
ORIGINAL RESEARCH
published: 21 April 2020

doi: 10.3389/fenrg.2020.00045

Frontiers in Energy Research | www.frontiersin.org 1 April 2020 | Volume 8 | Article 45

Edited by:

Qiang Ji,

Chinese Academy of Sciences, China

Reviewed by:

Yan Zeng,

Sun Yat-sen University, China

Jinqiang Yang,

Shanghai University of Finance and

Economics, China

Jinbo Huang,

Guangdong University of Finance and

Economics, China

*Correspondence:

Yaya Su

suyaya@hnu.edu.cn

Specialty section:

This article was submitted to

Sustainable Energy Systems and

Policies,

a section of the journal

Frontiers in Energy Research

Received: 20 January 2020

Accepted: 05 March 2020

Published: 21 April 2020

Citation:

Li Z and Su Y (2020) Dynamic

Spillovers Between International

Crude Oil Market and China’s

Commodity Sectors: Evidence From

Time-Frequency Perspective of

Stochastic Volatility.

Front. Energy Res. 8:45.

doi: 10.3389/fenrg.2020.00045

Dynamic Spillovers Between
International Crude Oil Market and
China’s Commodity Sectors:
Evidence From Time-Frequency
Perspective of Stochastic Volatility
Zhenghui Li 1 and Yaya Su 2*

1Guangzhou International Institute of Finance and Guangzhou University, Guangzhou, China, 2College of Finance and

Statistics, Hunan University, Changsha, China

We study the time-frequency dynamics of stochastic volatility spillovers between

international crude oil markets and China’s commodity sectors in the spectral

representation framework of generalized forecast error variance decomposition (GFEVD).

We find evidence that international crude oil markets has significant volatility spillover

effects on China’s bulk commodity markets, and the volatility spillovers are sensitive to

extreme geopolitical or financial events. The net spillovers of international oil markets are

almost positive and driven mainly by short-term components (within a week). However,

uncertain financial factors from China such as the market-oriented reform in 2013 and

the stock disaster in 2015 adversely affect the net oil-commodity volatility spillovers

through the medium-term components (week to a month) and long-term components

(month to a year). Moreover, the volatility spillover effects of crude oil prices on different

commodity sectors in China are heterogeneous. Metal, coal coke, and steel ore and

energy commodity sectors are more affected by crude oil prices, whereas nonmetal

building materials and agricultural commodities are less affected. These outcomes

implement necessary implications for investors and policymakers.

Keywords: crude oil prices, bulk commodity markets, stochastic volatility, volatility spillover effects, frequency

decomposition

INTRODUCTION

In recent years, the linkages between oil and other commodity prices (including metals, industries,
and agriculture) have increased (Ji and Fan, 2012; Wang et al., 2014; Luo and Ji, 2018)
owing to the “financialization of commodities” (Vivian and Wohar, 2012; Creti et al., 2013;
Fattouh et al., 2013; Adams and Glück, 2015; Basak and Pavlov, 2016; Liu K. et al., 2019;
Liu Y. et al., 2019). In addition, the continuous replacement of fossil fuels by biofuels and
the large-scale hedging strategies proposed for inflation caused by high oil prices have also
enhanced the correlation of oil commodities (Ji and Fan, 2012). Affected by global economic
fluctuations and geopolitical events, crude oil prices are prone to severe turbulence. For
example, during the 2008 financial crisis, West Texas intermediate (WTI) crude oil prices
fell by 75%, and then in the second half of 2014, international oil prices plummeted again,
with a total drop of 50%. In China, the world’s largest oil consumption economy, crude
oil consumption has been increasing significantly. In 2018, it consumed 651 million tons of

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2020.00045
http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2020.00045&domain=pdf&date_stamp=2020-04-21
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://creativecommons.org/licenses/by/4.0/
mailto:suyaya@hnu.edu.cn
https://doi.org/10.3389/fenrg.2020.00045
https://www.frontiersin.org/articles/10.3389/fenrg.2020.00045/full
http://loop.frontiersin.org/people/892334/overview
http://loop.frontiersin.org/people/891244/overview


Li and Su Volatility Spillover Effects

crude oil. Moreover, since 1993, China has changed from a
net oil exporter to a net importer, and its import volume has
increased year by year. In 2018, China’s annual oil import volume
reached 462 million tons, whereas domestic oil production is
only 189 million tons. As early as 2013, the United States Energy
Information Administration (EIA) has announced that China
is the largest net importer of crude oil in the world economy.
At the same time, China has maintained high economic growth
rates in the past 40 years since reform and opening-up. The
considerable energy demand brought about by the rapid growth
of China’s economy has affected the world’s energy and financial
markets, attracting widespread attention from international
investors. Therefore, research on the volatility spillovers between
international crude oil and China’s commodity markets is of
paramount importance for both policymakers and financial
market participants.

Considerable research has focused on the relationship
between crude oil prices and the economies of developed
countries (Du and He, 2015; Zhang et al., 2017; Apergis et al.,
2018), whereas relatively few studies are on developing countries.
Fluctuations in crude oil prices can affect both developed and
developing countries. More importantly, owing to relatively
immature financial policies and investors, the uncertainty of oil
prices may even have a more significant impact on developing
countries (You et al., 2017). Besides, countries that rely on
crude oil imports are more sensitive to changes in oil prices.
However, the research on developing countries especially China
is inadequate, despite their increasingly economic importance
(Caporale et al., 2015; Shi and Sun, 2017; You et al., 2017;
Cheng et al., 2019; Wang and Wang, 2019). In this study, we
take the Chinese commodity sector as an example to study the
dynamic impact of crude oil price fluctuations on the economies
of developing countries.

The main objective of the current study is to explore the
time-frequency patterns in the relationship between international
crude oil volatility and different types of China’s commodity
price, as well as to quantify the dynamic volatility spillovers. The
relationship between crude oil price and commodity markets
may change with frequency because of the heterogeneous
economic agents that interact in different markets. Specifically,
market participants operate at different time frequencies, mainly
owing to differences in their beliefs, goals, preferences, and risk
tolerance. Long-term, medium-term, and short-term investors
take different investment strategies. With the promotion of
different types of investors, financial asset price volatility is
heterogeneous at different frequencies (Baruník and Krehlík,
2018; Balli et al., 2019; Reboredo et al., 2020). Therefore, it
is reasonable to assume that there are persistent relationships
at various levels and that the sources of the cross-frequency
connection between oil and the Chinese commodity market
are different.

