1470MW of solar and 3020MW of wind power were
awarded. Besides the high quality of the wind and solar power
resources, Argentina has the additional advantage of its wide
geographical extension, which determines the existence of very
distinct climatic regimes (Prohaska, 1976; Garreaud et al., 2009)
(and, hence, distinct cloudiness and wind variability patterns)
which should be considered when planning the deployment
of wind and solar generation facilities. Hence, understanding
the properties of local variations of these power sources is
crucial for the development, optimization, and operation of the
harvesting infrastructure.

2. METHODOLOGY

The methodology described below can be applied to any study in
which wind and solar data is available at several geographically
distributed energy production sites. Herein we dealt with the
Argentinean sites described in Tables S2, S3, Appendix 2.
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FIGURE 1 | (A) Location of solar (in yellow) and wind (blue) sites. (B) Capacity projected at each site For details at each site see Tables S2, S3.

The methodology can be dissected in the following steps:

1. Collect site locations
2. Obtain wind speed and solar irradiation time series
3. Convert resources to power
4. Optimize balance between production and electricity load

Step 1 provides the location of every wind and solar site either
installed or projected. We also obtained information about the
technology used, for example tracking capabilities of solar panels.

Step 2 produces time series of the resources at each site.
This can be achieved by using reanalysis data or by applying
downscaling procedures (e.g., Martinez et al., 2013).

The last step before optimization comprises the conversion of
the time series, from resources to electrical power production.
For this step we used previously developed methods (Pfenninger
and Staffell, 2016; Staffell and Pfenninger, 2016).

The final step is the numerical optimization of the total power
production time series in relation to the electricity load. This
optimization reduces the variance of the residual power, obtained
by subtracting the total wind and solar power production from
the electricity load. The optimization of the residual power
was carried out in several scenarios relevant for the renewable
energy development of the region under study. Each scenario
portrays different levels of expansion of the total renewable power
production capacity.

2.1. Collection of Sites
A total of 46 wind sites and 21 solar sites were used in this
study. Site locations were extracted from Argentinean tenders

GENREN, RENOVAR 1, RENOVAR 1.5, RENOVAR 2.0, and
resolutions 108/11 and 202/16. A complete list of the sites and
their characteristic is given in the Appendix (see Tables S2, S3).
Their geographical location within the country are shown in
Figure 1. The distribution of these sites span a great portion
of the country where not only there are strong winds or
high solar irradiance; but also have proven some degree of
feasibility: proximity to the electric grid, accessibility, or reduced
environmental impact.

2.2. Resource Time Series for Each Site
For each site, we obtained wind speed data by performing WRF
(Weather Research and Forecasting model) simulations fed with
GFS (Global Forecast System) input data.

For solar resources we used irradiance data from the
Modern Era Reanalysis for Research and Applications 2
(MERRA2) (National Aeronautics and Space Administration,
2016).

MERRA2 data set also provides a fairly good estimation
of wind speeds, although this data failed to capture relevant
temporal features present in several of the selected sites as
we will show. We ascribe this to the locality of wind speed
variations, which are well below the MERRA2 data set resolution
(∼50 km). We choose to implement WRF simulations for wind
speed instead.

2.2.1. WRF Simulations

WRF is a state-of-the-art non-hydrostatic high resolution
mesoscale model (Skamarock et al., 2005; Skamarock and
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TABLE 1 | Overview of WRF configuration for simulation of local wind time series.

Domain 1 Nx × Ny 40 × 39

Domain 1 grid size 18 km

Domain 2 Nx × Ny 25 × 28

Domain 2 grid size 6 km

No of vertical levels 55

Dynamic solver ARW

Period 15 Jan 2015 to 15 Jan 2017

Initial/boundary cond. NCEP GFS analysis (6h int.)

Microphysics model Lin et al. scheme

Radiation physics RRTM scheme

Surface-layer physics Monin-obukhov (Janjic) scheme

Land-surface physics Unified Noah LSM

Cumulus physics Kain-Fritsch (new Eta) scheme

Boundary layer option Mellor-Yamada-Janjic TKE sch.

Klemp, 2008). It was developed and maintained by several
institutes including the National Center for Environmental
Prediction (NCEP) and the National Center for Atmospheric
Research (NCAR). To run a simulation using WRF the
user needs to provide initial and boundary conditions on
the geographical domain. The boundary conditions are time
dependent, providing the inflow and outflows into the simulation
domain. The initial and 6 h boundary conditions were taken
from the GFS operational 0.5◦ × 0.5◦ resolution global
analysis (Campana et al., 2005; Saha et al., 2014). These data
was also used to nudge the simulation every 12 h, using default
nudging settings.

In order to gain accuracy of the estimated wind velocity at 100
m height above the ground, we added an additional eta-levels to
the simulation. These levels were inserted between each of the
default 28 eta-levels in the namelist, rendering a final total of
55 eta-levels.

