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With the increasing need to utilize carbon dioxide, fixed-bed reactors for catalytic
hydrogenation will become a decisive element for modern chemicals and energy carrier
production. In this context, the resilience and flexibility to changing operating conditions
become major objectives for the design and operation of real industrial-scale reactors.
Therefore steady-state multiplicity and stability are essential measures, but so far, their
quantification is primarily accessible for ideal reactor concepts with zero or infinite back-
mixing. Based on a continuous stirred tank reactor cascade modeling approach, this work
derives novel criteria for stability, multiplicity, and uniqueness applicable to real reactors with
finite back-mixing. Furthermore, the connection to other reactor features such as runaway
and parametric sensitivity is demonstrated and exemplified for CO2 methanation under
realistic conditions. The new criteria indicate that thermo-kinetic multiplicities induced by
back-mixing remain relevant even for high Bodenstein numbers. In consequence, generally
accepted back-mixing criteria (e.g., Mears’ criterion) appear insufficient for real non-
isothermal reactors. The criteria derived in this work are applicable to any exothermic
reaction and reactors at any scale. Ignoring uniqueness and multiplicity would disregard a
broad operating range and thus a substantial potential for reactor resilience and flexibility.

Keywords: fixed-bed reactors, multiplicity, uniqueness, back-mixing, stability, modeling, methanation (Sabatier)
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INTRODUCTION

Currently, we see many incentives for more sustainable chemicals and energy carrier production
based on CO2 and H2. Chemical reactors for CO2 hydrogenation play a crucial role in setting up
sustainable production chains (e.g., via Fischer–Tropsch synthesis, CO2 methanation, CO
methanation, methanol synthesis, reverse water-gas shift). Especially for chemical energy
conversion systems, as currently evaluated in the context of Power-to-X, these reactors are
decisive for the overall process efficiency. Moreover, sustainable production increasingly
demands for more flexible usage of chemical reactors accessing broader operation ranges and
faster load changes. Encountering these new challenges demands a reassessment of former
perspectives on reactor design and operation.

Due to the exothermic nature of most CO2 hydrogenations, strong heat releases may result in
harmful temperature excursions within the reactor interior, influencing catalyst lifetime,
process safety, and performance. Cooled fixed-bed reactors allow for effective heat
management and better controllability (Bremer and Sundmacher, 2019). These polytropic
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reactor concepts are often the first choice for the hydrogenation of
CO2 (Kopyscinski et al., 2010; Wood et al., 2012; Biollaz and
Schildhauer, 2016).

However, designing and operating polytropic fixed-bed
reactors is a rather challenging task, due to a variety of
possible physiochemical phenomena (e.g., runaway,
parametric sensitivity), which can lead to performance
losses or critical process failures (see e.g., Kreitz et al., 2019;
Kiewidt and Thöming, 2019; Moioli et al., 2019; Theurich et al.,
2019; Fache et al., 2020; Fischer and Freund, 2020;
Zimmermann et al., 2020). Such instances correlate with
features from systems theory, i.e., uniqueness, multiplicity,
and stability. Much work has been done in this direction for
ideal plug flow tubular reactors (PFTRs) and continuous
stirred tank reactors (CSTRs), providing explicit criteria
based on fundamental reactor parameters (Zaldívar et al.,
2003; Szeifert et al., 2007; Dochain, 2018). However, real
polytropic reactors with finite back-mixing are yet
inaccessible for these criteria and are therefore usually
subject to qualitative descriptions.

This work intends to review the current perspective on
uniqueness and multiplicity of real polytropic reactors under
non-isothermal conditions and demonstrates their close
connection to stability. Therefore, we perform a bifurcation
analysis on a cascade of CSTRs with unlimited stage numbers.
As a result, novel criteria for uniqueness and multiplicity are
derived that underline the importance of back-mixing within
fixed-bed reactors, even at an industrial scale. The theoretical
discussions are exemplified for CO2 methanation — a highly
exothermic reaction that is currently under intensive
investigation for future energy storage.

Carbon Dioxide Methanation
The key reaction for methanation of CO2 and H2 reads

CO2 + 4H2#CH4 + 2H2O, ΔR
~H
0 � −164.9 kJmol−1. (1)

Methanation is one of several possibilities to activate the inert
carbon dioxide. Further reactions are, for instance, dry reforming,
reverse water-gas shift (RWGS), and methanol synthesis. Among
these reactions, CO2 methanation is thermodynamically the
most favored, as it exhibits the lowest Gibbs free energy
of reaction in a temperature range from ambient to 900 K
(ΔR~G0 � −142 kJmol−1) (Wenzel, 2018). As depicted in
Reaction 1, CO2 methanation also features a strong
exothermicity, such that lower temperatures shift the chemical
equilibrium to the product side. This fact is supported by
Figure 1, which shows the result of chemical equilibrium
calculations assuming stoichiometric feed over a wide
temperature range and for technical relevant pressures
(thermochemistry data taken from Lemmon et al., 1998;
Haynes, 2017).

Figure 1 also illustrates two relevant kinetic models for nickel
catalysts. The model from Koschany et al. (2016) differs
significantly at temperatures above 700 K and shows higher
methane contents due to the exclusion of carbon monoxide.
Xu and Froment (1989), in contrast, considered the CO
methanation and RWGS reaction to account for carbon
monoxide. This was certainly motivated by the lower activity,
which achieves sufficient conversions only at higher temperatures
where CO formation becomes relevant. Although CO
methanation and RWGS reaction certainly occur, they are not
favored at elevated pressures and temperatures below 800 K. An

FIGURE 1 |Mole fractions at chemical equilibrium (top row) and kinetic conversion (bottom row) over temperature for pure, stoichiometric feed (H2/CO2 � 4) at
different pressures and flows, computed via Gibbs-free-energy minimization, kinetic model according to Koschany et al. (2016) (——) and Xu and Froment (1989) (——),
equilibrium CO2 conversion (⁃ ⁃ ⁃ ⁃ ⁃), equilibrium CH4 yield (———).
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analysis of thermodynamic limitations is comprehensively
illustrated by Gao et al. (2012), who also showed possible
amounts of solid carbon under CO2 excess. More detailed
calculations are presented by Kiewidt (2017), who identified
considerable amounts of solid carbon at feed ratios
H2/CO2 < 3.2.