Unlike traditional financial assets, such as stocks and bonds,
the price behavior of commodities has its characteristics (Balli
et al., 2019). Because both the supply side and the demand side
of diverse commodities are affected by different processes, their
market prices have various movements (Diebold et al., 2017).
However, the financialization of commodities has increased

the dependence between different commodity markets, such as
energy, coal mines, materials, metals, and agricultural products.
After controlling for macroeconomic and other factors, even
the unrelated commodity prices tend to change together (de
Nicola et al., 2016). Crude oil prices are effective in transmitting
shocks to other commodity markets (Choi and Hammoudeh,
2010; Nazlioglu et al., 2013; Ahmadi et al., 2016; Luo and Ji, 2018;
Lovcha and Perez-Laborda, 2020). However, although literature
has focused on the association between crude oil prices and
a particular class of commodity (mostly energy or agricultural
commodities), the findings are mixed and ambiguous in general,
which may due to different modeling techniques and timescales
(Tiwari et al., 2020). Moreover, the existing literature pays little
attention to the connectedness between crude oil prices and
various essential commodities. This lack of research justifies
further study.

The idea of volatility connectedness is essential for financial
risk management (Liu, 2016; Frahm, 2018; Li et al., 2018) and it
appears especially crucial for exploring the investment potential
and risk reduction across different commodity categories.
Nazlioglu et al. (2013) examine interrelationships between energy
and agricultural markets by the Granger causality test on
variance and find that the dynamics of volatility transmission
change significantly following the food price crisis. Beckmann
and Czudaj (2014) use the generalized autoregressive (AR)
conditional heteroskedasticity (GARCH) in mean vector AR
(VAR) models to investigate the volatility spillover between
various agricultural futures markets. Their results provide
evidence for the short-term volatility transmission process in
agricultural futures markets. Mensi et al. (2014) use both
VAR–[Baba–Engle–Kraft–Kroner (BEKK)]–GARCH and VAR–
dynamic conditional correlation (DCC)–GARCH models and
provide evidence of significant return and volatility spillovers
between international energy and cereal commodity markets.
Diebold and Yilmaz (2009, 2012) propose the generalized forecast
error variance decomposition (GFEVD) framework to construct
the volatility spillover index (DY, henceforth). TheDY framework
provides quantitative measures of the magnitude and direction of
the dynamic spillovers and is particularly suitable for studying
the evolution of volatility spillovers over time. Then Baruník
and Krehlík (2018) extend the DY framework to the time-
frequency domain, providing measurements to decompose the
volatility spillover index into different frequency components
(BK, henceforth). The time-frequency decomposition of volatility
spillovers is critical to understanding the propagationmechanism
of volatility.

Using the time-series framework, we adopt the
methodological approach that comprises the stochastic volatility
(SV) estimation proposed by Kastner and Frühwirth-Schnatter
(2014) and the time-frequency volatility connectedness
estimation proposed by Baruník and Krehlík (2018) in a
multivariate framework. Although previous literature mostly
used the implied volatility model (Vivian and Wohar, 2012;
Efimova and Serletis, 2014; Youssef et al., 2015; Jiang et al.,
2019), this study focuses on the SV model, because the volatility
of commodity market price is a stochastic process, and the
SV model can perform better than the implied volatility or
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historical volatility measurements (Yang and Hamori, 2018; Balli
et al., 2019). The motivation for this study is that it is crucial to
measure the dynamic connectedness among the commodity or
futures markets and the determinants of volatility spillover effect
through novel methodologies. This analysis would be essential
for policymakers to formulate relevant policies and would also
provide investors more enormous diversification benefits in the
commodity market.

Therefore, this study makes several contributions to the
literature. First, as far as we know, this study is the first
to explore the dynamic volatility spillovers between crude oil
price and various China’s commodity sectors including precious
metals, nonferrous metals, coal coke, and steel ore; nonmetal
building materials; energy products; chemical products; grains;
oils and fats; and soft commodities. Some empirical studies
have investigated the volatility connectedness between crude
oil price and commodities of a particular class or group, such
as the agricultural commodities (Nazlioglu et al., 2013; Mensi
et al., 2014; Wang et al., 2014; Luo and Ji, 2018), the energy
commodities (Ng and Donker, 2013; Lovcha and Perez-Laborda,
2020), the precious metals commodities (Ewing and Malik, 2013;
Bildirici and Turkmen, 2015), and the industries commodities
(Choi and Hammoudeh, 2010). However, the results of the
current literature examining the relationship between energy
prices and other commodity prices are mixed and generally
ambiguous, which may be due to the use of different models
based on various assumptions and analysis of different timescales
(Tiwari et al., 2020). Because different processes influence both
the demand side and the supply side of commodities, various
price movements are be observed in different commodity sectors
(Balli et al., 2019; Ji et al., 2019). The central position of crude
oil in commodity markets and the economy as a whole is
crucial. After considering the interactions between widely traded
commodities including agriculture, metals, industries, and crude
oil, no significant contribution was made in measuring the
volatility spillover effects. Given that risk management and the
international portfolio diversification strategies are implemented
at the sector levels, it is important to study the heterogeneous
impact of crude oil prices on different commodity sectors.
Therefore, we are trying to fill the research gap by investigating
the volatility transmission mechanism between crude oil prices
and China’s commodity market at the disaggregated sectors level
instead of the aggregate market level.

Second, we combine the SV model and the GFEVD
framework of the DY (2012) (DY12) to explore the dynamic
spillovers between crude oil markets and China’s bulk
commodity. Previous studies (Vivian and Wohar, 2012; Efimova
and Serletis, 2014; Youssef et al., 2015; Jiang et al., 2019; Yang
and Hamori, 2018) adopt models that use historical or implied
volatility measures. We highlight that the volatility of crude
oil and other commodity price is a naturally stochastic process
and that the SV model is superior in modeling commodity
volatilities due to limited assumptions. Moreover, the GFEVD
framework is a simple and intuitive measure of interdependence
of volatilities, and the economic interpretation of spillover
indicators in the GFEVD framework is closely related to recently
developed risk measurements. Thus, our combination of the

SV model and the GFEVD framework provides strong evidence
for risk management of commodity markets and international
portfolio strategies.

Third, we investigate the volatility transmission mechanism
between crude oil and commodities, with an emphasis on the
volatility spillover effects generated by shocks with heterogeneous
frequency response. By adopting the GFEVD framework of the
DY12 and the extended time-frequency connectedness measures
of the BK (2018) (BK18), we track the long-, medium-, and
short-term volatility spillovers from pairwise to systemwide, in
a coherent way. It is reasonable and necessary to investigate the
oil-commodity volatility spillovers at different time frequencies
because multiple economic agents generally operate on diverse
investment horizons owing to their differences in beliefs,
preferences, levels of information assimilation, or risk tolerance.

Finally, China is a favorable setting to gain insight into
volatility spillover effects between international crude oil prices
and commodities. With the rapid rise and the increasing
importance of developing countries, the impact of crude oil
prices on financial markets in developing countries has become
an important issue. However, developing countries, in particular
China, have not received adequate research attention. To the
best of our knowledge, no study is available regarding the
dynamic time-frequency spillovers between crude oil markets
and China’s bulk commodity sectors, and we are trying to fill this
research gap.

The remainder of the study is structured as follows. Section
2 introduces the empirical methodology. Section 3 describes the
data, whereas Section 4 depicts the empirical results and findings.
The conclusions are shown in Section 5.