We found a good relation between results quality and
computing time using grid resolutions set to 16 km for the main
domain and 6 km for the nested domain.

For physics models and other settings we left default values.
An overview of the model domain configuration and physics
schemes used are shown in Table 1.

2.3. Conversion to Power Production
A simulation of wind and solar power production encompassing
a 2-year period was performed over all sites. The Virtual Wind
Farm (VWF1) model developed in Staffell and Green (2014) and
Staffell and Pfenninger (2016) was used to simulate wind power
production from wind speeds at 100m height, using wind speeds
based onWRF simulations. Once data was obtained, wind power
outputs were computed using power curves of wind turbine
generator according to the first criteria of the IEC standard
classes (International Electrotechnical Commission, 2005), which
we summarize in the Appendix.

1https://github.com/renewables-ninja/vwf

Before convolving wind speeds with their corresponding
power curve, power curves values were smoothed using a
Gaussian filter, as proposed in the VWFMmethod.

For power production based on solar irradiance, we used
the The Global Solar Energy Estimator (GSEE2), developed
by Pfenninger and Staffell (2016). This method calculates direct
and diffuse irradiances using the short wave ground-level global
irradiance variable SWGDN and top of atmosphere irradiance
SWTDN from the closest MERRA2 grid point. The model then
calculates the irradiance on the plane of the solar panels, whether
panels are fixed or have tracking capabilities. Skin temperature
variable is also used by the model to finally adjust the power
output obtained through temperature-efficiency curves.

2.4. Optimization of Balance Between
Renewables Generation and Electricity
Load
In this section we propose a method to find the best distribution
of additional capacity (capacity added after current projects) that
minimizes the variance of residual power.

Let ai be current tendered and working projects capacities
(depicted in Tables S2, S3), and vi the hourly capacity factor of
the ith site. Then the hourly power series of current projects is

Pcurr(t) =

N∑
i=1

aivi(t), (1)

where N is the number of all sites.
If bi is the additional power capacity to the ith site and wi(t)

is the hourly capacity factor of that site, then the hourly total
additional power series reads

Paddit(t) =

N∑
i=1

biwi(t), (2)

The coefficients obey ai, bi ≥ 0. Additionally, if Pload(t) is
the electricity load, then the residual power (considering both
current and additional projects) is defined as

Presid(t) = Pload(t)− Pcurr(t)− Paddit(t), (3)

which is the remaining power to be supplied after the
contribution from wind and solar facilities.

The optimization problem can be stated as follows: given a
total energy contribution of additional projects

Eadd =

∫
Paddit(t)dt =

N∑
i=1

bi

∫
wi(t)dt = T

N∑
i=1

biw̄i, (4)

find the distribution of additional capacity over sites bi that
minimizes the variance of residual power var (Presid). In the
equation above, T is the total time span of the signals and w̄i is

2https://github.com/renewables-ninja/gsee
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FIGURE 2 | Power series from years 2015 and 2016 of overall 3382.5MW wind and solar facilities, as listed in Tables S2, S3. 2458MW correspond to wind facilities

while 924.5MW correspond to solar facilities. The overall capacity factor obtained is 47%, with a coefficient of variation of 29%. Solar site’s mean capacity factor is

28% (coefficient of variation 110%) and wind site’s mean capacity factor is 54% (coefficient of variation 37%). Current and projected capacity of renewables would

have covered 10% of the overall electricity load.

their temporal average. The formal details of this optimization
are given in the Appendix 3.

Instead of fixing the total energy, one could have constrained
the sum of additional capacity

∑
i bi, but in this case sites with

lower average capacity would prevail, as they have less impact on
residual power dispersion. Fixing Eadd eliminates this possibility.

Summarizing, the optimization problem reduces to the
following statement; given a prescribed additional energy Eadd
(Equation 4), find the additional capacity distribution at each site
bi from Equation (2) that minimizes the dispersion of Presid(t)
in Equation (3).

3. RESULTS

3.1. Wind and Solar Power Production
Simulations
Geographical location of all collected 46 wind and 21 solar parks
within the country are shown in Figure 1.

Once wind and solar power time series were obtained for
all sites respectively, we proceeded to study the hypothetical
incidence of planned projects on the 2015/16 electricity load.

Renewable capacity either installed or projected results in a
total of 2458MW for wind sites and 924.5MW for solar sites,
an overall of 3382MW. The resulting total output of the current
projected and existing facilities is shown in Figure 2. These
results show that, if all current and projected facilities would
have operated during 2015-2016, they would have yielded a total
capacity factor of 47%; 54% for wind parks and 28% from solar
parks, delivering an average of 13.9GWh per year.

