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Na-ion batteries (SIBs) are anticipated to capture a broad development space in the field
of large-scale energy storage due to the abundant sodium resources. High-performance
cathode materials are very critical. VOPO4·2H2O with a two-dimensional (2D) layered
structure is a very promising candidate for SIBs because of its high working voltage
and theoretical specific capacity. Herein, a simple one-step reflux method is designed
to fabricate a cathode of VOPO4·2H2O nanosheets. It exhibits a high average operating
potential of ∼3.5 V, remarkable specific capacity (e.g., 135 mAh g−1 at 0.05 C),
favorable high current charge-discharge ability (e.g., 58 mAh g−1 even at 20 C) as well
as extralong cyclability (e.g., 0.026% capacity fading rate for per cycle at 20 C during
1000 cycles). The kinetic analysis implies that the superior sodium storage performance
is mainly benefiting from the advantages of unique nanosheet structure, accelerating the
rapid Na-ion diffusion.

Keywords: sodium ion battery, cathode material, VOPO4·2H2O, nanosheets, high performance

INTRODUCTION

The dramatic growing of the portable electronic technology has stimulated the fast development
of rechargeable batteries owing to high safety, low cost, availably, scalability and environmental
benignity (Deng et al., 2020; Tang et al., 2020; Xie et al., 2020). As a pioneer, Li-ion batteries
(LIBs) have become a leader in commercialization since their high energy densities and stable
cycling performance (Tan et al., 2018; Yang et al., 2019, 2020). However, the issues of limited
reserves, uneven distribution and high price of lithium resources perplexed their large-scale energy
storage applications in future (Wang et al., 2017; Guo et al., 2020) Among the post LIBs, Na-ion
batteries (SIBs) have caused wide increasing concern due to the cheap price, rich reserve and even
distribution of sodium resources in the crust of the earth (Chen S. et al., 2017; Yu et al., 2019; Zhao
et al., 2019). However, the bulkier radius [1.02 (Na+) vs. 0.76 Å (Li+)] makes the Na-ion diffusion
more sluggish than that of Li-ions, resulting in the larger volume change, the lower special capacity
and the poorer cyclical stability, which limit the further development of SIBs in large-scale energy
storage system (Wang et al., 2018; Liu et al., 2020). Therefore, designing/exploring novel advanced
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electrodes for SIBs to facilitate fast Na-ion transfer is the top
priority at present (Li C. et al., 2020; Wang B. et al., 2020).

Recently, two-dimensional (2D) layer electrodes have shown
the promising electrochemical property due to their unique
2D ion transport corridor, short ion diffusion distance and
adjustable interlayer space, which are beneficial to promote
the Na-ion insertion/extraction reactions (Huang et al., 2014;
Shi et al., 2019; Verma et al., 2019). Among them, 2D
hydrated vanadium oxyphosphate (VOPO4·2H2O) has received
considerable attention as the promising cathode materials for
SIBs because of its high redox reaction potential (∼3.5 V), high
theoretical specific capacity (166 mAh g−1), and various valences
reactions (e.g., V5+

∼V3+) (Chen N. et al., 2017; Wang J. et al.,
2020; Xiong et al., 2020). For example, the bulk VOPO4·2H2O
synthetized by Peng et al. (2017) can release a delightful reversible
specific capacity of 151 mAh g−1 at the testing rate of 0.1 C. It
however displays inferior rate capability (e.g., ∼50 mAh g−1 at a
high electrical current density of 20 C) and cycling performance
(only 51% capacity retention over 500 cycles at 5 C). Another
bulk VOPO4·2H2O cathode prepared by Zhu’s group, which
although delivers an acceptable discharge capacity (∼140 mAh
g−1 at 0.1 C), it shows a poor high current charge-discharge
ability with almost no capacity at 5 C (Zhu et al., 2016). This
is mainly because of the large bulk morphology, which prolongs
the diffusion distance of sodium ions. Thus, it is highly desirable
to build nanostructured VOPO4·2H2O to enhance the sodium
storage kinetics.