EMPIRICAL METHODOLOGY

Stochastic Volatility Models
Previous empirical studies rely mostly on time-series models
such as the ARCH and GARCH models (Engle, 1982; Engle and
Bollerslev, 1986) to capture volatility structure of commodity
prices (Vivian and Wohar, 2012; Efimova and Serletis, 2014;
Youssef et al., 2015; Jiang et al., 2019). However, these time-series
models do not provide a clear unified methodology to reveal
volatility dynamics operating between the involved variables
and to identify structural changes (Jebabli et al., 2014). The
ARCH or GARCH models aim to model the volatility in a
deterministic specification, which may lead the models to be
trapped into model misspecification. Even with standard Student
t innovations, the performance of ARCH or GARCH models
in capturing tail behavior of commodity prices is still limited.
Some important attributes are shown in financial time series
(e.g. the commodity prices), which may play an essential role
in determining the results of estimates and hypothesis tests,
including unit roots, cointegration, causality, and structural
breaks (Bekiros and Georgoutsos, 2008; Maslyuk and Smyth,
2009; Chen et al., 2014; Liu, 2016). Besides, the ARCHor GARCH
models are affected by the shocks to the second moments, which
are dependent on the first moments. In many cases, it is difficult
for the ARCH or GARCH models to obtain convergence of the
optimization algorithms used to estimate the parameters.
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Considering the above aspects, we adopt the SV model
to characterize crude oil prices and commodity market
price volatility. The SV model captures the volatility process
probabilistically (Kastner and Frühwirth-Schnatter, 2014) and
thus is superior in modeling leverage effect and considering
excess skewness and kurtosis of financial time series (Shephard
and Andersen, 2009; Yang and Hamori, 2018). Besides, the
SV model has significant flexibility in capturing empirical
volatility owing to its limited assumptions and ability to capture
contemporaneous fluctuations (Hafner and Preminger, 2010).
The SV model describes the volatility process as an unobserved
component that follows a specific latent stochastic process, such
as the AR process of order 1. Let, t = 1, ...,T be the natural log
return for commodities at time t. Then the SV model is specified
as follows:

rt = rht/2εt (1)

ht = ∂ + ϕ(ht − ∂)+ σηt (2)

where εt and ηt are independent standard normal innovations
for all t belonging in {1, ...,T}. The unobservable process
h = (h0, h1, ..., hT) appearing in state equation (2) is usually
interpreted as the latent time-varying volatility having the
initial state distribution ho |r,φ, σ ˜N(r, σ 2/(1− φ2) ). The latent
sequence controls the value or distribution of the observed
data, especially the variance of the observed data. Equations
(1, 2) are the SV model in its centered parameterization.
Kastner and Frühwirth-Schnatter (2014) propose the centered
parameterization of the above model:

rt ∼ N(0, r∂+σ ĥt ) (3)

ĥht = ϕĥht−1 + ηt , ηt ∼ N(0, 1) (4)

Whether the first or second parameterization in the above model
is preferred for estimation depends on “true” parameters (Kastner
and Frühwirth-Schnatter, 2014). But the Markov chain Monte
Carlo (MCMC) sampling techniques are necessary for Bayesian
estimation because both of the parameters have intractable
likelihoods. The authors also propose the ancillarity-sufficiency
interweaving strategy (ASIS) to overcome the efficiency loss
problem in the parameter estimation process. Kastner (2019)
provides the R package stochvol to implement this method.

Volatility Spillover Measures
Since the global financial crisis (GFC), a growing number of
studies are conducted to explore the connectedness between
crude oil and commodity markets, and their methods can be
broadly classified into several categories: VAR or structural VAR
(SVAR) (Wang et al., 2014; de Nicola et al., 2016); GARCH
models (Ji and Fan, 2012; Ewing and Malik, 2013; Jiang et al.,
2019); Copula models (Koirala et al., 2015); nonparametric
causality analysis (Nazlioglu et al., 2013); vector error correction
model (VECM);Markov regime switching (MRS)models (Uddin
et al., 2018); and forecast error variance decomposition (FEVD)
(Diebold et al., 2017; Lovcha and Perez-Laborda, 2020). However,

the previous literature generally underestimates connectedness
among commodity markets of a particular class or group, while
there are few studies focusing on the oil-commodity nexus at
the industry level. Our research is different because we take
into account commodities in various sectors and decompose
the total volatility spillovers into different frequencies. The
GFEVD framework, developed in a series of studies including
Diebold and Yilmaz (2009, 2012, 2014), provides a simple
and intuitive measure of interdependence of different asset
returns or volatilities. This new methodology is adopted here
because it can measure both the total and directional volatility
spillovers between crude oil market and China’s commodity
sectors and can also reveal the levels of volatility spillovers
within different markets. Moreover, the economic interpretation
of the volatility spillover indices in the GFEVD framework is
closely related to recently developed risk measurements (Diebold
and Yilmaz, 2014), like the CoVaR (Adrian and Brunnermeier,
2011) or the marginal expected shortfall (Acharya et al., 2017).
This is highly consistent with the goal of commodity market
risk management in this article. On the other hand, the
time-frequency version of the GFEVD framework developed
by Baruník and Krehlík (2018) allows one to simultaneously
capture the magnitude and direction of volatility spillovers
over time and across frequencies. From an econometric point
of view, this novel methodology not only captures time-
varying information of volatility spillovers but also provides
different frequency domains from aggregated correlations, which
can identify specific frequencies that contribute the most to
system connectedness.

Thus, we apply the GFEVD framework of DY12 to measure
the volatility spillovers between crude oil prices and China’s bulk
commodity markets. Consider an N-variable VAR(P) system:

Yt = 81Yt−1 + 82Yt−2 + ...+ 8pYt−p+εt , εt ∼ N(0,6) (5)

where Yt denotes the N × 1 vector at time t;εt is white noise; and
ω1,ω2,. . . ,ωp are coefficient matrices. With theN×N matrix lag-
polynomial, 8(L) = [80 − 81L− · · · − 8pL

p], where 80 is the
identity matrix and 81, ...,8p are the N ×N coefficient matrices,
we can rewrite model (5) as follows:

8(L)Yt = εt (6)

Next, we rewrite model (6) as the moving average process to get
the dynamic structure in our system:

Yt = 9(L)εt (7)

where 9(L) = [8(L)]−1. We employ the GFEVD of H-step
forecast to examine howmuch each volatility variable contributes
to explaining other volatility variables:

(2H)k,j =
∑−1

j,j

∑H
h=0 ((9h6)k,j)

2

∑H
h=0 (9h69

′
h
)
k,k

(8)

where H is the forecast horizon and 9h is a N × N matrix of
moving average coefficients at lag h defined above. Following

Frontiers in Energy Research | www.frontiersin.org 4 April 2020 | Volume 8 | Article 45

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Li and Su Volatility Spillover Effects