Regardless of the many details on chemistry, this work
considers methanation mainly as a well-studied and highly
relevant reference reaction. However, the presented results and
criteria are easily applicable to other exothermic reactions.

Reactor Concepts for Exothermic
Reactions
Reactor concepts for exothermic reactions are mainly determined
by the expected temperature rise and the corresponding heat
generation. In order to assess the temperature increase, the
adiabatic temperature rise (ATR) is considered as an
appropriate worst-case estimate. The ATR is defined as

ΔTad �
cCO2(−ΔR

~H)
ρgascp,gas

� wCO2(−ΔR
~H)

MCO2cp,gas
, (2)

and exemplary evaluated for methanation at standard,
stoichiometric feed conditions

ΔT0
ad �

0.845(164’900 Jmol−1)
0.044 kgmol− 12’950 Jkg− 1 K− 1

� 1073.5K.

Looking at Eq. 2 reveals that the ATR is pressure-independent, since
ΔR ~H and cp,gas depend exclusively on temperature under ideal gas
conditions. Although a higher pressure leads to more reactants and
thus more heat generation, the gas heat capacity increases
simultaneously and compensates for a further temperature rise.
The temperature dependence of the ATR is also rather negligible.

Technologically, this large temperature increase is answered
with a series of adiabatic or polytropic fixed-bed reactors (with or
without product recycles). Figure 2 illustrates exemplary state-

space diagrams for both concepts. Which concept is used for a
particular application is often driven by several aspects (e.g., plant
size, product quality, costs, safety, reliability, flexibility). However,
for modern hydrogenation, we see an increasing application of
polytropic fixed-bed reactors (Kopyscinski et al. 2010).

Switching the reactor concept from adiabatic to polytropic
(e.g., by cooled multi-tubular bundle reactors) potentially enables
a lower catalyst volume, fewer reactor stages, better heat
management, and the elimination of gas recycling.
Nevertheless, such reactors are more difficult to construct and
maintain (e.g., in case of catalyst replacements), which is, in
particular, difficult for process scale-up. Hence, the performance
benefit must outweigh the increased complexity of the reactor. In
the context of gas-to-liquids, Fischer–Tropsch synthesis is an
example of the successful use of multi-tubular reactors on a large
scale (Wood et al., 2012).

Figure 2 also highlights the relevance of uniqueness. Under
certain conditions, both adiabatic and polytropic reactor concepts
allow for nonunique operating states (here illustrated for CO2

methanation with respect to cooling or inlet temperature).
Especially for polytropic reactors, these nonunique states allow
for large conversions and reduced peak temperatures in one
single reactor stage, even for undiluted feeds (Bremer and
Sundmacher, 2019). Furthermore, uniqueness is very much
related to potential reactor runaways and is, thus, relevant to
guarantee safe operation. Consequently, a clear determination of
uniqueness is of great value for the design and operation of real
non-isothermal fixed-bed reactors but has not been sufficiently
addressed in the literature yet. This work shall contribute to close
this gap and proceeds with a brief literature overview on state-
space multiplicity.

State-Space Multiplicity
State-space multiplicity of fixed-bed reactors is differentiated in
extrinsic and intrinsic (Bremer and Sundmacher, 2019), whereas
this work exclusively deals with the intrinsic version. There are
numerous sources for intrinsic state-space multiplicity. Three

FIGURE 2 | State-space diagram for adiabatic and polytropic reactors with exemplary reaction pathways, reactor length: 2 m, pressure: 5 bar, reaction: CO2

methanation according to Koschany et al. (2016), equilibrium CO2 conversion (⁃ ⁃ ⁃ ⁃).
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scales are in particular of interest: the scale of the active site, the
catalyst pellet (including pores), and the reactor (Sheintuch, 1987).
Figure 3 illustrates all three scales and the corresponding multiplicity
sources (A to E) that have been most discussed in the literature.

These sources typically relate to mass and energy fluxes within
a reactor control volume (zV) and their natural drive to equalize
temperature and concentration differences caused by reactive
sources and sinks. All fluxes are determined by corresponding
transport resistances and linked in a network connecting scales
and phases. Depending on inlet and surrounding conditions of
the control volume, some resistances are rate-determining for the
overall mass and energy transport. According to conservation
laws, at steady state all fluxes, sources, and sinks are in
equilibrium. A change of inlet and surrounding conditions
disturbs the entire network, and a new flux equilibrium
emerges. At reactor scale, there exists a unique flux
equilibrium if all individual fluxes are unique and if inlet and
surrounding of the control volume are not influenced by the
control volume itself. If the control volume influences its inlet
and/or surrounding (e.g., due to back-mixing), multiple flux
equilibria, and, thus, multiple steady states are possible. This
interaction is typically denoted as feedback at reactor scale.
Similarly, these feedbacks may also occur at catalyst and site
scale due to the interaction with neighboring scales.

When steady-state multiplicities in fixed-bed reactors are
observed (either numerically or experimentally), they often
result from several sources simultaneously. In order to
assign the observed multiplicity to the correct source, careful
evaluation of each source is required. Therefore, Sheintuch
(1987) divided intrinsic multiplicity sources from Figure 3 into
three classes:

• purely kinetic (Cm
2 ),

• isothermal (Am, Cm
1 ),

• thermo-kinetic (Ae, Be, Ce
1, D

e, Ee).

Purely kinetic sources belong to mass transport at the active
site induced by nonlinear kinetics (e.g., adsorption vs. reaction)
(Nibbelke et al., 1998), concurrent reactions/reaction networks
(Balakotaiah and Luss, 1983; Elnashaie and Elshishini, 1993;
Nibbelke et al., 1998; Mohl et al., 2001), or catalyst

deactivation (Gilles, 1977; Eigenberger, 1983). Isothermal
sources arise from mass transport at catalyst (diffusion)
(Morbidelli et al., 1986; Lee et al., 1987) or reactor scale
(convection, dispersion). Thermo-kinetic sources are mainly
caused by nonisothermicities, which influence the nonlinear
reaction rate coefficients according to the Arrhenius relation
(Eigenberger, 1972a; Heinemann and Poore, 1982; Wagialla
and Elnashaie, 1995).

