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This paper quantifies the rising global dynamic, interconnected relationship between

energy and water commodities. Over the last decade, increased international concern

has emerged about the water-energy nexus. However, recent research still lacks a

quantified understanding of the role of water within a financial-economic view of the

nexus. The complexity of commodity markets contributes to this lack of understanding.

These markets consist of a wide variety of participants having different objectives,

resulting in non-stationary time series. Wavelets are mathematical functions that detect

common time-localized oscillations in non-stationary time series. The novelty of our

analysis lies in applying wavelet techniques to better quantify the financial implications

and understand opportunities of the dynamic relationship that exists in the water-energy

nexus. Using daily water and energy commodity ETF price data from 2007 to 2017

we deconstruct each of the time series into different horizon components and evaluate

their respective wavelet transforms. Comparing the wavelet squared coherence (WSC)

and the windowed scalogram difference (WSD) allows us to specify nexus similarities

and differences. We further analyze the wavelet local multiple correlations (WLMC) by

including S&P500 ETF price data to conditionally eliminate market effects. Previous

studies heavily focused on the qualitative relationships between water and energy.

Whereas, the analysis in this paper, to the best of our knowledge, is the first to

confirm the time-varying relationship in a quantitative manner. The most significant

financial-economic result from our analysis is that water prices, at certain time horizons,

lead energy prices during specific localized economic events.

Keywords: time-varying analysis, water-energy nexus, complex continuous wavelet transform, wavelet squared

coherence, windowed scalogram difference, wavelet local multiple correlation

1. INTRODUCTION

In trying to understand the extremely volatile price dynamics after the 2008 financial crisis,
economic researchers introduced the concept of commodity financialization (Cheng and Xiong,
2013), giving rise to energy finance becoming a standalone stream of research. Recently, Zhang
(2018) further clarified the concept of energy finance by discussing the fields interdisciplinary
nature and emphasizing the need for analyzing linkages between energy commodity markets and
other markets to better understand price dynamics. Vacha and Barunik (2012) pointed out that
energy commodities affect a wide range of markets and that it is fundamentally important to
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study the statistical properties and interconnections of these
markets. For more recent econometric literature focusing on the
dynamic and statistical properties of these markets (see Creti
et al., 2013; Abdelradi and Serra, 2015; Ahmadi et al., 2016;
Reboredo et al., 2017).

Publications ranging from policy implications to the
econometric quantification are supporting the increased need
for evaluating the water-energy nexus. Studies that impact policy
include the integrated risk analysis of the water-energy nexus
with reasonable policy recommendations by Cai et al. (2019),
evaluations of water-related impacts due to energy-related
decisions by Wang et al. (2019), and a detailed review of existing
methods and tools to analyze the water-energy nexus by Dai
et al. (2018). Ozturk (2017) goes even further by evaluating
the dynamic relationship between food-water-energy and
agricultural sustainability in sub-Saharan countries, as well
as in earlier work examining countries that make up BRICS
(Ozturk, 2015).

For a thorough literature review on the dependency of energy
type onwater (see Tan and Zhi, 2016). Global studies encouraging
the need for evaluating the link between energy and water include
the quantitative assessment of the water-energy nexus in the
Middle East andNorth Africa region (Siddiqi andAnadon, 2011),
the quantification of the water-energy nexus in Greece (Ziogou
and Zachariadis, 2017), studies showing the linkage analysis
for the water-energy nexus of Beijing (Fang and Chen, 2017).
Additionally, the research of Keulertz andWoertz (2015) looks at
the financial challenges of the nexus in the Arab world, Hamiche
et al. (2016) comprehensively reviews the links between water
and electricity, and Gallegos et al. (2015) studies the potential
environmental implications of hydraulic fracturing water use in
the United States.

Rising uncertainty in global markets creates fluctuations that
lead to increased interdependency between water and energy
commodities. For example, a leading global drilling fluids market
research report indicates that during the 2014 to 2015 global
oil glut, aqueous drilling fluids were most prominent because
of low cost and reduced environmental impact. However, this
extensive use placed a tremendous amount of stress, globally,
on water availability. The need for inclusion of water scarcity
within energy planning is more important today than ever
before. Costs related to energy and water play a crucial role in
decision making at various levels of investing. Smajgl et al. (2016)
points out that the integrated and dynamic relationship between
these commodities impacts large scale development investments
and Wichelns (2017) clearly emphasizes the importance of
quantifying investments and integrating research policies needed
for future sustainability. To the best of our knowledge our current
research is first in quantifying the dynamic financial interaction
between water and energy commodities.