In this work, VOPO4·2H2O nanosheets (thickness: 20–40 nm)
are developed and utilized as the cathode material to enable fast
and reversible sodium ion intercalation/deintercalation, so that
it exhibited high reversible sodium storage capacity (135 mAh
g−1 at 0.05 C), remarkably improved rate capability (58 mAh
g−1 even at 20 C) and extralong cycle stability (e.g., capacity
retention of 74% at a high rate of 20 C after the 1000th cycle).
In addition, the VOPO4·2H2O nanosheets also showed rapid
Na-ion diffusivities exceeding 1.7 × 10−13 cm2 s−1 due to the
convenient Na+ transport channel provided by the nanosheets
structure. The outstanding SIB performance of the VOPO4·2H2O
nanosheet cathode makes it to be a very popular candidate with
increasingly wide utilization in large-scale energy storage system.

MATERIALS AND METHODS

Synthesis of VOPO4·2H2O Nanosheets
All reagents were purchased from Sinopharm Chemical Reagent
Co., Ltd. (China) and used directly without any treatment.
The VOPO4·2H2O nanosheets was synthesized by a feasible
reflux method. Specifically, 5.0 g of vanadium pentoxide powders
(V2O5) and 120 mL of deionized water (DI H2O) were put into
a conical flask and then 30 mL of the concentrated phosphoric
acid (85% H3PO4) was added. The suspension was then refluxed
at the heating temperature of 100◦C for 18 h under vigorous
stirring. After the reaction completed, it takes a little time to
cool to room temperature, and the yellow-greenish sample was
finally gathered by centrifugation, washing (water, ethanol and
acetone), and vacuum drying (60◦C for 5 h). For comparison, the

bulk VOPO4·2H2O sample was synthesized by a traditional ball
milling approach. 5.0 g of V2O5, 120 mL of DI H2O, and 30 mL
of 85% H3PO4were accurately weighed and added to the agate
jar in proper order. After that, the milling equipment operated
along a single orientation with the optimal rotate speed of 500
rmp min−1 for 18 h, and then it was centrifuged, washed and
vacuum dried to yield bulk VOPO4·2H2O sample. Here, it is
worth mentioning that the as-obtained samples were stored in a
glove box filled with argon atmosphere.

Characterization
The X-ray diffraction (XRD) patterns were carried out on a
Rigaku SmartLab polycrystall X-ray diffraction with Cu Kα X-ray
source (λ = 1.54056 Å) scanned in the 2θ range of 10–60◦. The
Fourier transform infrared spectroscope (FTIR) was recorded
on a UV-3600 Plus spectrometer. The thermal gravimetric
analysis (TGA/DSC3+) were tested within the temperature range
of 25–750◦C in air atmosphere (heating rate: 10◦C min−1).
The morphology was studied by employing a Hitach SU-8220
field-emission scanning electron microscopy (FESEM) at 10 kV
accelerating voltage and a FEI Tecnai G2f20s-twin 200 kV
transmission electron microscopy (TEM) instrument.

Electrochemical Measurement
The electrochemical measurements of the as-obtained
VOPO4·2H2O cathodes were investigated in 2032-type coin cells,
which were assembled in an argon-filled glovebox equipment,
where both H2O and O2 levels were less than 0.1 ppm. For the
cathode electrode part, it was prepared by mixing VOPO4·2H2O,
carbon nanotubes and polyvinylidene fluoride (the mass
ratio = 6:3:1) in the N-methyl pyrrolidone solvent, and then the
well stirred slurry was coated evenly on an aluminum foil and
dried at 60◦C in a vacuum oven for 12 h. Na metal was used as the
counter electrode. Glass fiber membrane was acted as separator.
And a solution of 1 mol L−1 NaClO4 in propylene carbonate (PC)
and ethylene carbonate (EC) (1:1 v/v) with 5% fluoroethylene
carbonate (FEC) was selected as electrolyte. The galvanostatic
discharge-charge measurements were carried out on NEWARE
system within the cutoff voltage window of 2.5–4.3 V versus
Na+/Na. Electrochemical impedance spectroscopy (EIS) with
the testing frequency range of 105 to 10−2 Hz and cyclic
voltammograms (CV) at different scan rates were conducted by
the Multi-Autolab M204 electrochemical workstation.