Diebold and Yilmaz (2012), the volatility spillover is then defined
by the shares of variance in the forecast contributed by other than
own errors or equally as the ratio of the sum of the off-diagonal
elements to the sum of the whole matrix:

SH =
∑n

k=1,k 6=j (2̃H)k,j
∑

k,j (2̃H)k,j
= 1−

∑n
k=1 (2̃H)k,k

∑

k,j (2̃H)k,j
(9)

where (2̃H)k,j is the standardized effects denoted as

(2̃H)k,j=
(2H)k,j

∑n
j=1 (2H)k,j

(10)

Because the generalized impulse responses and variance
decompositions are invariant to the ordering of variables, the
directional spillovers of the DY12 can be calculated by the
normalized generalized variance decomposition matrix. So it
is clear that (2̃H)k,j can measure the SV spillover from the

commodity market j to k, and SH can measure the total SV
spillover in our system. To get the net spillover of international
crude oil prices to China’s bulk commodity markets, we further
calculate the net SV spillover index:

SHk,j = (2̃H)j,k − (2̃H)k,j (11)

Of course, SH
k,j

can also be used to examine net spillovers between

different commodity markets in China.

Time-Frequency Decomposition of
Volatility Spillover Measures
However, the volatility spillovers among commodity markets are
not the same at different time frequencies, because agents with
different preferences operate on different investment horizons.
Following the BK18, we consider the time-frequency dynamics of
the SV spillovers. We use the spectral representation framework
of the GFEVD to implement frequency decomposition. We
define the generalized causation spectrum over frequency ω ∈
(−π ,π) as follows:

(f (ω))k,j =
6−1

j,j

∣

∣(9(e−iω)6)k,j
∣

∣

2

(9(e−iω)69
′
(e+iω))k,k

(12)

where 9(e−iω)=
∑

h e
−iωh9h h = 1, ....,H, which is the Fourier

transform of 9 , with i =
√
−1. As noted by Baruník and Krehlík

(2018), the forecast horizon H is not important as the GFEVD
implemented here is unconditional. To obtain the generalized
variance decompositions on frequency band d, d = (a, b), a,b ∈
(-π ,π), we weight (f (ω))k,j by the frequency shares of the variance

of the j-th volatility. Thus, the weighting function can be defined
as follows:

Ŵk(ω) =
9(e−iω)69

′
(e+iω)k,k

1
2

∫ π

−π
(9(e−iλ)69

′
(e+iλ))k.kdλ

(13)

The generalized variance decompositions on frequency band d
are denoted as follows:

(2d)k,j =
1

2

∫ ∞

d
Ŵk(ω)(f (ω))k,jdω (14)

With the spectral representation of the generalized variance
decompositions, we can easily calculate the scaled generalized
variance decompositions:

(2̃d)k,j=
(2d)k,j

∑

j (2∞)k,j
(15)

where (2∞)k,j=
1
2

∫ π

−π
Ŵk(ω)(f (ω))k,jdω. Furthermore, we can

calculate the total volatility spillover measures under the
frequency band d as follows:

CW
d = 100 · (1− Tr{2̃d}

∑

2̃d

) (16)

And the aggregate measure under frequency band d is

CF
d = 100 · (

∑

2̃d
∑

2̃∞
− Tr{2̃d}

∑

2̃d

)=CW
d

∑

2̃d
∑

2̃∞
(17)

Thus, CF
d

is defined as the frequency SV spillovers in our
system. It is relatively easy to find the relationship between the
frequency spillovers of the BK18 and the original total spillovers
of the DY12:

∑

ds
CF
d = C (18)

where C is the total spillovers of the DY12.
Therefore, this study combines the SV model with the

GFEVD framework and its time-frequency version to study the
dynamic spillovers between the crude oil market and China’s bulk
commodity sectors. Our research framework provides a better
understanding of volatility in the commodity price, as previous
studies gauge crude oil and commodity prices by only using the
historical or implied volatility measures. Based on the SVmodels,
we further adopt the GFEVD framework and its frequency
decomposition to evaluate the magnitude and direction of SV
spillovers between oil prices and the different commodity sectors
over time and across time frequency.

DATA AND DESCRIPTIVE STATISTICS

In this paper, we mainly focus on the time-frequency dynamic
spillovers among crude oil prices and China’s bulk commodity
sectors. Our underlying data are the daily spot closing prices of
crude oil and commodity index in China. We adopt the WTI
futures of the New York Mercantile Exchange from the EIA
as the proxy for the benchmark of the international crude oil
markets. We select a group of nine commodity sectors, including
precious metals (NMFI), nonferrous metals (NFFI), coal coke
and steel ore (JJRI), nonmetal building materials (NMBM),
energy (ENFI), petrochemicals (CIFI), grains (CRFI), oils and
fats (OOFI), and soft commodities (SOFI). Compared with the
sectors in the existing literature (Chen, 2015; Jiang et al., 2019),
these nine commodity sectors are comprehensive selections for
the analysis of China’s commodity markets. They can not only
capture the price fluctuations of the entire commodity markets
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TABLE 1 | China’s commodity sectors and the detailed components.

Abbreviation Sectors Components

NMFI Precious metals Gold, silver

NFFI Nonferrous metals Aluminum, copper, lead, nickel, tin, zinc

JJRI Coal coke and steel ore Coking coal, coke, iron ore, rebar, hot coil, wire rod, ferrosilicon, ferromanganese

NMBM Nonmetal building materials Fiberboard, plywood, glass, PVC

ENFI Energy Coal, fuel oil

CIFI Petrochemicals Methanol, plastics, polypropylene, asphalt, rubber

CRFI Grains Corn, cornstarch, rice, soybeans, wheat

OOFI Oils and fats Palm oil, rapeseed meal, rapeseed oil, soybean meal, soybean oil

SOFI Softs Sugar, cotton

The detailed compilation method of China’s commodity sector price indices in this article can be found from the Wind official database (http://www.wind.com.cn/).

PVC

in China but also reflect the supply and demand relationship of
different commodity sectors. According to data availability, the
daily dataset of commodity sector price indices spans from 1 June
2009 to 31 May 2019, which yields a total of 2,434 observations
from the Wind official database (http://www.wind.com.cn/). The
Wind commodity sector indices, jointly compiled by Wind
Corp., are based on a weighted average of the components
selected for each sector. We exclude the Wind agricultural
sideline products Index as the index starts at 01 September
2015. If we consider the agricultural sideline products sector,
this will lead to a reduction in sample time by half. The selected
commodity sectors and the particular components are reported
in Table 1.