Common behaviors or patterns in two jointly stationary
time series can be quantified using standard time-domain
techniques such as cross-correlation, cross-spectrum, and
coherence. However, there are two main reasons for not using
traditional financial time series methods in our analysis. First,
commodity marketplaces are complex with a wide variety of
participants having different objectives. Time series formed

by these non-stationary processes consist of combinations
of different components functioning at different frequencies
making it difficult to analyze with traditional time series methods.
Methodologies must address the fact that comovements between
commodity markets are time-varying and horizon dependent.
For example, Dajcman et al. (2012) provide a discussion on
European stock market comovement dynamics comparing the
DCC-GARCH and wavelet multiscale analysis, showing that
stock market returns are time-varying and scale dependent.
Secondly, in financial time series analysis, Fourier analysis is
used to identify relationships between frequencies of different
time series. The smooth transition of the cosine and sine basis
functions in Fourier analysis, however, fails to capture abrupt
changes in the stochastic behavior of the commodities time
series. We address these issues by breaking individual series into
their component pieces or horizons using a continuous wavelet
transform and comparing similarity and differences at different
scales/horizons and time components together rather than
separately. Our analysis provides unique results that are difficult
to obtain from only analyzing the aggregate long-run economic
impact (Aguiar-Conraria et al., 2014). Davidson et al. (1997)
were one of the first papers to introduce the use of wavelets to
study commodity price behavior and Connor and Rossiter (2005)
estimated price correlations of commodity markets by time series
scale/horizon decomposition using discrete wavelets. In recent
years, applied research on the comovement of commodities
related to the dynamics of energy has increased significantly
(Vacha and Barunik, 2012; Mensi et al., 2017). Bilgili et al. (2016)
for instance took a wavelet coherence approach to evaluating the
impact of biomass on carbon dioxide emissions.

Application of time-varying techniques to augment traditional
portfolio management tools by distinguishing across multiple
investment horizons or scales is becoming a growing field of
interest (Ftiti et al., 2017; Kumar et al., 2017; Wang et al., 2017).
Chaudhuri and Lo (2016) who coined the term spectral portfolio
theory suggests that the flexibility of the wavelet transform could
be used to overcome various difficulties of the Fourier transform
for spectral portfolio analysis. For an expansive introduction to
wavelet theory in finance (see In and Kim, 2012).

Market data such as indices are traditionally used to describe
the underlying behavior of a commodity, and ETF’s capitalize on
these behaviors by tracking commodity indices. To understand
the dynamic associations of water and energy commodities, we
propose to explore their comovement using time-varying spectral
representations. We illustrate the value of these techniques
using the wavelet squared coherence (WSC) and the windowed
scalogram difference (WSD). Using both the WSC and WSD
we can capture, from two different perspectives, the degree
of statistically significant similarity in time and scale/horizon
for the commodity ETFs representing water and energy. We
also introduce the analysis of wavelet local multiple correlations
(WLMC), recently published by Fernández-Macho (2018).

Studying the comovement of multiple time series can
traditionally be achieved using WSC. The WSD, complementary
to the WSC, is a measure designed to compare non-stationary
time series in time and scale/horizon for a fixed window (Bolós
et al., 2017). Both these techniques evaluate the association
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between time series, but each of these methods highlights
different aspects. The WSD gives greater flexibility in allowing
the change of window size depending on which scale/horizon
is of interest. The WSC does not have this flexibility. However,
the WSC can easily define scale/horizon specific local linear
correlations in regions of statistically significant comovement.
For example, Pal and Mitra (2017) used WSC to address certain
policy concerns of the food-energy nexus. We contribute to
this type of analysis by not only looking at the WSC of the
water-energy nexus but also the WSD allowing us to identify
and confirm scale/horizon specific micro-interactions. Using
both these wavelet tools we are able to identify and discuss
characteristics not possible with traditional time series tools.
Further, by using the recently introduced WLMC method we
analyze the time-varying correlations of the S&P500 ETF with
the water-energy nexus. We specifically use the WLMC to
point out the conditional relationship between the water-energy
nexus and the S&P500 by eliminating S&P500 market effects
that individually impact the behaviors of the water and energy
commodity indices.

The overall goal of this paper was to quantitatively show
the time-varying behaviors of the water-energy nexus which
could support practitioner in making more fact driven decision.
Therefore, the structure of this paper is as follows. Section 2
describes the wavelet-based methods used in the analysis of
the water-energy nexus. Section 3 presents a data description,
visualization of results, and a discussion on the evaluation
of the water-energy nexus after applying the wavelet-based
methods from section 2. We conclude the paper with section
4 by examining the dynamic economic behavior between these
commodities over the past 10 years and addressing certain
policy implications and opportunities for cost reduction in
energy production.

2. METHODS

After a mathematical exposition of wavelets in sections 2.1,
2.2, 2.3, and 2.4 introduces statistical methods that extend the
capabilities of wavelets to visualize structure in multidimensional
data. See the Appendix for more details regarding a robustness
check on methods.

2.1. Wavelets
Even though promising results in economics and finance have
come from implementing wavelet analysis, many of these
professionals are still developing their understanding of wavelet-
based methods. Consequently, a more expansive and baseline
introduction to the wavelet techniques are needed. In support
of this development, this section describes in detail the wavelet
functions we later implement to analyze the complex time-
varying water-energy nexus.