Furthermore, multiplicities are also able to propagate through
different scales and along with spatial directions. As a result, a
large amount of multiple steady states (in theory up to infinity) at
reactor scale can be produced by only a few (typically three)
multiple steady states at pallet or site scale (Lee et al., 1987; Arce
and Ramkrishna, 1991; Nibbelke et al., 1998). Due to the variety
of different sources and their ability to propagate through scales,
literature (going back to the early 60s) reports very differently or
even controversially about total number, relevant sources, and
necessary conditions of multiple steady states in fixed-bed
reactors. This aspect is demonstrated by a brief literature
review in Table 1.

As shown in Table 1, the investigation of steady-state
multiplicity is mainly performed via cell models and
dispersion models (see Materials and Methods). Both model
types have been used to outline the two theoretical limiting
cases: a reactor without and with an infinite number of multiple
steady states. The dominating opinion is that the ideal PFTR is
free of any state-space multiplicity due to the absence of
transport in countercurrent direction (feedback). However,
some studies opposed that the ideal PFTR is rather
characterized by an infinite number of steady states (Liu and
Amundson, 1962; Wagialla and Elnashaie, 1995; Nibbelke et al.,
1998). These studies refer to the fact that the continuum
description of an ideal PFTR corresponds to a series of
infinite CSTRs. Assuming that the ignition can occur at any
CSTR within the series gives rise to an ignition possible at any
position along the reactor axis. This thought experiment allows
for discontinuous solutions in packed-beds, which is often
correlated to multiple steady states of single particles (Arce
and Ramkrishna, 1991) or active sites (Nibbelke et al., 1998).
Although the confusing concept of infinite solutions was
discussed very controversially, it was certainly the main

FIGURE 3 | Flux network and sources A to E for intrinsic multiplicity within fixed-bed reactors, double arrows indicate mass (m) and/or energy (e) fluxes to be part of
the respective source.
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driver behind many investigations. Thereby, two objectives
became the most relevant for technical applications: Firstly,
the ability to operate at various states promises performance
improvements. Secondly, state-space uniqueness is of great
value for safety reasons (e.g., to avoid runaways).

Apart from ideal reactors, many studies in Table 1 also focus
on real reactors considering finite Bodenstein numbers (see
definition in Materials and Methods) within dispersion
models or finite numbers n of representative CSTRs within
cell models. As shown in Levenspiel (1999), both concepts are
interchangeable due to the relation

1
n
� 2
Bo

− 2
Bo2

(1 − exp( − Bo)), and

n � Bo
2

(if Bo> 100).
(3)

Besides the different model concepts, various assumptions are
made in order to uncover the influence of specific sources of
steady-state multiplicity. Therefore, the studies in Table 1 differ
in many aspects of the model constitution (e.g., heterogeneous vs.
homogeneous, isothermal vs. non-isothermal, first-order reaction
vs. Langmuir-Hinshelwood Hougen-Watson-type reaction, with

vs. without radial dispersion). For instance, the use of isothermal
reactor models eliminates all thermo-kinetic multiplicities and
allows for investigations on purely kinetic and/or isothermal
multiplicities. On the contrary, the study of purely thermo-
kinetic multiplicities is preferably done in the absence of
kinetic and isothermal multiplicities.

Most studies dealing with thermo-kinetic multiplicity sources
agree that axial dispersion of heat plays a vital role in the existence
of multiple steady states in fixed-bed reactors. Eigenberger
(1972b), in particular, argued that heat conduction through
the solid phase (source Be) must reduce an infinite multiplicity
to a finite number of multiple steady states. The author also
identified a maximum number of three or five multiple steady
states, depending on the boundary conditions of the solid phase.
It took about 20 years before this finding was revised. Therefore,
Nibbelke et al. (1998) extended the model of Eigenberger (1972b)
and considered a reaction kinetic with multiplicities at the active
site (source Cm

2 ). The authors could prove that an infinite number
of steady states is maintained even if axial heat dispersion through
the solid phase is incorporated. Unfortunately, this research
direction is still very narrow, which is certainly due to the fact
that the required heterogeneous model is a rather sophisticated

TABLE 1 | Review on multiplicity sources within fixed-bed reactor models and experiments.

Active Source
Figure 3

Class # MSS Bom, Boe Eq. 4 Model Type References

None None 1 (stable) →∞m,e Id. PFTR Schmitz and Amundson (1963), Sinkule et al. (1976a), Varma
(1980), Jensen and Ray (1982)

None None ∞ →∞m,e Id. PFTR Liu and Amundson (1962), Wagialla and Elnashaie (1995),
Nibbelke et al. (1998)

Pseudo-homogeneous models (lumped gas and solid phase)
Ae, Be, Ee tk 1exp, 2exp 100e DM Kalthoff and Vortmeyer (1980)
Am,e, Be, Ee tk 1, 2 (stable) 40–1’900m, 3–160e DM Puszyński et al. (1981)
Am,e, Be, Ee tk 1, 3, 5, 7 1–5m,e DM Heinemann and Poore (1981), Heinemann and Poore (1982)
Am,e, Be, Ee tk 1, 3, 5 1–320m, 1–100e DM Jensen and Ray (1982)
Am,e, Be tk 1exp, 2exp, 3 300m, 8e,exp, 30e DM Wedel and Luss (1984)
Ae, Be, Ee tk 1, 3 10–10’000e DM Pita et al. (1989)
Am, Cm

2 k,i ∞ 1 −∞m CM, DM Nibbelke et al. (1998)
Cm
2 k,i 1, 3, 5 ∞m CM, DM Nibbelke et al. (1998)

Am,e, Be tk 1, 2, 3 6m,e DM Dochain (2018), Dramé et al. (2008)

Heterogeneous models
Am,e tk ∞ 100–300mg,eg DM Liu and Amundson (1963)
Be, Ee tk 1, 3, 5 280ec DM Eigenberger (1972a), Eigenberger (1972b)
Am,e, Cm,e