In order to easily observe all price series, we plot the dailyWTI
oil price and China’s commodity sector price indices in Figure 1.
From Figures 1A,B, we can find that these indices produced
significant fluctuations during the entire sample period. First,
after the financial crisis in 2008, the price indices showed
an upward trend. Subsequently, during the period 2010–2011,
affected by the European sovereign debt crisis, these price
indexes experienced the most dramatic fluctuations. The most
striking feature is that in the second half of 2014: owing to
the impact of imbalance between supply and demand, WTI
crude oil prices experienced the largest plunge in the entire
sample period, but the decline in China’s commodity sector
price indexes was relatively flat. Besides, owing to the impact
of the Chinese stock market crisis in 2015, China’s commodity
sector price indexes dropped a lot and then slowly rose back to
previous levels.

Then we calculated their logarithmic returns, that is, rt =
ln(pt/pt−1 ). We provide descriptive statistics for the log
returns in Table 2. The mean values of the indexes are nearly
zero, and the standard deviation for the crude oil is more
significant than that of the nine commodity sector price indices.
This shows that the international crude oil market is more
unstable. From the skewness and kurtosis values, we can find that
China’s commodity sector price indices have various dynamic
statistical characteristics. Except for JJRI, the skewness of the
other variables is <0, which indicates that they have a left-
biased distribution. The kurtosis in six commodity markets

FIGURE 1 | The plot of price indexes. WTI, West Texas intermediate.

(NMFI, JJRI, NMBM, ENFI, CRFI, and SOFI) exceeds 3,
indicating a leptokurtic distribution. And the kurtosis of the
remaining commodity markets is <3, showing a platykurtic
distribution. According to the results of the Jarque–Bera (J-
B) test, all return series reject the null hypothesis of normal
distribution at a significance level of 1%. The augmented Dickey–
Fuller (ADF) test results show that all series are stable at
a significance level of 1%. At last, according to the Ljung–
Box Q(20) statistics, there are high-order autocorrelations in
the return series of the six commodity markets (NMFI, NFFI,
JJRI, ENFI, CRFI, and SOFI), whereas the remaining sectors
do not.

Frontiers in Energy Research | www.frontiersin.org 6 April 2020 | Volume 8 | Article 45

http://www.wind.com.cn/
http://www.wind.com.cn/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Li and Su Volatility Spillover Effects

TABLE 2 | Descriptive statistics of variables.

Min. Max. Mean Std. Skew. Kurt. J-B ADF Q(20)

WTI −4.688 5.047 −0.005 0.899 −0.010 2.728 757.300*** −35.101*** 22.969

NMFI −4.040 2.849 0.000 0.518 −0.273 5.451 3,050.1*** −34.256*** 34.519**

NFFI −2.721 2.442 0.002 0.540 −0.179 2.855 842.1*** −35.280*** 35.497**

JJRI −3.297 2.862 −0.007 0.622 0.022 3.299 1,107*** −33.647*** 36.468**

NMBM −4.737 2.439 −0.011 0.469 −0.366 6.734 4,662.8*** −34.859*** 12.306

ENFI −7.727 4.899 −0.005 0.566 −0.925 22.500 51,770*** −37.438*** 74.326***

CIFI −2.575 2.657 −0.005 0.646 −0.165 1.310 185.8*** −33.993*** 26.655

CRFI −4.301 1.443 0.001 0.286 −1.318 24.319 60,850*** −37.601*** 49.52***

OOFI −2.014 2.024 −0.004 0.418 −0.162 1.596 270.04*** −35.368*** 24.891

SOFI −2.652 2.202 0.000 0.424 −0.189 4.693 2,253.7*** −34.144*** 33.851**

J-B, ADF, and Q(20) indicate the Jarque–Bera test, the augmented Dickey–Fuller test, and the Ljung–Box serial correlation test, respectively. “**” and “***” denote statistical significance

at the 5 and 1% levels, respectively.

TABLE 3 | Volatility spillover results of the DY(2012).

WTI NMFI NFFI JJRI NMBM ENFI CIFI CRFI OOFI SOFI FROM

WTI 99.25 0.50 0.60 0.40 0.60 1.10 0.6 0.6 0.4 0.2 0.70

NMFI 2.00 99.17 1.40 0.20 1.00 1.60 0.20 0.10 0.30 1.50 0.76

NFFI 3.20 1.40 98.97 1.90 0.40 0.20 0.40 0.40 1.90 0.30 0.92

JJRI 2.80 1.60 1.60 98.86 1.10 0.20 0.20 2.20 1.40 0.30 1.04

NMBM 1.10 0.80 0.00 0.50 98.97 0.20 0.70 5.00 1.90 0.10 0.94

ENFI 2.70 0.00 3.00 3.10 1.80 98.51 1.00 0.60 2.40 0.30 1.36

CIFI 1.40 0.30 0.50 0.30 2.30 0.90 99.27 1.40 0.00 0.10 0.66

CRFI 0.90 0.80 0.10 2.40 5.90 1.40 0.80 98.47 3.00 0.00 1.40

OOFI 1.00 0.80 3.80 1.70 2.60 1.60 0.40 0.90 98.65 0.80 1.24

SOFI 0.30 1.80 0.70 0.50 1.40 0.70 0.80 0.70 0.40 99.27 0.67

TO 1.41 0.73 1.07 1.01 1.56 0.72 0.47 1.09 1.07 0.33 10.5

Net 0.71 −0.03 0.15 −0.03 0.62 −0.64 −0.19 −0.31 −0.17 −0.34

EMPIRICAL RESULTS AND FINDINGS

The Stochastic Volatility Measures
Before starting MCMC for Bayesian estimation, we should
specify the configuration and parameters. Following the Kastner
and Frühwirth-Schnatter (2014), we choose the prior between
0 and 100 because it usually carries enough information. The
prior variance of the logarithmic hyperparameter is set to 1. The
burn-in size of MCMC aging size is set to 1,000, and the number
of iterations after burn-in is set to 10,000. Last, to neutralize
their possible effects, three thinning parameters are set as 1.
Figure 2 is the plot of posterior quantiles of the latent volatilities
in percentages.

Figure 2 summarizes the time-series plots of posterior
quantiles of the latent volatilities in percentages.

The posterior 5, 50, and 95% quantiles are plotted. Further
study of SV spillovers is based on the 50% quantile level of
the latent volatilities, that is, SV. For the sake of brevity, plots
of posterior and prior densities are retained. The results show
excellent convergence during the estimation process. Additional
graphic information is available upon request from the author.

Figure 2 presents that the volatility of WTI oil price and

China’s commodity sector price indices varies significantly in
the time, which reinforces the use of the GFEVD framework

with SV to avoid biased estimation because posterior estimates

of stochastic volatilities are significant. We observe that SV of

most of China’s commodity sector price indices has some sub-
periods with similar evolutions as WTI oil. In fact, often when

high volatilities are observed for WTI oil prices, volatilities in

China’s commodity sector prices are observed, but with different
magnitudes. This observation suggests that there is volatility

transmission from international crude oil markets to China’s

commodity sectors. The GFEVD framework allows us to test
for that. Figure 2 also illustrates that during the European

sovereign debt crisis in 2011 and the Chinese stock market crisis
in 2015, the SV of the variables is higher. This observation

reveals the phenomenon of commodity market financialization.