Wavelets are mathematical, wave-like functions that are used
to extract information from many different kinds of data. When
applied to time series, wavelet transforms synthesize signals
into different frequency components, decomposing the original
time series into multiple time series. Each of these newly
decomposed time series represents specific characteristics unique

to a particular investment horizon. For example, an investment
horizon of six months corresponds to a scale of 6 months. A
better-known label for an investment horizon is a scale. We use
the label scales in the mathematical exposition and then later we
return to the label investment horizons as it is more appropriate
for the application in this paper. We also intentionally refer to
the decomposed time series as different frequency components
because the relationship between frequency and scale is
specifically determined by the center frequency of the wavelet.
For the sake of simplicity, the relationship between frequency and
scale is defined as, Fa = Fc/a, where Fc is the center frequency
of the wavelet and Fa the frequency corresponding to scale a.
Only when certain specifications related to wavelet frequency
are met are scales inversely proportional to frequencies. Figure 1
demonstrates a simple example of this relationship. If the
investment horizon increases (high-scale), the wavelet becomes
more spread out, resulting in a lower frequency. An expansion
of these relationships and the exact details on these specifications
are discussed later in this section.

Given a time series x(t) ∈ L2(R) and an analyzing wavelet
function ψa,b(t) ∈ L2(R), the decomposition of time series x(t)
into time-scale wavelet coefficients can be written as,

Wx(a, b) = 〈x,ψa,b〉 =
∫

R

x(t)ψ∗
a,b(t) dt. (1)

The transformation is formally referred to as the continuous
wavelet transform (CWT) and * denotes the complex conjugate.
The CWT can be seen as a set of continuous band-pass filters
applied to a time series.

We define an analyzing wavelet as being derived from the
scaling, where a > 0 defines the scale, and shifting, where b ∈ R

defines the shift, of a mother wavelet ψ(t) ∈ L2(R) into daughter
wavelets ψa,b(t) ∈ L2(R):

ψa,b(t) =
1√
a
ψ

(

t − b

a

)

. (2)

The wavelet power, |Wx(a, b)|2, is visualized in the time-scale
{b, a} half plane with a horizontal linear scale axis in time, b, and
a vertical logarithmic scale axis in, a, see Figure 2 for an example
for the power spectrum.

We can ensure reconstruction of a time series from its
wavelet transform,

x(t) = 1

Cψ

∫ ∞

0

[∫

R

Wx(a, b)ψa,b(t)db

]

da

a2
, (3)

if the following conditions are met: (1)
∫

R
ψ(t)dt = 0, (2)

∫

R
ψ2(t)dt = 1, and (3) the admissibility condition is satisfied.

The constant (Cψ ) is called the wavelet admissible constant and
a wavelet whose admissible constant satisfies 0 < Cψ < ∞ is
called an admissible wavelet. Mathematically Cψ is defined as,

Cψ =
∫

R

∣

∣

∣
ψ̂(ω)

∣

∣

∣

2

|ω| dω where ψ̂(ω) is the Fourier transform of ψ(t)

in the CWT.
The Morlet wavelet is the most commonly used mother

wavelet in finance and economic research. This choice and the
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FIGURE 1 | Example of the analyzing wavelet function scaling and shifting across the time series that is being transformed. Equation (1) is the mathematical

exposition of what is visualized in this figure.

detailed specifications pointed out in Aguiar-Conraria et al.
(2014) proves best when using wavelets to extract investment
horizon specific characteristics, because the Morlet wavelet is
reasonably localized in both time and scale. The Morlet wavelet
is defined as:

9M(t) = π− 1
4 e−

1
2 t

2
eiω0t , (4)

where π− 1
4 normalizes the wavelet, e−

1
2 t

2
is a Gaussian envelope

with standard deviation of one, and eiω0t is the complex sinusoid.
For the Morlet wavelet ω0 is the central frequency. The usual
relation of Fourier frequency to scale is Fa = ω0

2πa . As specified
in Aguiar-Conraria et al. (2008) and Reboredo et al. (2017) we
set ω0 = 6. We do so because when ω0 = 6, Fa ≈ 1

a
which provides better interpretability of scale and frequency.
Even though theMorlet wavelet is commonly used in finance and
economic practice there are various different sources describing
different wavelets and their inherent characteristics. One of the
more recent sources is Addison (2017).

We are dealing with finite time series in our application of
quantifying the water-energy nexus and therefore need to address
the issues of edge effects. This problem arises when filters are used
for transformation. In dealing with these borders, we follow the
methods of Grinsted et al. (2004) and ameliorate these effects by
choosing theMorlet mother wavelet, as specified above (Torrence
et al., 1998). We limit our interpretations to the areas within the
cone of influence.

2.2. Details of the Wavelet Squared
Coherence (WSC)
The wavelet squared coherence (WSC) is used in studying the
comovement of two time series. Before we can define WSC,
we first need to introduce the cross wavelet transform (XWT).
Simply put, the wavelet cross spectrum is a measure of the power
density and the WSC is a correlation measure between series.
In Figure 2, we visualize these methods for the water-energy
nexus using a time-scale {b, a} half plane with logarithmic scale

a-axis (vertical) increasing downwards and a linear scale on time
b-axis (horizontal).