1 tk ∞ 9.5–43mg, 40–172eg CM, DM Sinkule et al. (1976b)
Cm
1 i 1, 3 ∞mg DM Morbidelli et al. (1986), Lee et al. (1987)

Am, Cm
1 i 1, 3, 5, 7, 9 0<Bomg <∞ DM Lee et al. (1987)

Am, Cm
1 i 1, 3 0mg DM Lee et al. (1987)

Am, Cm
1 i ∞ 0mg CM Arce and Ramkrishna (1991)

Am,e, Be tk 1, 3, ∞ 40mg,eg ,> 40eg CM Wagialla and Elnashaie (1995)
Cm
1 i ∞ ∞mg DM Trinh and Ramkrishna (1996)

Am, Cm
1 i ∞ 1–10mg DM Trinh and Ramkrishna (1997)

Be, Cm
2 tk,k ∞ Similar to (Eigenberger, 1972a) CM, DM Nibbelke et al. (1998)

Cm,e
1 tk 1, 3 ∞mg,eg DM Dommeti et al. (1999)

Be, Cm,e
1 tk 1, 3, 5, 11 ∞mg,eg, 50–3’000ec DM Agrawal et al. (2007)

Am,e, Be, Ee tk 1, 3, 5 0–560eg, 0–5’600ec, 0–1’680mg DM Bostandzhiyan and Shkadinskii (2010)

Purely experimental studies—comprehensive reviews given by Padberg and Wicke (1967), Wedel and Luss (1984), Harold and Luss (1985), Adaje and Sheintuch (1990)
2exp (stable) Puszyński and Hlavacek (1984), Adaje and Sheintuch (1990)
4exp (stable) Harold and Luss (1985)

m - mass; e - energy; g - gas; c - catalyst; exp - experimental; k - kinetic; i - isothermal; tk - thermo-kinetic; CM - cell model; DM - dispersion model; MSS - multiple steady states.
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numerical tool for such analyses. The use of pseudo-
homogeneous models provides a possible remedy. Although
pseudo-homogeneous models are not able to distinguish
between energy transport in source A and B, their results
point in the same direction. By making use of dimensionless
model formulations and bifurcation techniques Heinemann and
Poore (1981), Jensen and Ray (1982), Heinemann and Poore
(1982) classified several aspects that also contribute to the
existence of multiplicity. Both stated that a nonadiabatic
reactor with unequal Bodenstein numbers for heat and mass
dispersion shows a unique solution, either for sufficiently high
values of the Bodenstein numbers, large heat transfer coefficients,
or small values of the Damköhler number. These conditions also
hold for industrial fixed-bed reactors; such that multiplicity was
found to be relevant even for technical configurations (Puszyński
et al., 1981; Pita et al., 1989). This is reflected in Table 1 by the
broad range of Bodenstein numbers in which multiple steady
states are observed. In most investigations, the number of three
multiple steady states is confirmed. Beyond that, some studies
report up to eleven multiple steady states. However, experimental
evidence above four multiple steady states was not found. For
instance, Wedel and Luss (1984) validated their results with an
experimental setup for CO and CO2 methanation in a fixed-bed
of 25 cm in length and 2.5 cm in diameter. The authors could
reproduce predicted model solutions of one ignited and one
extinguished state with identical feed concentration. Therefore,
a one-dimensional axial dispersion model, which accounts for the
diffusion-reaction interactions within the pellets, was found to be
well suited for multiplicity analysis. Since their experimental
setup has a low bed length and, thus, a low Bodenstein
number (Boe � 8), conclusions for industrial reactors are
rather limited. Nevertheless, the good agreement between
model and experiment verified and proved that state-space
multiplicity is of significance within fixed-bed reactors. More
recently, Agrawal et al. (2007) pointed out that the often reported
high number of multiple solutions originates from the
assumption of constant transport coefficients, which leads to
many fragile solutions that emerge from unstable branches.
Accounting for the variation of heat and mass transfer
coefficients with local flow and reaction properties eliminates
these nonphysical solutions. For this reason, recent works are
often motivated to add more physical meaning to their models.
This allows to additionally focus on effects of secondary order
(e.g., flow maldistributions, localized hot-spots, spatial and
spatiotemporal patterns) (Sheintuch, 1997; Trinh and
Ramkrishna, 1997; Jaree et al., 2001; Papadias et al., 2001;
Marwaha and Luss, 2003; Agrawal et al., 2007; Viswanathan
et al., 2008; Nekhamkina and Sheintuch, 2012), which is,
however, not object of this work. Similarly, stable oscillatory
solutions are also disregarded in this work, since they are unlikely
to occur in fixed-bed reactors on an industrial scale due to their
high thermal inertia (Jensen and Ray, 1982).

In order to identify the full operating range of fixed-bed
reactors, this work considers state-space multiplicity as a
crucial feature. Therefore, thermo-kinetic sources are of major
interest, since purely kinetic and isothermal multiplicities are
reported to be rather fragile. The literature survey from above

reveals that axial dispersion, as well as the diffusion-reaction
interaction, are essential model components to obtain consistent
results. However, for specific applications, these studies rather
provide trends than generally valid correlations and criteria. The
impact of several simultaneously interacting features is certainly
the main reason for this obstacle. Furthermore, the operation at
unstable states is also underrepresented in the literature and
needs further elaboration (see e.g., Bremer and Sundmacher,
2019). Therefore, the following sections intend to provide
more insights and propose general criteria that unifies the
aspects uniqueness, multiplicity, and stability.

MATERIALS AND METHODS

Analyzing chemical fixed-bed reactors requires to incorporate a
variety of physicochemical interactions and is often motivated by
models from first-principles. Solving these models can lead to a
challenging computational task due to the complex coupling ofmass,
energy, and momentum transport. However, putting all available
details into consideration is not always necessary. For instance, the
basic phenomena described in this work are fully representable by
mass and energy transport alone, which agrees well with previous
works (see Table 1). In addition to physical assumptions, the
considered control volume boundary also determines the relevant
balance components. This differentiationmeets the two ideal reactor
concepts for continuously operated reactors:

• the ideal CSTR,
• the ideal PFTR.