Moreover, Figure 2 also shows that the SV of different China’s

commodity sector prices is significantly heterogeneous. For

example, compared with that of other sectors, the SV of precious

metals (NMFI) commodities (Figure 2B) is less susceptible to
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FIGURE 2 | The plots of estimated posterior stochastic volatility levels. (A) WTI, (B) NMFI, (C) NFFI, (D) JJRI, (E) NMBM, (F) ENFI, (G) CIFI, (H) CRFI, (I) OOFI, and

(J) SOFI.
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FIGURE 3 | Total return spillovers of West Texas intermediate (WTI) futures and China’s bulk commodity sectors. (A) The total return spillovers measured by Diebold

and Yilmaz (2012), lag = 2, window size = 200. (B) The frequency decomposition measured by Baruník and Krehlík (2018), lag = 2, window size = 200. Short term:

frequencies from 1 to 5 days’ period (0 week, dark turquoise). Medium term: frequencies from 5 to 20 days’ period (week–month, deep pink). Long-term: frequencies

from 20 to 200 days’ period (month–year, rosy brown).

crisis events. This indicates that precious metals can be used to
hedge uncertainty and that it is an alternative investment tool.
This feature of Figure 2 provides evidence for our subsequent
study of the heterogeneous spillover effects of oil prices on
different China’s commodities sectors.

Dynamic Spillovers Between Crude Oil
Prices and China’s Bulk Commodity
Sectors
We use the framework of GFEVD (DY12) to recover the
dynamic spillovers between crude oil prices and China’s bulk
commodity sectors, and then we use the spectral representation
of GFEVD (BK18) to investigate the time-frequency dynamic
spillovers. According to Baruník and Krehlík (2018), if the
forecasting horizonH < 100, the model is invalid. Consequently,
we use a 100-day ahead forecasting horizon for variance
decomposition, that is, H = 100. In fact, the forecast horizon
H is not as important as the GFEVD implemented here, which
is unconditional. Because the static results of the GFEVD
framework over the entire sampling period may smooth out the
results when the relationship between the variables changes over
time (Lovcha and Perez-Laborda, 2020), this paper considers
both the static and dynamic spillover effects to obtain more
comprehensive estimations. For the dynamics of spillover effects,
we employ the moving-window method to analyze the DY12
and BK18. Similar to the existing literature (Toyoshima and
Hamori, 2018; Balli et al., 2019; Wang and Wang, 2019) we set
the length of the window at 250 trading days, 370 trading days,
and 500 trading days. We find that the plots of these trading
days have almost the same trends. For the sake of simplicity, we
only present the results of a rolling window of 500 trading days.
The plots of other window lengths are available upon request
from the authors. In addition, we choose the optimal lag order
of the VAR according to the Akaike information criterion (AIC).
In frequency domain, following Baruník and Krehlík (2018), we

use Fourier transform to decompose the spillover measures of
the DY12 into three different frequency bands. The frequency
bands are up to 1 week, 1 week to 1 month, and 1 month to
a year calculated as CF

ds
on the corresponding bands of d1 ∈

[1, 5], d2 ∈ [5, 20], d3 ∈ [20, 200] trading days. We refer to
frequency bands accordingly as short-term, medium-term, and
long-term frequencies.

First, we measure the total spillovers of the log returns in our
system. Figure 3 shows total return spillovers of WTI futures
and China’s bulk commodity sectors. The left plot (Figure 3A)
is measured by the DY(2012), and the right part (Figure 3B) is
measured by the BK(2018). As shown in Figure 3A, the overall
return spillover is informative and time varying. In the beginning,
the total return spillover of the entire system is relatively high,
which may be associated with the European sovereign debt crisis
of 2010–2011, when financial institutions in some European
countries were over-indebted and government debt could not
be refinanced. At the same time, the political unrest in the
Middle East and North Africa, particularly in countries such
as Libya and Egypt, may contribute to the high level of the
overall return spillovers. After the commodity markets started
to recover from this crisis, the return spillovers slowly dropped
back, reaching the lowest point around mid-2014. From the
second half of 2014, the overall return spillovers began to increase
dramatically, which may be influenced by the 2014 international
crude oil crisis. Note that the overall return spillovers are at its
second peak during 2015–2016, second only to the European debt
crisis period, which may be related to the Chinese stock market
disaster. In June 2015, the Chinese stock market experienced
massive fluctuations with the Shanghai Composite Index fell
from 5,174 points to 3,373 points. The disruption of the Chinese
stock market increased the uncertainty of the oil market and
commodity sectors, leading to a significant increase in the total
return spillovers. The findings complement the finding of Balli
et al. (2019) and Wang and Wang (2019), who reported that
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FIGURE 4 | Total volatility spillovers of West Texas intermediate (WTI) futures and China’s bulk commodity sectors. (A) The total volatility spillovers measured by

Diebold and Yilmaz (2012), lag = 2, window size = 200. (B) The frequency decomposition measured by Baruník and Krehlík (2018), lag = 2, window size = 200.

Short-term: frequencies from 1 to 5 days period (0-week, dark turquoise). Medium-term: frequencies from 5 to 20 days period (week-month, deep pink). Long-term:

frequencies from 20 days to 200 days period (month-year, rosy brown).

commodity markets displayed closer interconnectedness during
financial crisis periods such as the GFC and China’s 2015 financial
crisis. After hitting the highest points, the total return spillovers
slowly dropped again. Figure 3B displays the time-frequency
dynamics of return spillovers. As seen in Figure 3B, the return
spillovers of short-term frequency (in dark turquoise) display
a similar trend with the total return spillovers in Figure 3A,
whereas the return spillovers of medium-term (in deep pink) and
long-term (in rosy brown) frequencies are both relatively smooth.
Moreover, the return spillovers of the short-term frequency
component are almost always more significant than those of
the medium-term and long-term frequency components. Thus,
it is evident that the return spillover in our system is driven
mostly by the high-frequency information within a week. The
frequency components of total volatility spillovers indicate that
total return spillovers among crude oil and China’s commodity
sectors are mostly driven by the transmission of shocks in the
short term.