2.2.1. Cross Wavelet Transform (XWT)
According to Torrence andWebster (1999) the XWT of two time
series x(t) and y(t) is

Wx,y(a, b) = Wx(a, b)W
∗
y (a, b), (5)

whereWx(a, b) andWy(a, b) are CWT’s of x(t) and y(t) and again
* indicates the complex conjugate. We further define |Wx,y(a, b)|
as the XWT power. While each CWT preserves the energy of an
individual time series, the XWT finds regions of high common
power between time series across time for all frequencies. The
scale or investment horizon in our application is the reciprocal
of frequency. For more details on the theoretical distribution of
the XWT power of two time series and how confidence levels are
calculated (see Torrence et al., 1998).

2.2.2. WSC
By computing WSC we find regions in time-frequency space
where the two time series co-vary. The idea is to measure the
coherence of the XWT in these regions. The WSC is simple to
interpret since it resembles the squared correlation coefficient in
regression. The WSC is mathematically defined as

WSC(a, b) =
|S(a−1Wxy(a, b))|2

S(a−1|Wx(a, b)|2)S(a−1|Wy(a, b)|2)
. (6)

The symbol S(·) is the smoothing operator. Without smoothing,
the WSC(a, b) is not in [0, 1]. See Torrence and Webster (1999)
and Grinsted et al. (2004) for how convolution in both scale and
time is used to smooth. These details can be adjusted depending
on the application.

2.2.3. Wavelet Phase Difference and Interpretation
As defined in Grinsted et al. (2004) and Aguiar-Conraria
et al. (2014) the local or instantaneous wavelet phase-angle or
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FIGURE 2 | The WSC of prices for water and energy (left) and phase change descriptions (right). The vertical axis shows investment horizons in days and the

horizontal axis shows time in years. The darker purple the regions are (areas with arrows), the higher the level of comovement. The regions that are lined with black are

regions of statistical significance at the 5% level estimated using multiple Monte Carlo randomizations. The white overlay defines the cone of influence. The arrows are

an indication of phase movement (leading-lagging relationship) described in section 2.2.3 and visualized on the right side of this figure. See Gouhier et al. (2016) for

more details.

FIGURE 3 | Logscale closing price chart of the ETF’s: CGW, XLE, and SPY. Vertical lines are inserted to indicate the approximate (peak to peak) start and end dates

of the 2008 financial crisis, two key events during the crisis, and the 2014–2016 global oil glut from peak to trough (Peterson and Carl, 2015).

displacement of periodicity in the interval [-π , π] is,

Phase(a, b) = Arg(Wx(a, b)) = tan−1
(ℑ(Wx(a, b))

ℜ(Wx(a, b))

)

, (7)

where ℜ{Wx(a, b)} is the real part and ℑ{Wx(a, b)} is the
imaginary part of the complex-valuedWx(a, b). For the XWT the
phase difference of x over y (φx,y) localized in time b and scale
a is:

φx,y = tan−1

(

ℑ(S(a−1Wx,y(a, b)))

ℜ(S(a−1Wx,y(a, b)))

)

. (8)

A phase difference of zero indicates comovement. If φx,y ∈
(0, π2 ) the time series are in-phase with y leading x and if
φx,y ∈ (−π

2 , 0) the time series are in-phase with x leading
y. If φx,y ∈ (−π ,−π

2 ) the time series are anti-phase with y
leading x and if φx,y ∈ (π2 ,π) the time series are anti-phase
with x leading y.

See Figure 2 for visualization of these behaviors using
arrows. Arrows pointing right (left) represent time series
that are in-phase (anti-phase) and positively (negatively)
correlated. Arrows representing φx,y ∈ (0, π2 ) point up
and right, φx,y ∈ (−π

2 , 0) point down and right, φx,y ∈
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(−π ,−π
2 ) point up and left, and φx,y ∈ (π2 ,π) point down

and left.

2.3. Windowed Scalogram Difference
(WSD)
The scalogram was designed to identify scales that are most
representative in the time series. As a result time series
with similar behavior have similar windowed scalograms
(WS), resulting in values close to zero after a log2(WSD−1)
transformation. The log2(WSD−1) transformation is primarily
implemented to create a scale which is comparable with theWSC.
Bolós et al. (2017) designed the WSD to measure the difference
between the WS of time series x and y. The WSD of two time
series centered at time t and log-scale kwhere k ∈ R for the CWT
with log-scale radius r and time radius τ , is defined as

WSDτ ,r(t, k) =
(

∫ k+r

k−r

(

WSτ (t, k)−WS′τ (t, k)

WSτ (t, k)

)2

dk

)
1
2

, (9)

whereWSτ is the WS of time series x andWS′τ is the WS of time
series y. As the name states, the WS has the ability to determine
the importance of different scales windowed around a specific
time point. The WS is defined as,

WSτ (t, k) =
(∫ t+τ

t−τ
|Wx(b, 2

k)|2db
)

1
2

. (10)

Bolós et al. (2017) describes in detail the practicality of using
base 2 power scales and the process of dealing with boundary
conditions. Figures 7, 8 are visualizations of the WSD for the
water-energy nexus.