The CSTR concept often considers a control volume around
the entire reactor volume (integral balance). In contrast, the
control volume for the ideal PFTR typically refers to an
infinitesimally small volume segment within the reactor
volume (differential balance). The PFTR allows to describe in
detail spatial distributions of the reactors state variables (e.g.,
temperature and mass fraction), but also requires higher
numerical efforts. Both ideal reactors also represent the two
limiting cases for back-mixing/axial dispersion, which is
typically measured by the axial Bodenstein number for mass
and energy according to

Bom � vzL
D z

, Boe � vzρgascp,gasL

λz
, (4)

which are essential for later discussions. In case of an ideal CSTR
the reactive volume is fully mixed (D z � λz →∞,
Bom � Boe → 0), whereas in case of the ideal PFTR no back-
mixing/dispersion exists (D z � λz → 0, Bom � Boe →∞)
(Levenspiel, 1999).

Real reactors, as considered in this work, are allocated right in
between these two limiting cases. The corresponding model
approaches are

• the CSTR cascade (tanks-in-series model, cell model),
• the tubular reactor model with axial dispersion (dispersion

model, continuous model).
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In order to represent real reactors more accurately, the control
volume might also differentiate between bulk gas phase and
catalyst phase. Two model concepts are commonly applied:

• the pseudo-homogeneous model (no phase distinction),
• the heterogeneous model (phase distinction with interfacial

and intraparticle mass and energy transport).

Depending on the considered model, the energy dispersion
coefficient in Eq. 4 is considered differently. The pseudo-
homogeneous model lumps solid and gas phase, which
requires an effective energy dispersion term (λz � λeffz ). On the
contrary, the heterogeneous model allows for the distinction
between gas and catalyst-phase dispersion and, thus, accounts
for two separate energy-based Bodenstein numbers (Boeg,Boec).
For real fixed-bed reactors, the mass-based Bodenstein number is
reported to be three to ten times higher than the energy-based
Bodenstein number (Puszyński et al., 1981; Bostandzhiyan and
Shkadinskii, 2010). Thus, energy back-mixing is the dominating
axial dispersion mechanism within fixed-bed reactors (Mears,
1976). Note that some studies define the here stated Bodenstein
number as Péclet number. In this work, these numbers are
distinguished by the characteristic length, which is the reactor
length L for the Bodenstein number and the particle diameter dp
for the Péclet number.

Both model concepts offer different levels of sophistication,
e.g., one-, two-, or three-dimensional spatial resolution,
stationary or dynamic, with or without axial dispersion.
How sophisticated a model needs to be is often rated by
criteria (e.g., Mears’ criterion), which incorporate
dominating transport phenomena and reactor design. A
comprehensive overview is provided by Pérez-Ramírez
(2000). Besides these criteria, distinct model or transport
components may be examined separately. This decoupling
approach is well-established to identify and analyze, for
instance, different sources of state-space multiplicity. In this
context, Nibbelke et al. (1998) emphasized that the
identification of multiplicity sources is inevitable for a correct
interpretation of numerical and also experimental results. This
observation is crucial for the construction of adequate reactor
models as well as for optimal reactor operation and control.

In the following, a single pseudo-homogeneous CSTRmodel is
used to represent fully mixed reactive conditions and to illustrate
its implications on uniqueness, multiplicity and stability.
Afterward, the single CSTR is extended to a series of CSTRs
(cell model) in order to approach conditions as they prevail in real
fixed-bed reactors. All investigations are exemplified for
methanation under realistic reactive conditions.

RESULTS

As indicated by the previous section, back-mixing is an essential
feature that determines multiplicity. In order to show how this
applies to real reactors, the following derivations shall serve as a
guideline for multiplicity analysis, exemplified for catalytic
methanation. Beginning with the well-known limiting case of a

fully mixed reactive volume illustrates the fundamental
parameters that characterize the range and intensity of
multiplicity.

CSTR Analogy
The technical relevance of this limiting case can be found, for
instance, with Berty reactors, which are widely used for catalyst
characterization. Although the relationships presented here
are already state of knowledge, they are crucial for later
excursions toward industrial-scale fixed-bed reactors.
Further on, a CSTR model as described in Supplementary
Section S1 is used. The required mass and energy balances
read accordingly:

mass balance : XCO2 �
τ

ε

Rmeth(T , p,wα)
cCO2 ,in

, (5)

energy balance : XCO2 � (1 + St)
ΔTad

(T − Top). (6)

Consequently, steady-state operation of a single CSTR is
governed by the equality of Eqs. 5 and 6. In order to evaluate
unique and non-unique operating points, Supplementary Table S1
provides a reference setting that corresponds to carbon dioxide
methanation in a fixed-bed reactor including realistic parameter
ranges.

The six key parameters in Supplementary Table S1 are
highlighted in bold and result in Figure 4 for variations of the
operating temperature and Figure 5 for variations of the Stanton
number. The operating temperature is given in Supplementary
Eq. S19 and reflects changes in coolant and inlet temperature,
whereas the Stanton number mainly results from changes in the
coolant heat transfer. The left side of both figures shows that
under realistic conditions, multiple equilibrium (or operating)
points are indeed attainable, similar to the theoretical discussions
in State-Space Multiplicity. The right side in both figures
illustrates how hysteresis emerges when the operating
temperature varies within realistic ranges. Apart from
variations in operating temperature and Stanton number, one
might also consider variations of the residence time τ. Higher
residence times correspond to higher Damköhler numbers and
increase the curvature of the mass balance operating curve (Eq. 5)
and, thus, increase the hysteresis.

These results explicitly show that under perfect back-mixing
at most three operating points are attainable, whereas two are
stable (OP 1 and OP 3) and one is unstable (OP 2). As seen in
the upper right figures, the unstable operating points are
always surrounded by stable ones and cover a significant
part of the attainable conversion range. If these unstable
states are ignored for reactor design and operation, a
significant potential might get lost. This clearly
demonstrates the close connection between multiplicity and
stability. Here, the generalized criterion for stability of a CSTR
at a certain operating point is known to result from mass and
energy-based sensitivities according to

dX
dT

∣∣∣∣∣∣∣OP �
τ

ε cin

dR
dT

∣∣∣∣∣∣∣OP <
1 + St
ΔTad

, (7)
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which is equivalent to the criteria proposed by van Heerden (1953)
and Gilles and Hofmann (1961). Note that sensitivities might also be
considered with respect to other parameters than temperature.
However, this work focuses primarily on thermo-kinetic
multiplicities, for which temperature sensitivities are the most
relevant. The mass-based sensitivity may be further evaluated by
resolving the total differential at constant τ and cin, such that

0 � dX
dT

− τ

ε cin

dR
dT

� dX
dT

− τ

ε cin
(zR
zT

+ zR
zX

dX
dT

)

0
dX
dT

�
τ

ε cin

zR
zT

1 − τ

ε cin

zR
zX

.