We turn next to the overall volatility spillover in our system
with the framework of the DY12 and the BK18 on the SV series.
As shown in Figure 4, the total volatility spillovers display a “zig”
pattern at first glance. Comparing Figure 4 with Figure 3, we
see that the total volatility spillovers are more volatile than the
total return spillovers and that the total volatility spillovers react
more violently to extreme events than returns. In Figure 4A,
during the 2010–2011 European sovereign debt crisis and 2015
China stock market disaster, the total volatility spillovers of
the entire system are large. And the total volatility spillovers
increased most sharply in 2014, which may be caused by the
international oil crisis. In addition, we can also identify the
impact of other important economic or geopolitical events from
Figure 4A, such as Iran’s geopolitical tensions in 2012, China’s
market-oriented reform on July 20, 2013 and Organization
of Petroleum Exporting Countries’s (OPEC’s) production cut
agreement at the end of 2017 and so on. Our findings are
consistent with the view that these events represent important

geopolitical and economic factors affecting risk spillovers or the
shocks of oil supply and demand (Krehlík and Baruník, 2017;
Wang andWang, 2019). As displayed in Figure 4B, it is clear that
the total volatility spillover in our system is also mainly driven
by high-frequency information (in dark turquoise), although
the contribution of the medium-frequency and low-frequency
components is significant. In other words, the total risk spillover
between crude oil and China’s bulk commodity sectors is
primarily driven by the transmission of shocks in the short term
(within a week). This means that the commodity markets process
information quickly, so the shocks on any commodity market are
usually passed quickly to others within a week. Importantly, this
result can help us better understand how financial shocks and
geopolitical events affect frequency volatility spillovers among
various commodity markets.

Then, our empirical analysis focuses on the directional
spillovers from crude oil prices to China’s commodity sectors
and their frequency components. As illustrated in Figure 5, the
volatility spillovers from crude oil prices to China’s commodity
sectors also display a “zig” pattern, which implies the volatility
spillovers from crude oil prices to China’s commodity sectors
are highly susceptible to economic and political global shocks.
Some local increases or decreases in Figure 5 can be associated
with the economic or geopolitical events that are affecting oil-
commodity volatility spillovers. For example, volatility spillovers
from the crude oil market to China’s commodities sector,
especially within the frequency band of up to 1 week, increased
significantly in 2012, 2014, and 2018, which may be associated
with Iran’s geopolitical tensions in 2012, the international oil
crisis in 2014, and U.S. economic sanctions on Iran in 2018. It
is also noteworthy that the results of frequency decomposition in
Figure 5B reconfirm that any information shocks from the crude
oil market can get transmitted to China’s commodity sectors
very quickly.

To provide further insights into the volatility spillovers,
Figure 6 offers net volatility spillovers from the oil market to
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FIGURE 5 | Volatility spillovers from West Texas intermediate (WTI) to China’s bulk commodity sectors. (A) The total volatility spillovers from WTI to China’s bulk

commodity sectors measured by Diebold and Yilmaz (2012), lag = 2, window size = 200. (B) The frequency decomposition measured by Baruník and Krehlík (2018),

lag = 2, window size = 200. Short-term: frequencies from 1 to 5 days period (0-week, dark turquoise). Medium-term: frequencies from 5 to 20 days period

(week-month, deep pink). Long-term: frequencies from 20 days to 200 days period (month-year, rosy brown).

FIGURE 6 | Net volatility spillovers from West Texas intermediate (WTI) to China’s bulk commodity sectors.

China’s commodity sectors. When the value of the net volatility
spillovers is positive, it represents that the international crude
oil market is a spillover contributor; that is, it transmits net
volatility spillovers to China’s commodity sectors, and therefore,
it is called a “spillover transmitter.” On the other hand, if the
net spillover value is negative, it implies that the international
crude oil market is a net receiver; that is, it receives the spillovers
from China’s commodity sectors, and therefore, it is called a
“spillover receiver.” As illustrated in Figure 6, the net spillovers
from crude oil prices to China’s commodity sectors are mostly
positive. This means that the fluctuations of international crude
oil prices have a significant spillover effect on China’s commodity
sectors, suggesting that the crude oil market is a spillover
transmitter of our system. However, in a few periods, the net
spillovers are negative, such as during China’s market-oriented
reform in 2013 and the Chinese stock market disaster in 2015.
This indicates that individual severe shocks from China’s bulk
commodity markets are likely to increase the uncertainty of

international crude oil markets. Our conclusion is consistent
with the research on the relationship of crude oil markets
and the Chinese stock market (Bai and Koong, 2018; Wang
and Wang, 2019). There is no doubt that with the opening
and development of China’s financial market, its influence
on the international financial market is increasing. The local
increase or decrease of Figure 6 can even more easily identify
some important economic or geopolitical events that affect oil-
commodity volatility spillovers than Figure 5. For instance, Iran’s
geopolitical tensions in 2012 and the international oil crisis in
2014 possibly increase the net spillovers fromWTI to China’s bulk
commodity sectors.

Accurately, the time-frequency components of the net
volatility spillovers are reported in Figure 7. As seen in Figure 7,
over most of the sample periods, the signs of different time-
frequency net volatility spillovers are consistent, and the short-
term net volatility spillovers are larger than the medium-term
and long-term components, which reconfirms the importance
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FIGURE 7 | Frequency decomposition of net volatility spillovers from West Texas intermediate (WTI) to China’s bulk commodity sectors. The explanation of frequency

decomposition is consistent with Figure 1.

TABLE 4 | Net volatility spillover results from oil market to China’s commodity sectors.

Net spillovers WTI-NMFI WTI-NFFI WTI-JJRI WTI-NMBM WTI-ENFI WTI-CIFI WTI-CRFI WTI-OOFI WTI-SOFI

DY(2012) 1.5 2.6 2.4 0.5 1.6 0.8 0.3 0.6 0.1

BK(2018) with short-term frequency 0.9 1.6 1.5 0.3 1.0 0.6 0.2 0.4 0.1

BK(2018) with medium-term frequency 0.4 0.7 0.5 0.2 0.3 0.2 0.1 0.2 0.0

BK(2018) with long-term frequency 0.1 0.2 0.2 −0.1 0.1 0.1 0.0 0.0 −0.1

WTI, West Texas intermediate; DY(2012), Diebold and Yilmaz (2012); BK(2018), Baruník and Krehlík (2018).

of short-term factors. This result is also consistent with the
conclusion of total return and volatility spillovers (Figures 3,
4), confirming that the net spillovers from the crude oil market
to China’s commodity sectors are dominated by short-term
information (within a week). Meanwhile, the net volatility
spillovers of the medium-term and long-term components
cannot be underestimated, especially during 2011, 2013, and
2015, which may be associated with the European sovereign debt
crisis of 2010–2011, China’s market-oriented reform in 2013, and
the Chinese stock market disaster in 2015. There are significant
differences in the signs of different net volatility spillover
components. Even though the short-term net volatility spillovers
are positive, the medium-term and long-term components are
negative. And the absolute value of the medium-term net
spillover is even greater than the short-term net spillover
at some extreme moments. This suggests that the negative
net spillovers during 2013 and 2015 in Figure 6 are mainly
attributable to the medium-term and long-term net spillovers.
Therefore, uncertain financial factors such as China’s market-
oriented reform in 2013 and China’s 2015 stock disaster will
affect the net oil-commodity volatility spillovers through the
medium-term components (week to month) and long-term
components (month to year). In addition, the dynamic net
volatility fluctuated considerably during the whole sample
period for the three time-frequency components, suggesting
that crafting well-diversified portfolios with oil and oil-related
assets (such as commodities) is an arduous and complicated
task. Those frequency results may help investors and portfolio

managers with different investment horizons to implement better
portfolio diversification.