2.4. Wavelet Local Multiple Correlation
(WLMC)
Fernández-Macho (2018) recently introduced a new method
for analyzing the dynamic comovement of various time series
simultaneously. The aim of the proposed method is to produce a
single set of correlations for each scale along time, instead of the
standard pairwise wavelet correlation maps defined in sections
2.2 and 2.3.

Extracting from the details of Fernández-Macho (2018) we
let Wjt be the scale specific, λj, wavelet coefficient for order
j = 1, ..., J. The maximal overlap discrete wavelet transform
(MODWT) of order J is applied to each time series xi(t) in the
multivariate time series X to obtain Wjt . The T × n matrix X is
composed of the n real-valued time series, each of length T.

It follows that the wavelet local multiple correlation (WLMC)
can be expressed as

ϕX,s(λj) =
√

1− 1

max diag(P−1
j,s )

, (11)

where Pj,s is the weighted correlation matrix of Wjt =
(w1jt ,w2jt , ...,wnjt).

The WLMC can further be simplified by realizing the square
of the correlation between the fitted (ŵijt) and observed (wijt)

TABLE 1 | Descriptive statistics of the ETF’s: CGW, XLE, and SPY.

Median Mean SD SE Range Skew Kurtosis

Energy (XLE) 70.29 70.01 12.08 0.23 63.17 −0.06 −0.10

Water (CGW) 24.37 24.05 5.44 0.11 25.79 −0.08 −0.66

S&P500 (SPY) 149.00 161.20 47.30 0.91 209.81 0.30 −0.93

values is the regression coefficient of determination, where ŵijt

is the local regression of wijt on the rest of Wjt at scale λj. Then
the WLMC can be simplified to

ϕX,s(λj) = Corr(θ(t − s)1/2wijt , θ(t − s)1/2ŵ1jt). (12)

θ(·) is a given moving average weight function and s = 1, ...,T
is the shift we use for the weight function. In our application,
we are using the Gaussian window weight function for the best
comparison to the Morlet wavelet. In Fernández-Macho (2018),
the authors follow with a theorem for the sampling distribution
of the WLMC statistic from Equation (12). This allows the
construction of confidence intervals for the wavelet multiple
correlation coefficient displayed in Figure 9.

3. RESULTS

3.1. Data Description and Visualization
Figure 3 contains three ETF price series and Table 1 the
descriptive statistics of each series. These ETF’s are the Energy
Select Sector SPDR Fund ETF (XLE), the Guggenheim S&P
Global Water Index ETF (CGW), and the SPDR S&P500 Trust
ETF (SPY). The XLE is the largest energy sector ETF and
represents the energy sector of the S&P500 which includes
companies in energy-related services and drilling as well as
companies that produce and develop crude oil and natural gas.
The CGW focuses on S&P500 companies important in the global
water industry with the U.S. making up more than 50% of its
holdings. The reason for choosing CGWcompared to other water
ETF’s was because CGW was designed to expand as the demand
for water companies, focusing on the issue of scarcity, increased.
These two ETF time series are tracking companies that are
representing mostly the U.S. markets from each side of the nexus
that we are quantifying. Both the XLE and CGW pull their stocks
from the S&P 500 rather than the total market. The addition
of SPY is to explore the dynamic interaction of XLE and CGW
or more specifically the water-energy nexus with respect to the
S&P500 Index. We particularly point out two global economic
events and identify behavioral differences between these series
during these events. As indicated by Figure 3 these events are the
2008 financial crisis and the 2014–2016 global oil glut.

The descriptive statistics in Table 1 indicate non-stationary
behavior. To confirm that our series are non-stationary we
analyze the behavior of each series using three different tests. The
Augmented Dickey-Fuller (ADF) test for the null hypothesis that
each series has a unit root, the Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test for the null hypothesis that each series is level
or trend stationary, and the Phillips-Perron test for the null
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hypothesis that the series has a unit root against a stationary
alternative. All tests confirmed that each of these ETF price series
are non-stationary. We also applied the Ljung-Box-Pierce test
(Box) concluding there is autocorrelation present in each series.

The rest of this section visually explores and analyzes the
statistical properties related to CGW, XLE, and the SPY by
implementing all the wavelet techniques we introduced the CWT,
WSC, WSD, and WLMC. Throughout the rest of the paper, we
refer to XLE as energy, CGW as water, and SPY as S&P500.
Figure 4 summarizes the information provided by each method
in section 2.

Note, the graphical summaries also provide inferential
information, depicting significance and confidence bands where
appropriate. Figure 5 depicts, the CWT power spectrum of the
water and energy price series to identify the optimal investment
horizons. Figure 6 depicts the WSC of the water-energy nexus
as well as the WSC of energy and the S&P500 price series.
These techniques are used to identify the level of comovement
and visualize the dynamics of the leading-lagging relationships
between these time series over time. The WSD, presented in
Figure 7, evaluates the level of similarity within the water-energy
nexus as well as the level of similarity between energy and
the S&P500, specifically pointing out in Figure 8, the level of
similarity during a specific time-localized event. The section ends
with Figure 9 evaluation the wavelet local multiple correlations
between the water-energy nexus and the S&P500.