FIGURE 4 | State-space diagram for mass and energy balance (left) and for all equilibrium points (right) under variation of the operating temperature, reference
setting taken from Supplementary Table S1.

FIGURE 5 | State-space diagram for mass and energy balance (left) and for all equilibrium points (right) under variation of the Stanton number, reference setting
taken from Supplementary Table S1.
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Plugging this into Eq. 7 leads to the rate-based CSTR stability
criterion

CSTR stability :

τ

ε cin

zR
zT

1 − τ

ε cin

zR
zX

< 1 + St
ΔTad

. (8)

In comparision, Szeifert et al. (2007) comprehensibly reviewed
available criteria for reactor stability, runaway, and parametric
sensitivity. Among those, the authors recommend using the
Ljapunov stability criterion for a PFTR in space (or for a
batch reactor in time), which is very similar to the upper
CSTR stability criterion. In case of an equimolar reaction the
PFTR stability criterion accordingly reads

PFTR stability :

τ

ε cin

zR
zT

St − τ

ε cin

zR
zX

< 1
ΔTad

.

Both criteria reveal that reactor stability is supported under
intensive cooling conditions (St→∞) and suppressed under
reduced cooling conditions (St→ 0). As explained in State-
Space Multiplicity the PFTR is primarily considered to have a
unique solution for fixed parameters. Hence, the features stability,
runaway, and parametric sensitivity need to be separated from
multiplicity, which was already highlighted by (Bilous and
Amundson, 1956). Until today, this separation is often
considered to be generally valid. However, in the CSTR case a
strong coupling of these features is clearly given. From the above
explanations, generalized criteria for uniqueness and multiplicity
within the operating range O derive very similar to the stability
criterion and read

CSTR uniqueness : max
T∈O

dX
dT

� dX
dT T*

≤
1 + St
ΔTad

,
∣∣∣∣∣∣∣ (9)

CSTR multiplicity : max
T∈O

dX
dT

� dX
dT T*

> 1 + St
ΔTad

.
∣∣∣∣∣∣∣ (10)

On the left side, the mass-based sensitivity corresponds to the
steepest conversion gradient at the inflection point T � T* of
Eq. 5. On the right side, the energy-based sensitivity corresponds
to the constant conversion gradient of Eq. 6. Although the
uniqueness criterion applies to all operating points in O
(sufficient condition for uniqueness), the multiplicity criterion
only indicates the existence of some operating points with multiple
steady states in O (necessary condition for multiplicity). Thus, even
if the multiplicity criterion holds, unique solutions in O might still
exist. Furthermore, discontinuous jumps at the turning points from a
stable extinguished to a stable ignited branch - and vice versa - is also
solely induced by the existence of multiplicity. These jumps coincide
with what is generally denoted as parametric sensitivity and reactor
runaway (Morbidelli and Varma, 1982). Moreover, the equivalence
strikingly demonstrates the close connection between stability,
runaway, parametric sensitivity, and multiplicity when back-
mixing is present. However, commonly accepted criteria for

reactor runaway and stability do not consider back-mixing at all
(Szeifert et al., 2007; Kummer and Varga, 2019). To close this gap,
the next section applies the upper correlations formass and energy to
a series of CSTRs, where a finite number of stages corresponds to
finite back-mixing.

CSTR Cascade Analogy
In order to approach a more realistic description of industrial-
scale fixed-bed reactors, this section extends the previous
relations to a CSTR cascade with multiple stages. Note that
such cascades also mimic finite volume schemes, which are
widely used to solve dispersion models numerically.
Supplementary Section S2 provides the entire cascade
model notation, mass and energy balances, as well as the
solution strategy. The resulting equations of each CSTR
stage {i} are

mass balance : X{i}
CO2

� 1
n

τ

ε cCO2 ,in
R{i}
meth � CnR

{i}
meth, (11)

energy balance : X{i}
CO2

� (1 + Stn)
ΔT {i}

ad

(T {i} − T {i}
op). (12)

In order to separate different multiplicity sources, isothermal and
non-isothermal cascades are discussed in the following.

Two Isothermal CSTRs
Under intensive cooling conditions (St→∞) or negligible heat
effects (ΔT{i}

ad → 0) the CSTR cascade becomes isothermal,
meaning that Tin � Tcool � T{i}. The corresponding implicit
nonlinear equation system results from Eq. 11 and reads

0 � X{1}
CO2

− C2R
{1}
meth,

0 � X{2}
CO2

− C2R
{2}
meth,

(13)

which can be solved consecutively (stage-wise) or simultaneously
for X{1}

CO2
and X{2}

CO2
by root-finding algorithms (e.g.,

Newton–Raphson method). The solution of Eq. 13 is
illustrated in Figure 6.

As seen on the left side of Figure 6, the operating point
(depicted by bullets) of each CSTR lies on a straight line in the
R-X diagram. The unique intersection at any temperature proves,
that no purely kinetic multiplicity (Cm

2 in Figure 3) exists for the
rate expressions used in this work. Since intraparticle and
interfacial transport resistances are neglected (ηmeth � 1), the
multiplicity sources Cm

1 and Ce
1 are also absent. This graphical

analysis is also applicable to other reactions in order to check for
these multiplicity sources. The right side of Figure 6 depicts the
stage operating range as well as the overall operating range for
two CSTRs in series and compares it to scenarios with 1, 10, and
100 stages. The comparison shows the well-known tendency that
the higher the stage number, the higher the conversion.