We also analyzed the compatibility between renewables and
electricity load through the years 2015 and 2016. Figure 3 shows
the electricity load curve for this period, provided by the national
grid administrator (CAMMESA). As expected, electricity load
shows well-defined annual, weekly and daily cycles, with a

dispersion equal to σload = 2352MW. Subtracting the renewable
power production during this period yields a residual power time
series with dispersion σload−renewables = 2383MW, slightly above
dispersion from electricity load. We noted that hourly peaks
of electricity load would have been reduced from 23.2 to 21.3
GW; while the hourly valleys of electricity load would have been
reduced from 9.6 to 7.6 GW.

3.2. Optimally Balanced Additional
Renewable Capacity
We analyze how to add further wind and solar power
capacity, while minimizing intermittence effects. As mentioned
in section 2.4, we have chosen our objective function to be the
variance of the residual power, defined as electricity load minus
wind and solar renewables generation (see Equation 3).

The optimized distribution of renewable capacity additions
is depicted in Figure 4. Dashed lines are obtained by rescaling
the currently installed and projected capacity, i.e., rescaling
capacity while keeping their current distribution. Solid lines show
the result of optimizing the added capacity beyond projected
capacity. That is to say, for every value in the solid curve greater
than projected capacity (a share above ∼10% of 2015/2016
electricity load) the additional capacity distribution is optimized
as explained in section 2.4. Note that for high shares (>30%), the
dispersion increases almost linearly with increasing share.

We propose three different scenarios of optimized additional
capacity: (i) increasing renewables share to 20%, (ii) 30%, and (iii)
40%, and analyze the distribution in each one of them. The results
are shown in Figure 5.

Figure 5A shows the distribution of installed and current
tendered capacity, described in Tables S2, S3. As mentioned
above, the coefficient of variation of this distribution is 0.30 and
the capacity factor is 0.44.
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FIGURE 3 | Electricity load from 2015 to 2016, provided by the national grid administrator. Average electricity load is 15.1GW, with peaks of 23GW, and valleys of

9.6GW.

FIGURE 4 | Plot of the dispersion σ of residual power (electricity load minus

renewables) in different scenarios: (dashed line) capacity with constant

distribution as currently installed and projected; (solid line) future additional

capacity optimized to diminish σ at each value.

Figure 5B shows the distribution of 4.0 GW additional
capacity that increases the share of wind and solar generation
in another 10% while minimizing dispersion. Capacity differs
from case to case, as also does the overall capacity factor in each
of the distributions. Surprisingly we see that wind sites Arauco
(#1) and Sosneado (#2) together with Cachaurí solar site (#65)
receive more than 80% of the capacity. This can be explained
by the hourly correlation between sites and electricity load
(Figure 6), where we see that these are the sites most positively
correlated with electricity load. The coefficient of variation of this
distribution is 0.39 and the capacity factor is 0.37.

Figure 5C shows the distribution of additional 3.45 GW
capacity necessary to increase renewables from 20 to 30% in

energy share. Here solar contribution at Caucharí site (#65) still
prevails, although sites Arauco and Sosneado are diminished
when compared to the previous scenario. The coefficient of
variation of this distribution is 0.30 and the capacity factor is 0.41.

Figure 5D shows the last case, where share is increased from
30 to 40% with 3.4 GW additional capacity. The optimization in
this upgrade focuses mainly in compensating variability between
renewables, as can be seen if compared with Figure 5E. This is
linked to the almost linear increase of dispersion observed in
Figure 4 in regions of high share. The coefficient of variation of
this distribution is 0.23, slightly above the lowest possible value
obtained bymixing renewables time series. The resulting capacity
factor is 0.45.

Finally, in order to contrast with the abovementioned cases,
we performed a different optimization. The purpose of this
optimization is to reduce variability of the output of wind and
solar facilities (and not the residual load, as in the previous
cases). This means that renewables would compensate among
themselves. Figure 5E shows this distribution, scaled up to reach
10% of electricity load energy. The coefficient of variation of this
distribution is 0.23, and the resulting capacity factor is 0.45. These
values coincide with those of Figure 5D, however the allocation
of capacity is not the same.

Summing up, when adding further capacity to increase
energy share from 10 to 20%, optimization focuses in wind
sites Arauco (#1) and Sosneado (#2) together with solar site
Caucharí (#65) to counteract the variability of electricity load.
The next additional 10% is a transition zone, where optimization
starts compensating renewables inherent variability. In other
words, electricity load admits up to ≈ 20% of renewable energy
supply without increasing its variability. This relation can be
further explored looking at the correlation between electricity
load and each of the renewables time series, as shown in
Figure 6. We see that electricity load positively correlates with
solar outputs, but correlation with wind sites shows different
behaviors. More than half of the wind sites anticorrelate with
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FIGURE 5 | Power capacity distribution of sites. (A) Installed and project capacity detailed in Tables S2, S3 (3.4 GW); (B) 4.0 GW added capacity to reach 20% in

energy share; (C) 3.7 GW added capacity to reach 30% share; (D) 3.45 GW to reach 40%; (E) renewables configuration with least dispersion, rescaled to achieve

10% of electricity load during 2015–2016 (3.4 GW).