We extract data using the R package quantmod (Ryan and
Ulrich, 2017). We analyze ten years of daily price data from 2007-
06-01 to 2018-01-16 to capture the changing mean behavior in
addition to a range of investment horizons. Our data history
starts in 2007 to not only study the decade since the 2008 financial
crisis but also because CGW was one of the first water ETF’s and
before its inception in 2007 we were limited to single securities
or themed investment trusts having no index that captures all the
time-varying behaviors wavelets are best suited to capture.

3.1.1. Continuous Wavelet Transform (CWT)
In Figure 5, we decompose the water and energy price series
into their respective component pieces each representing an
investment horizon. Our evaluation and analysis must be focused
on areas with medium to high power intensity (see section 2.1).
These regions can be seen as the components that carry most
of the behavioral weight. For an example on how to interpret
Figure 5, consider the wavelet power levels across time for the
quarterly investment horizon. This horizon is mostly medium
intensity with regions of low intensity. As we point out in section
2.1, wavelet power is visualized in the time-scale half plane.
The squared wavelet coefficient values represent the statistical
significance of the behavior or better known as the power of a
specific feature described at each of the time-scale locations.

Determining and translating scales to relevant time domain
periods like investment horizons are useful in seeking future
applications. These include finding the optimal investment
horizon for each asset in a multi-asset portfolio or identifying
the investment horizon that explains most of the behavior in the
price series and adjusting riskmanagement accordingly. The high
power intensity range of Figure 5 is of particular interest, but

caution should be taken when analyzing this range because it is
impacted by the cone of influence and results can be skewed by
border effects (discussion in section 2.1 and for further details see
Grinsted et al., 2004). As mentioned in section 2.1, we limit our
interpretations to the areas within the cone of influence.

3.1.2. Wavelet Squared Coherence (WSC)
The goal of the analysis in Figure 6 is primarily to study
the development of correlation over the past 10 years for the
water-energy nexus and to understand more about how these
interactions change over time for different investment horizons.

We explore in detail these interactions in section 3.1.4 by
pointing out specifically the dates of the two economic events
referred to in Figure 3. The evaluation on the right analyzes
the dynamic interactions of energy and the S&P500 to identify
the statistically significant behavioral impact of the market.
Figure 6 also depicts a leading-lagging relationship using the
tools mentioned in section 2.2.3. Consider, for example, the
quarterly investment horizon in Figure 6 on the left during
the 2014–2016 global oil glut. An arrow pointing down and
right (−45◦ or −π/4 angle) indicates that water (first series)
is leading energy (second series) with statistically significant
positive correlation, see the water-energy nexus on the left side
of Figure 6 for magnification of these details. On the right side of
Figure 6 at the annual investment horizon range during the 2008
financial crisis, an arrow pointing up and right (45◦ or π/4 angle)
indicates that energy (first series) is being led by the S&P500
(second series) with statistically significant positive correlation
and an arrow pointing only right indicates that these prices are
comoving without any leading or lagging relationship.

3.1.3. Windowed Scalogram Difference (WSD)
The analysis performed using the WSD, as seen in Figure 7,
is instrumental in distinguishing between behavior impacted
by external factors vs. behaviors identified due to dynamic
interactions. To further explore the similarity and differences
between water and energy we analyze the WSD.

At the quarterly investment horizon in Figure 7, the water-
energy nexus (left) shows dissimilarity during the 2008 financial
crisis. The statistically significant increased similarity during the
2014–2016 global oil glut is identified by the magnified region
in Figure 8. Figure 7 (right) demonstrates that there is not a
major statistically significant similarity between energy and the
S&P500 during the two economic events we are evaluating. This
second analysis is useful in trying to eliminate the possibility that
the market is significantly impacting the dynamic behavior of
the water-energy nexus since we previously identified that the
S&P500 is leading the dynamic behavior of energy in Figure 6.
However, this market leading effect is still not clear and will be
addressed in the next section.

3.1.4. Wavelet Local Multiple Correlation (WLMC)
Up to this point, the three different time series have increased
levels of comovement and similarity depending on which
investment horizon is being considered. However, there seems
to be some significance in the water-energy nexus during the
2014–2016 global oil glut. Next, we will analyze the simultaneous
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FIGURE 4 | The visualization process of the water-energy nexus has three distinct steps. (1) Identifying the investment horizons to investigate using the CWT. (2)

Interpreting the dynamic interactions within the water-energy nexus using the WSC and WSD. And (3) analyzing any external factors impacting the dynamic behavior

of the water-energy nexus.

FIGURE 5 | The continuous wavelet transform (CWT) power spectrum of water (CGW left) and energy (XLE right) commodity ETF prices. These two plots are visual

representations of the power spectrum of each individual series. The investment horizons (vertical axis) are such that the value one represents 250 days (annual

investment horizon) and 0.25 represents 64 days (quarterly investment horizon). The horizontal axis indicates the 10 years of data. These plots are divided into three

sections with the goal of separating low (bottom), medium (middle), and high (top) power. These sections are categorized as regions which are representative of short

(weekly, biweekly), medium (monthly, quarterly), and long (annually, bi-annual) run behavior, respectively. The white overlay defines the cone of influence. Figures were

created by implementing minor modifications to Rösch and Schmidbauer (2014).