Two Non-Isothermal CSTRs
The operating points for a series of non-isothermal CSTRs are
additionally determined by individual stage temperatures
deviating from inlet and cooling temperature Tin � Tcool ≠ T{i}.
Thus, the nonlinear equation System 13 needs to be extended by
the stage energy balances in Eq. 12 such that
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0 � X{1}
CO2

− C2R
{1}
meth,

0 � X{1}
CO2

ΔT {1}
ad + (1 + St2)(T {1}

op − T {1}),
0 � X{2}

CO2
− C2R

{2}
meth,

0 � X{2}
CO2

ΔT {2}
ad + (1 + St2)(T {2}

op − T {2}).
(14)

This system can be solved again stage-wise or simultaneously forX{1}
CO2

,
X{2}
CO2

, T{1}, and T {2} by root-finding algorithms. The previous section
showed that one single stage allows for up to three multiple solutions,
which indicates that theCSTR cascade inEq. 14 also generatesmultiple
steady states. In theory, if each stage exhibits up to threemultiple steady
states (OP 1, 2, and 3), a total number of 3n state combinations arise for
the entire cascade. Standard root-finding algorithms, however,
converge only to one local solution of System 14. Thus, finding all
solutions requires further efforts, which is part of the following
discussions.

The graphical solution of System 14 is shown in Figure 7
considering three of nine possible combinations ([1–1], [2–1],
[3–1]). This figure comprehensively shows how the first operating
point influences its downstream stage. The more conversion is
achieved within the first stage, the less remains within the next
stage. Furthermore, the energy-based operating line (green) of the
second stage becomes steeper due to the reduced ATR. Both
effects simultaneously reduce the occurrence for multiplicities
within the second stage, if the first stage operates at an ignited
state (OP 2 or 3). Later, this will be an essential aspect to interpret
solutions of multi-stage CSTRs. Enumerating all possible
solutions within the relevant coolant temperature range leads
to the results in Figure 8.

Compared to the single CSTR, the hysteresis is more
pronounced, and intermediate solutions emerge. Although
combinatorics allows nine multiple steady states, only seven
remain significant after enumeration. The combinations [3–2]

FIGURE 6 | State-space diagram for a cascade of two isothermal Continuous Stirred Tank Reactors (CSTRs) in the R–X (left) and X–T (right) plane, reference
setting taken from Supplementary Table S1 but Top � 550 K.

FIGURE 7 | Graphical solution of a two-stage CSTR series with state combination [1-1], [2–1], and [3–1], reference setting taken from Supplementary Table S1
but T {1}

op � 400 K and Tin � Tcool.
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and [3–3] cancel out, due to the previous discussions on
Figure 7. In addition, combinations [2–2] and [2–3] are
rather seen as fragile because they exist in a very narrow
operating range. In consequence, multiplicity driven by
combinatorics is divided into significant and non-existing
paths, as illustrated in Figure 9. These findings indicate that
multiplicity in a CSTR cascade attributes only to a few stages. In
order to confirm this hypothesis, a multi-stage cascade is
analyzed in the following.

Multi-Stage CSTR Cascade
The enumeration effort of a multi-stage CSTR cascade increases
exponentially with the number of stages if all possible
combinations are taken into account. With six stages, there
exist already 36 � 729 state combinations for all coolant
temperature increments (here 300), leading to over 200’000
solver runs. Although a brute force enumeration would
provide all solutions, many of them will be insignificant, due
to missing physical constraints. Thus, a more elegant way is the
use of bifurcation theory and numerical continuation
techniques, which track solution branches according to slight
parameter changes (e.g., coolant temperature) within a
predefined range. During these changes, the eigenvalues of
the linearized system equations may change such that the
system becomes unstable. The shift to instability occurs if

some eigenvalues cross the imaginary axis. At this point,
bifurcation can take place from which new branches spread.
However, this method also suffers from extensive computational
efforts due to the eigenvalue calculation and possible
inaccuracies of the systems Jacobian close to the bifurcation
point. Furthermore, there is no guarantee that this method
obtains all solutions. More details on bifurcation theory and
numerical continuation techniques can be found in (Heinemann
and Poore, 1981; Jensen and Ray, 1982; Kubíček and Marek,
1983; Wagialla and Elnashaie, 1995).

In this work, the enumeration of all solutions was found to be
the more convenient and illustrative approach. It will be shown
that the non-existent solutions can be excluded already in
advance. Together with efficient nonlinear computation
techniques (here provided by CasADi; Andersson et al., 2018)
the enumeration of all solutions with reasonable computational
effort becomes feasible. Accordingly, the results for three to six
CSTRs in series are illustrated in Figure 10.

Most importantly, the solutions in Figure 10 aggregate in
three main clusters forming - similar to a single CSTR - a stable
ignition and extinction branch, as well as an unstable
intermediate branch. The number of multiple steady states
increases with increasing stage number n, but most solutions
persistently converge to the three main clusters. Once again, each
relevant solution has not more than two stages exhibiting
multiplicity. Cascades with more stages as represented by
Figure 11 confirm that two stages are sufficient to map the
dominating state clusters. These two stages are further on denoted
as key stages, which may exist at any position within the cascade.
The key stage solutions directly at the inlet are colored in
Figure 10. Solutions with the same key stage combination but
different locations along the cascade aggregate within the same
cluster. For instance, the upper ignition branch is covered by n
[/1–3–1/] combinations, the middle unstable branch is

FIGURE 8 | Enumerative solution of significant operating points in a two-stage CSTR series, reference setting taken from Supplementary Table S1 but Tin � Tcool .
Note: Tcool is constant over the entire cascade, whereas Top changes in each CSTR stage.

FIGURE 9 |Possible state combinations for a two-stage CSTR cascade.
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covered by n [/1–2–1/] combinations, and the lower
extinction branch is covered by n [/1–1–1/]
combinations. Again n − 1 [/1–2–2–1/] and n − 1
[/1–2–3–1/] fragile combinations exist but appear only in
a narrow operating range. This clustering can be explained by
the insignificance of previous stages at the extinguished state
[/1/]. The insignificance partly eliminates if the inlet and
coolant temperature of the cascade differ, which is, however,
not considered here. Beyond that, subordinate branches (in
black) develop from the last stage ([/1–2] [/1–3]). These
observations are summarized in the pathway structure of
Figure 12, showing the relevant state combinations of a
multi-stage CSTR cascade.