RESULTS AND DISCUSSION

Figure 1A demonstrated the XRD pattern of the as-synthesized
sample via applying a reflux method. All the presented diffraction
peaks can be well indexed into the tetragonal VOPO4·2H2O
(JCPDS files no. 84-0111, space group: P4/n) with no detected
impurity peak, implying the as-synthesized sample is pure high-
crystalline VOPO4·2H2O (Zhou et al., 2016). TGA analysis was
employed to identify the water content of the as-obtained sample
(inset in Figure 1A). It is showed a weight loss of ∼18% between
25 and 200◦C, attributing to the evaporation of the crystal water
and the content is determined to be two H2O molecules per
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FIGURE 1 | (A) XRD pattern and TG curve (inset); (B) FT-IR spectrogram; (C) XPS spectrum; (D) Core-level XPS spectrum of V2p of the sample prepared by a
reflux method.

unit formula of VOPO4, which is also in good agreement with
the data from previous literatures (Zhou et al., 2018; Hyoung
et al., 2019). The FTIR spectrum is shown in Figure 1B. The
vibration peaks in the low wave number region (<800 cm−1) are
represented the V–O stretching vibration. And the two intense
broad bands at 1080 and 950 cm−1 are ascribed to P–O bond,
implying the existence of [PO4] tetrahedral (Bao et al., 2011).
Additionally, the band located at 1620 cm−1 is corresponding
to the bending vibration of interlayer water molecules. And
two characteristic bands at 3570 and 3400 cm−1 are relative
to P–OH stretching vibration and OH stretching vibration of
water molecule in VOPO4·2H2O, respectively (Zhou et al., 2014).
Furthermore, the XPS analysis is also employed to confirm the
surface compositions and oxidation state of vanadium in the
VOPO4·2H2O nanosheets. As illustrated in Figure 1C, the P, O,
and V elements are found in the XPS profile, consistent with the
results obtained from the XRD test. It is worth mentioning that
the C1s is used as the standard spectrum for calibrating system
error, whose core-level XPS spectrum coupled with that of P 2p
and O 1s are shown in Supplementary Figure S1. According

to Figure 1D, the V 2p core-level shows the binding energies
corresponding to V 2p2/3 peak and V 2p1/2 peak are 517.5 and
525.2 eV, respectively, confirming the main state of V5+ in the
synthesized sample (Yang et al., 2018).

The morphology and detailed microstructure of the sample
prepared by a reflux method were explored by field emission
scanning electron microscopy (FESEM) and transmission
electron microscopy (TEM). As presented in FESEM images
in Figures 2a–c, the as-prepared sample shows numerous
smooth-surfaced homogenous nanosheets with an approximately
thickness of 20–40 nm integrated in an interconnected
framework, which can stimulate fast Na-ions transportation and
electrons diffusion. The TEM images (Figures 2d,e) further
reveal the ultrathin feature of nanosheets as indicated by the
almost transparent character of the nanosheets. The detailed
crystalline structure of VOPO4·2H2O nanosheets was ulteriorly
explored by high-resolution transmission electron microscope
(HRTEM). As displayed in Figure 2f, the crystalline lattice
distance of 0.351 and 0.319 nm is indexed to the (002) and (102)
planes of the tetragonal VOPO4·2H2O, respectively.
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FIGURE 2 | FESEM images of the VOPO4·2H2O nanosheets with different magnifications (a–c); TEM images of the VOPO4·2H2O nanosheets (d,e); HRTEM image
of the VOPO4·2H2O nanosheets (f).