Heterogeneous Spillovers From the Crude
Oil Market to China’s Commodities Sectors
The empirical analysis above has examined the dynamic
spillovers of the international oil market and China’s commodity
sectors in a rolling window. To help the investors make informed
decisions about asset allocation, and to help policymakers make
effective macroeconomic policies about stabilizing commodity
markets, we turn to study whether the oil market poses
heterogeneous spillovers to different commodity sectors in
China. We examine the pairwise volatility spillovers for the
entire sample period. Table 3 displays the values of the
volatility spillovers of the DY(2012). When the net spillover
value is positive, it means that the particular commodity
sector under consideration is a risk contributor: it passes the
net volatility spillover to other commodity sectors. On the
other hand, if the net spillover value is negative, it means
that a particular commodity sector is a net risk receiver;
that is, it receives spillovers from other commodity markets.
During the full sample period, WTI is the most critical risk
contributor to our system, with a net volatility spillover of
0.71. Nonferrous metals (NFFI) and the nonmetal building
materials (NMBM) are the other two main risk contributors,
with the net volatility spillover of 0.15 and 0.62, respectively.
Energy (ENFI), petrochemicals (CIFI), and the agriculture
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commodity sectors in China (including CRFI, OOFI, and SOFI)
are spillover receivers.

To obtain more detailed information about the volatility
spillovers from the oil market to China’s different commodity
sectors, we calculate the net pairwise spillover results in
Table 4. For one thing, most of the values in the table are
positive, indicating that the international crude oil market has
a significant positive volatility spillover to China’s commodities
sectors, and the volatility spillover is mainly caused by
short-term components because the values of short-term
frequency components are mostly larger than those of the
medium-term and long-term components. This result is
consistent with the conclusion of Dynamic Spillovers Between
Crude Oil Prices and China’s Bulk Commodity Sectors. For
another thing, the spillover effects from the crude oil market
to different commodity sectors are heterogeneous. Specifically,
the crude oil market has the strongest volatility spillover effects
on nonferrous metals (NFFI), coal coke and steel ore (JJRI),
energy (ENFI), and precious metals (NMFI) commodity sectors;
followed by petrochemicals, nonmetal building materials, and
oils and fats; and the least on grains and soft commodities.
For the nonferrous metals sector, some nonferrous metals (e.g.,
aluminum) have to go through the energy-intensive primary
processing. Fluctuations in crude oil prices are often related to
inflationary pressures, and expectations for demand for precious
metals will change. Therefore, international crude oil prices have
a large net spillover effect on China’s metals commodity sector.
For the energy sector, this result is evident since crude oil and
belongs to the energy asset class; therefore, shocks from both
oil supply and demand have severely affected the energy sector
(Caporale et al., 2015). This reason applies to the coal coke and
steel ore sector, as it also belongs to the energy class. Comparing
with other sectors, we find that the net spillover effect of oil
prices on the agriculture commodity is relatively weak, which
may be associated with their less strong and indirect industry
correlations. Although the shocks of oil price may be transmitted
to the agricultural market by affecting the prices of transportation
and agricultural inputs (Du et al., 2011), this spillover effect
is relatively insignificant. The results for the agricultural sector
are similar to the research of Kaltalioglu and Soytas (2011),
who do not find any volatility spillovers from oil to agricultural
raw materials. The heterogeneous sectoral impact depends on
various factors, such as whether oil or oil-related products are
inputs or outputs to the sector, the degree of concentration of
the sectors, and the indirect impact of oil prices on the sector
(Arouri et al., 2011).

CONCLUSIONS

This paper seeks to shed new light on the dynamic spillovers
between the crude oil market and China’s bulk commodity sectors
from the time-frequency perspective of SV. We utilized the SV
model of Kastner and Frühwirth-Schnatter (2014) to measure
the volatility of oil prices and China’s commodity sector price
indices, and then we investigate the time-frequency dynamic
spillovers under the GFEVD framework of Diebold and Yilmaz
(2012) and the corresponding spectral representation of Baruník

and Krehlík (2018). The key findings of this study can be
summarized as follows. First, we find that there are significant
return and volatility spillover effects between the international
crude oil market and China’s commodity sectors and that the
volatility spillovers react more violently to extreme geopolitical
or financial events than the return spillovers. For instance, the
European sovereign debt crisis in 2010–2011, Iran’s geopolitical
tensions in 2012, and the international oil crisis in 2014 cause
a significant increase in volatility spillovers. Second, the total
return and volatility spillovers are driven mainly by short-term
spillovers (within a week), which means that China’s commodity
markets process information of international oil market rapidly.
Third, the net volatility spillovers between international oil
market and commodity sectors in China are almost positive,
indicating that the international oil market is almost a net risk
transmitter of China’s commodity market. Fourth, uncertain
financial factors from China such as the market-oriented reform
in 2013 and the stock disaster in 2015 will also transmit
risk to international oil market, and this risk transmission
is attributable to medium-term (week to month) and long-
term (month to year) components. Furthermore, there exists
heterogeneity in net pairwise spillovers between oil and different
China’s commodity sectors. International crude oil market has
the most potent volatility spillover effects on nonferrous metals
(NFFI), coal coke and steel ore (JJRI), energy (ENFI), and
precious metals (NMFI) commodity sectors in China; followed
by petrochemicals, nonmetal buildingmaterials, and oils and fats;
and the least on grains and soft commodities. This heterogeneous
sectoral impact depends on various factors, such as whether oil
or oil-related products are inputs or outputs to the sector, the
degree of concentration of the sectors, and the indirect impact
of oil prices on the sector (Arouri et al., 2011). Comparing
with other sectors, we find that the net spillover effect of
oil prices on the agriculture commodity is relatively weak,
which may be associated with their less strong and indirect
industry correlations.

Our outcomes implement important implications for
investors and policymakers. For one thing, it is not appropriate
to form short-term investors to combine large amounts of crude
oil and related stocks into one investment portfolio. Because
volatility is directly converted into risk, huge fluctuations in
volatility and its spillover effects in commodity sectors will
have a negative impact on risk-averse investors. For another,
when formulating effective macroeconomic policies, Chinese
policymakers need to consider the heterogeneous impact of
the international oil market on different commodity sectors in
order to stabilize China’s commodity market. It is necessary
to introduce regulatory and institutional rules to reduce the
cross-market impact of excessive price volatility, especially in the
short run.

There are some possible extensions of this study. For example,
on the one hand, this paper neglected the breakpoints on oil-
commodity spillovers. Breakpoint analysis is also an effective
method to explore the impact of financial, economic, and
geopolitical events on the dynamic spillovers of oil commodities.
Besides, this article does not predict the volatility spillovers,
which can provide more accurate tools for policymakers and
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investors. What is more, the asymmetries of the time-frequency
dynamic spillovers between the international oil market and
China’s commodity sectors would also be of great interest.
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