FIGURE 6 | The WSC of the water-energy nexus (left) and energy and S&P500 (right). The vertical axis shows investment horizons in days and the horizontal axis

shows time in years. The darker purple the regions are the higher the statistical significant level of comovement. The regions that are lined with black are regions of

statistical significance at the 5% level estimated using Monte Carlo simulations. The white overlay defines the cone of influence. The arrows are an indication of phase

movement (leading-lagging relationship) described in section 2.2.3.
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FIGURE 7 | The WSD of the water-energy nexus (left) and energy and S&P500 (right). The more purple the color, the higher the similarity is between time series. The

black-line regions are regions of statistical significance at the 5% level (high similarity) and the white-line regions are regions of statistical significance at the 95% level

(low similarity) estimated using Monte Carlo simulations. The box and thin black region are the border effects and define the cone of influence, respectively. Here we

are using a fixed time radius of 64 days and the investment horizon radius (window margins) is determined by the length of the series.

FIGURE 8 | Magnification of the WSD of the water-energy nexus from Figure 7. The white circle emphasizes the WSD of the water-energy nexus during the quarterly

investment horizon. The black-line regions are regions of statistical significance at the 5% level (high similarity). As we pointed out in section 2.3, the WSD is a

difference equation so high similarity means values close to zero.

correlation at a local level to see if we can identify a deviation
in the similarity and comovement. The wavelet local multiple
correlation (WLMC) (Fernández-Macho, 2018) allows us to
extend wavelet methodology to handle comovement dynamics
of multivariate time series. This statistical tool allows us to
view the joint comovement of the water-energy nexus with the
S&P500 (Figure 9). The analysis visualized in Figure 9 (top)
shows statistically significant deviations in the high correlation
between the water-energy nexus and the S&P500.

The deviations specifically indicative of the 2014–2016 global
oil glut are pointed out again in these figures. This is most
prominent during the quarterly investment horizon referencing
the correlations shown in the (16–128) range. Our evaluation
of these figures indicates that during the start of the global
oil glut the correlation deviated significantly and by the end,
the significant correlation picked back up. These results would
be very difficult to obtain using time domain analysis (for

example with DCC-GARCH) or even frequency only analysis
(Fourier). The dynamics we identified are time-varying requiring
simultaneous analysis in both time and at specific horizons to
make sense of underlying behaviors or characteristics.

We have now stepped through all three of the visualization
processes mentioned in Figure 4. In summary, each step was
created to optimize the analysis process. The ability to identify
the statistically significant dynamic interactions within the water-
energy nexus for optimal investment horizons, during certain
key economic events, aid in the discussions highlighted in
the next section. An interesting result that we identified from
our analysis is the potential that market behavior is currently
impacted more heavily by energy than energy is impacted by
the market behavior. There is very recent literature that supports
these findings (Ferreira et al., 2019), however, to clearly recover
these results requires expanding our application to include a
longer history.
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FIGURE 9 | The WLMC of the water-energy nexus and the S&P500. At the top the purple lines correspond to the upper and lower bounds of the 95% confidence

interval for the WLMC statistic at four different investment horizons. On the bottom the heat plot corresponds to the single set of correlations for all three time series

(XLE, CGW, and SPY) for each scale across time, the contour lines correspond to the confidence intervals depicted for the investment horizons at the top.

3.1.5. Evidence From Time-Varying Spectral Analysis
Understanding the investment horizon and interaction between
commodities is important for practitioners to consider in
the design of investment models. From the analysis of the
CWT, we see a potential investment opportunity for quarterly
investment horizons; from Figure 5 we analyzed that both time
series’ quarterly contribution to the overall behavior of the
series has medium to high power intensity. Further Figure 6,
clearly indicates a comoving relationship during the quarterly
investment horizon, identified by Figure 5, as one of the
dominant signals in the series. There is an interesting distinctive
difference between the interactive behavior during the 2008
financial crisis and the 2014-2016 global oil glut which is also
pointed out in Figure 6 by modeling the comparison between
energy and the S&P500.

The WSC from Figure 6 allows us to examine the water-
energy phase behaviors for these two events. During the first
event at the quarterly investment horizon energy is leading water,
however, for the annual investment horizon, these series are
mostly comoving. This relationship can be confirmed by looking
at the price series in Figure 3 and the analysis of Figure 7. This
comovement is a result of the market impact seen in Figure 6

(right) where energy and the S&P500 series are mostly in-
phase. At the quarterly investment horizon, energy is leading the
S&P500, but at the annual investment horizon, the S&P500 is
leading. In contrast, during the 2014–2016 global oil glut, there is
a clear indication that water and energy are in-phase with water
leading energy prices during this quarterly investment horizon.