For comparison, the bulk VOPO4·2H2O sample was prepared
by a ball milling method and its intrinsic basic characterizations
are investigated and shown in Supplementary Figures S2–S6.
It is evident that the SEM images of bulk VOPO4·2H2O
control sample display an irregular large chunk morphology
with the size of >2 µm, accompanied by obvious agglomeration
(Supplementary Figure S6).

The electrochemical behavior of VOPO4·2H2O nanosheets
and bulk VOPO4·2H2O as SIB cathodes were evaluated in a
voltage window of 2.5–4.3V (vs. Na+/Na) by the galvanostatic
charge and discharge test. As shown in Figure 3A, both samples
exhibit the S-type charge/discharge profiles with an average
working potential of ∼3.5 V (vs. Na+/Na), corresponding to the
V4+/V5+ redox couple (Peng et al., 2017). The VOPO4·2H2O
nanosheets display an specific discharge capacity of 135 mAh
g−1 at a low current density of 0.05 C, which is remained at
123 mAh g−1 after 100 cycles with a 91% capacity retention
(Figure 3B). During cycling, the Coulombic efficiency is always
kept at ∼100%, suggesting a good reversibility. However, the
specific discharge capacity of the bulk VOPO4·2H2O is only
109 mAh g−1 at 0.05 C, and a relatively low capacity retention
ratio of 85% after the 100th cycle is illustrated. The inferior
performance of the bulk material is mainly due to its large
size, which makes the longer Na-ion diffusion path and some
of the inner part of the active materials may not participate in
the electrochemical reaction, resulting in the lower reversible
specific capacity and quicker capacity decay. More importantly,
owing to the unique nanosheet structure, the VOPO4·2H2O

nanosheets exhibit a remarkably high rate capability. As displayed
in Figure 3C, the specific discharge capacities of 127, 117, 111,
105, 99, and 93 mAh g−1 can be available at rates of 0.1, 0.2,
0.5, 1, 2, and 5 C, respectively. And even at high rates of 10 and
20 C, the reversible capacities actually reach 82 and 58 mAh g−1,
respectively. And the discharge capacity can still be back to 119
mAh g−1 when the rate is returned to 0.05 C. In contrast, the
rate capability of the bulk VOPO4·2H2O is much poor, which
barely delivers 45 and 29 mAh g−1 at 5 and 10 C, respectively,
and even almost no capacity at a high rate of 20 C. Meanwhile,
Figure 3D shows the charge-discharge curves of VOPO4·2H2O
nanosheets cathode at various current rates. It is observed that
there is more and more obvious polarization phenomenon with
increasing current rate, but the general S-type shape of the
curves are still maintained, implying a favorable electrochemical
stability of the VOPO4·2H2O nanosheets as cathode material
for SIBs. Moreover, the long-term cyclability of VOPO4·2H2O
nanosheets was also evaluated at 20 C (Figure 3E). Impressively,
a reversible discharge specific capacity of 43 mAh g−1 can be
maintained after 1000 cycles with a capacity retention of 74%. As
examined by the ex situ XRD (Supplementary Figure S7) and
SEM (Supplementary Figure S8), the slightly capacity decay is
mainly because of the crystallinity deterioration and nanosheet
morphology pulverization. Nevertheless, it is still much better
than that of the bulk VOPO4·2H2O (i.e., 57% capacity retention
over only 300 cycles at 20 C, Supplementary Figure S9).