FIGURE 6 | Hourly correlation between electricity load and capacity factor

time series (blue bars for wind sites; yellow bars for solar sites). For site

reference see Tables S2, S3.

electricity load, particularly is the case of wind site #3 “El Jume”
and also site #4 “Achiras.” These parks prevail when optimizing
renewables between themselves, as we see in Figure 5E. The

most positively correlated wind locations are sites #2 “Parque
Arauco,” #1 “El Sosneado,” and #28 “Gastre,” located in center of
Chubut province.

In Figure 7 we plot the daily averages of electricity
load, positively correlated wind sites #1 and #2, and the
anticorrelated wind site #3 All sites exhibit strong daily
variations: in “Parque Arauco” and “El Sosneado” locations late
afternoon winds prevail, while in “El Jume” wind blows mainly
in night hours.

Further information can be obtained from the histograms of
the four residual power situations studied (Figure 8). Addition of
renewable capacity smoothens the shape of the histograms and
shifts them to the left, while widening is not visible. Situations
with negative residual power are seen only in the last case,
where renewables share supplies 40% of electricity load energy.
In this case we see negative residual power with only ≈ 0.3% of
occurrences, a total of 57 h through the 2015-2016 period.

4. DISCUSSION

In this article we analyzed the variability of wind and solar
resources along with their compatibility with electricity load
in Argentina, focusing on current facilities and projects under
construction or awarded in recent tenders.

Frontiers in Energy Research | www.frontiersin.org 7 February 2020 | Volume 8 | Article 16

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Guozden et al. Optimized Wind-Solar Energy

Wind and solar power simulations during the years 2015 and
2016, based on WRF simulations and MERRA2 data respectively
yielded, for the current distribution of existing and tendered
facilities, a capacity factor of 54% for wind parks and 28%
for solar parks, resulting in an overall capacity factor of 47%.
These facilities would have covered 10% of the overall electricity
load in that period. Residual power (that is electricity load
minus renewables) would have slightly increased its dispersion

FIGURE 7 | Hourly averages of electricity load of wind sites #1 and #2

(Sosneado and Arauco), #3 and #4 (El jume and Achiras) and electricity load.

The resemblance between renewables time series and electricity load is

reflected in their correlation, as shown in Figure 6.

(2383MW) if compared with the raw dispersion of electricity
load (2352MW), showing good compatibility with current
installed and projected distribution. Hourly peaks of residual
power would have been reduced from 23.2 to 21.3 GW; and
hourly valleys from 9.6 to 7.6 GW.

An optimization of the distribution of wind and solar
facilities aimed to diminish dispersion of the residual
demand was performed for three scenarios of capacity
additions: (i) from 10% of electricity load energy (installed
and projected capacity) to 20%, (ii) from 20 to 30%, and
(iii) from 30 to 40%. From this analysis we found that,
focusing on dispersion only, the penetration of wind and
solar facilities may double tendered capacity, while keeping
dispersion almost constant. In this process the wind sites
that most positively correlate with electricity load (“Parque
Arauco” and “Sosneado”), together with Caucharí solar site,
have the most important role in compensating electricity
load variability.

The optimal distribution of further increasing renewables
beyond ≈ 40% focuses on diminishing inherent renewables
variability. In this distribution, locations where night winds are
present such as sites #3 “El Jume” and #4 “Achiras” play an
important role, as they compensate renewables that show higher
availability during the day.

Results show also that curtailment events would not be
frequent if solar and wind capacity is increased in an optimized
scheme at least up to 40% of the share.

5. CONCLUSION

This work provided insights into the variability of wind and
solar power and its compatibility with the electricity load.

FIGURE 8 | Histograms of residual power for the 2015–2016 electricity load scenario. (A) Assuming current installed and projected capacity; (B) 20% of renewables

contribution to electricity load in energy terms; (C) 30%; (D) 40%. Bin width is 500 MW.
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Many sites are left without capacity in the described scenarios.
Certainly there are other aspects thatmay contradict these results,
such as transport constraints, smoothness of high frequency
variability or robustness of the grid. In future studies we will
try to group renewables by similar characteristics, and also
try other criteria of optimization. Focusing on the variance of
residual demand is perhaps the simplest way to characterize
intermittence, but there are many other aspects that would be
more convenient to optimize, such as a studying the ramp
plot of hourly variation or perhaps the behavior or the grid
at certain locations. This work is a first approach to present
the problem and characterize intermittence in the region, we
hope to analyze more realistic intermittence function costs
in the future.
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