Our results have the following U.S. policy implications. As
fracking expands in the United States and oil prices stay relatively
low, the use of aqueous-drilling fluids will increase due to
low cost and limited environmental impact as required by the
EPA [United States Environmental Protection Agency (EPA),
2000]. Between 2000 and 2014 the average amount of water
used to drill a well has increased from 177,000 gallons to
5.1 million gallons per well (Gallegos et al., 2015). As newer
technology becomes available to drill deeper into the ground
the volume of water needed will place strain on the U.S. water
supply. Even though the amount of water needed for fracking
is less than that needed for farming and cooling it can still
strain water supply in areas where water is limited. As water
becomes an increasingly scarce commodity, discussions of the
water-energy nexus policy reform need to be addressed alongside
the food-energy nexus discussion (Pal and Mitra, 2017). We
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specifically used the CGW ETF in our analysis because it was
initially designed to expand as the demand for water companies,
focusing on the issue of scarcity, are added to the portfolio.
We believe that the holdings of this ETF are representative
of those companies primarily focused on providing water in
areas where there exist limited resources. So the result of water
leading energy during the 2014–2016 global oil glut indicates that
there should be a higher value placed on these water scarcity
focused companies.

During the past few years, there have been increased
discussions in the Texas Permian Basin suggesting that the
future of upstream-energy water management cost reduction
is water commoditization or a water price index. The water
management market makes up about $20 billion and most of
this money is spent on water logistics (Barclays and Columbia
Water Center, 2017). The creation of a marketplace for water
would allow water services to be accurately priced based on
the demand and supply of the market. However, creating this
marketplace could potentially lead to various conflicts regarding
rights to water resources. If this marketplace should exist or
not is a matter of discussion, but as we have shown in this
paper there is a quantifiable dynamic relationship between
water and energy commodities. Understanding these dynamics
and constantly evaluating the time-varying changes of these
price behaviors could potentially reduce water management
costs in the energy industry. This can be achieved by simply
capitalizing on the ongoing leading-lagging relationship and
potential investment horizon that is easily identified with the
same analysis implemented in this paper.

4. CONCLUSION

We present method and visualization tools that quantify the
time-varying relationship between water and energy prices while
highlighting key investment-horizon behaviors. Our choice of
wavelet-based methods results in strategies for quantified fact-
driven decision making about the water-energy nexus. To the
best of our knowledge, this paper is the first to confirm the water
and energy relationship in a quantitative manner. Our intention,
however, is to provide empirical observations and not to suggest
an economic mechanism for this observed relationship. The
latter perspective is beyond the scope of the paper.

The novelty of our approach lies in the exploration of the
water-energy nexus using non-stationary financial instruments
in the time-scale domain. We distinguish between the impacts
of two economic events on water-energy price movement at
different investment horizons. Incorporating the S&P500 into
our time-varying study of the price behavior isolates the variation
due to general market structure, and that due to the relationship

between water and energy. Investment decisions based on the
insights presented in this paper can be made under the umbrella
of portfolio investment theory to determine the optimal risk-
return trade-off between the two commodities. We specifically
chose to analyze the water-energy nexus to demonstrate our
ability to capture complex time-varying relationships using
wavelet based tools.

The water-energy nexus represents complex structures with
global impact. For example, the UN forecast for 2035 indicates
that energy and water consumption will increase by 35 and
85%, respectively, and the withdrawal of water for energy
use would increase by 20%. Correctly identifying the dynamic
interactions of water and energy commodities not only creates
a vehicle to improve upon current investment strategies within
the United States but could also impact decisions and policy
processes within countries that have high water stress. Our
research speaks directly to this important global challenge of
the next two decades by helping investment planners and risk
managers, through informing their decisions with quantitative
insight, on how to dynamically allocate water to maximize energy
returns while preserving potable water sources (Barclays and
Columbia Water Center, 2017).
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APPENDIX

A. ROBUSTNESS

We demonstrate through simulation the robustness of the
continuous wavelet transform and repeat our analysis on a subset
of the data. For additional analysis (see Raath et al., 2019).

A.1. Robustness Check on Methods
All the methods used originally stem from the CWT as seen
in Figure 4. In Figure A1, we test the robustness of the

Figure A1 | Additive noise Model. Pure signal. The CWT power spectrum (A) of a simple additive noise model with three stationary signals. Biweekly (15 days),

quarterly (64 days), and biannually (125 days). Hence we have that yt = sin( 2π t15 )+ sin( 2π t64 )+ sin( 2π t125 )+ ǫ where ǫ ∼ N(0, 0.1) and t = (1, ..., 2400). Also in this figure is

the CWT power spectrum (B) which is the pure signal without noise.

CWT power spectrum to analyze investment-horizon specific
behaviors by simulating an additive noise model, with three
stationary signals.

A.2. Robustness Check on Data
Evaluating the robustness of the water-energy nexus
relationship we eliminate 20% of the data and evaluate
the same 64 day leading-lagging relationship analyzed
in Figures 2, 6, 9. The robustness check still validates
our conclusion.
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Figure A2 | Eliminating 20% of the data we analyze the results of our analysis using the WSC of the water-energy nexus (left) and the WLMC of the water-energy

nexus and the S&P500 (right). The vertical axis shows investment horizons in days and the horizontal axis shows time in years. The darker purple the regions are the

higher the statistical significance.
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