To further highlight the advantages of VOPO4·2H2O
nanosheets, the electrochemical impedance spectrum
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FIGURE 3 | Sodium storage performance of the VOPO4·2H2O nanosheets and bulk VOPO4·2H2O. (A) the galvanostatic charge/discharge profiles at 0.05◦C; (B)
cycling performance at 0.05◦C; (C) rate capabilities; (D) galvanostatic charge/discharge curves of VOPO4·2H2O nanosheets at various rates; and (E) long-term
cycling behavior of VOPO4·2H2O nanosheets at 20◦C (the cell was initially activated for five cycles at 0.05◦C).

measurement (EIS) and cyclic voltammetry (CV) are conducted
to explore the charge transfer kinetics. The impedance spectra
of the VOPO4·2H2O nanosheets together with the bulk
VOPO4·2H2O sample were evaluated at the 5th fully discharged
state. As displayed in Figure 4A, the Nyquist plots are comprised
of one intercept-value at high frequency, one semicircle at

intermediate frequency and one inclined line in low frequency
area, which are consistent with the external circuit resistance
(Rb), the charge transfer resistance (Rct), and the Warburg
impedance (W), respectively (Guo et al., 2019). The Nyquist
curves are fitted by the equivalent circuit as illustrated in
Figure 4B, and the fitted impedance parameters indicated
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FIGURE 4 | Electrochemically kinetic analysis of the VOPO4·2H2O nanosheets and bulk VOPO4·2H2O. (A) Nyquist plots; (B) equivalent circuit model of the
impedance spectrum; (C) CV profiles of the VOPO4·2H2O nanosheets at 0.1–0.5 mV s−1, and (D) the linear relationship between the specific peak current and the
square root of scan rate.

that the Rct-value of the VOPO4·2H2O nanosheets (211 �)
is much smaller than that of bulk VOPO4·2H2O sample (332
�), implying the better electronic conductivity and faster
charge transfer for the VOPO4·2H2O nanosheets. Figure 4C
presented the CV curves of the VOPO4·2H2O nanosheets at
diverse scan rate from 0.1 to 0.5 mV s−1. Obviously, the CV
curves exhibited comparable shapes and gradually increased
peak intensity along with the increase of scanning rates. And a
pair of redox peaks is attributed to the V4+/V5+ redox couple
reaction, being consistent with the previous literature (Zhu et al.,
2016). In addition, the appearance diffusion coefficients of Na+
(DNa+ ) in VOPO4·2H2O cathodes are also investigated on the
basis of the CV technique and the Randles-Sevchik Equation
(Li Q. et al., 2020):

iP = (2.65× 105)n3/2SD1/2
Na+CNa+υ

1/2

where ip is the specific peak current, n is the number of electron
transferred, S is the active surface area of the cathode, the
concentration of Na-ions in the VOPO4·2H2O is represented
by CNa+ , and υ is scan rate. DNa+ is determined by the

slope of fitting linear of ip − υ1/2. As displayed in Figure 4D
and Supplementary Figure S10, a linear relationship between
the ip and the square root of the scan rate υ1/2 is found
for both VOPO4·2H2O electrodes. Based on the slope value,
the DNa+ of VOPO4·2H2O nanosheets is determined to be
∼1.7 × 10−13 cm2 s−1, which is one magnitude larger than
that of the bulk VOPO4·2H2O sample (∼1.9 × 10−14 cm2 s−1),
indicating the rapid Na+ extraction/insertion reaction kinetics of
the VOPO4·2H2O nanosheets.

CONCLUSION

In summary, a simple one-step reflux method was employed
to synthetize the novel VOPO4·2H2O nanosheets (thickness:
20–40 nm), which can enhance the Na-ion diffusion kinetics.
As a result, the VOPO4·2H2O nanosheets displayed a high
average operating voltage (∼3.5 V), gratifying reversible capacity
(e.g., 135 mAh g−1 at 0.05 C), remarkably improved rate
capability (e.g., 58 mAh g−1 even at 20 C) and excellent
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cyclic stability (e.g., 74% capacity retention at 20 C over 1000
cycles). The outstanding electrochemical performance of the
VOPO4·2H2O nanosheets makes it a promising cathode material
in rechargeable SIBs.
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