As illustrated in Figure 11, the clustering of all key
stage solutions still remains for higher stage numbers. It
was found that the hysteresis loop widens significantly with
increasing stage number. However, after reaching a certain
stage number, the hysteresis loop degenerates again until
it finally disappears. Furthermore, different shapes of the
unstable intermediate branch emerge, depending on the
parameter setting. The unstable branch evolves more or
less pronounced, as indicated by variations of the residence
time in Figure 11. This is in particular relevant if an
operation at these unstable branches is aspired (Bremer
and Sundmacher, 2019).

Technically, key stages are the analogy of narrow reaction
fronts in real fixed-bed reactors. Those fronts often develop

within a very short reactor segment, preferably close to the
reactor inlet. Considering this, the key stages become less likely
if they are located further downstream, which curtails the
relevance of the black subordinate branches associated with
the last stage. In real reactors, the actual reaction front position
is typically determined by second-order effects (e.g., preheating,
dispersion, flow maldistribution, heat conduction within the
reactor jacket).

From all this, the following three-level hierarchy of thermo-
kinetic multiplicity in fixed-bed reactors can be drawn:

Assumption
Multiplicity in

all stages
Two key stages(reaction front) Cluster formation

Max #MSS 3n 0 4n − 1 0 3 to 5

FIGURE 10 | Enumerative solution of operating points (OPs) in a multi-stage CSTR cascade, color—OPs of two key stages at the inlet, black—OPs of subordinate
branches, reference setting taken from Supplementary Table S1 but Tin � Tcool.

FIGURE 11 | Possible state combinations of a multi-stage CSTR
cascade with two key stages.
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Moving from left to right considers more physical details and
approaches the situation in real fixed-bed reactors. This three-
level hierarchy compromises many different and controversial
opinions found in the literature (see State-Space Multiplicity).
For instance, the findings of Eigenberger (1972a), and
Eigenberger (1972b) reporting only three to five multiple
steady states are mainly associated with cluster formation,
whereas studies that report an infinite number of multiple
steady states (for n→∞) neglect clustering and count each
state separately.

So far, state clustering and its connection to reaction fronts and
multiplicity in real reactors is rather disregarded in literature. One
reason might be the missing availability for efficient numerical tools,
which have only been accessible in recent years. Since the previous
considerations mainly address multiplicity trends, it remains to be
shown under which conditions uniqueness applies.

Until today, an exact uniqueness criterion for non-
isothermal fixed-bed reactors largely remains an open
question (Dochain, 2018). The axial dispersion model has
been a favorite target for extensive mathematical analyses but
often limited to first-order reactions under isothermal
conditions (Schmitz, 1975; Varma, 1980; Arce and
Ramkrishna, 1991). However, numerous studies provide
qualitative trends pointing in similar directions. For instance,
Jensen and Ray (1982) summarized, that the solution will be
unique for sufficiently high Bodenstein numbers, large heat
transfer coefficients, or small Damköhler numbers. The
previous results are very much in line with these qualitative
trends, but moreover, they reveal generalized criteria for
stability, uniqueness, and multiplicity of non-isothermal
fixed-bed reactors. These criteria are derived in the following.

Stability, Uniqueness, and Multiplicity
Criteria for Real Non-Isothermal Reactors
The observations from above show that the thermo-kinetic
multiplicity feature of the first stage is entirely capable of
representing the three main state clusters. Consequently, if the
first stage is free of multiplicity, then all following stages are also
free of multiplicity. This key feature enables the criteria of the first
CSTR stage (see Eqs 8-10) to be assigned to the entire CSTR
cascade (cell model) according to

stability(CM) : dX{1}

dT
<
1 + St

n
ΔT {1}

ad

,

uniqueness(CM) : max
T∈O

dX{1}

dT
� dX{1}

dT

∣∣∣∣∣∣∣∣T�T*

≤
1 + St

n
ΔT {1}

ad

,

multiplicity(CM) : max
T∈O

dX{1}

dT
� dX{1}

dT

∣∣∣∣∣∣∣∣T�T*

>
1 + St

n
ΔT {1}

ad

,

with T � T* as inflection point of Eq. 11 corresponding to the
steepest conversion gradient. For simplicity, the index CO2 is
omitted here and in the following.

FIGURE 12 | Enumerative solution of operating points (OP) in a multi-
stage CSTR cascade with varying residence time, color - OPs of two key
stages at the inlet, black - OPs of subordinate branches, reference setting
taken from Supplementary Table S1 but Tin � Tcool.
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Consequently, in the absence of purely kinetic and isothermal
multiplicity, uniqueness in non-isothermal CSTR cascades boils
down to very few key parameters, lumped together as mass and
energy-based thermal sensitivity. Both sensitivities are evaluated
in Figure 13 with respect to the methanation reference setting of
Supplementary Table S1.

According to the reference setting in Figure 13,
uniqueness can only be guaranteed for cascades with
several thousand stages. This fact still applies to a wide
range of heat transfer and catalyst activity, as indicated by
variations of the Stanton number and effectiveness factor.
Intensified heat transfer mainly affects cascades with higher
back-mixing and leads to reduced multiplicity regions. In
some scenarios, uniqueness is guaranteed for low and high
back-mixing conditions, but not for the intermediates (e.g.,
for St � 100 and η � 1). In contrast, reducing the ATR (e.g., via
product gas recycling) always leads to diminished
multiplicity regions. At adiabatic conditions (St→ 0), back-
mixing does not influence the energy-based thermal
sensitivity, and uniqueness becomes solely determined by
the mass-based thermal sensitivity and the ATR. Not shown
is the influence of the remaining key parameters, pressure,
and residence time. However, both are indirectly
incorporated into the Stanton number and effectiveness
factor.

The equivalence of stage and Bodenstein number in Eq. 3
at low back-mixing (Bo > 100) allows for the transition from
cell to dispersion models.a Therefore, we introduce a
surrogate conversion ~X which allows for applying the first
stage mass balance from Eq. 11 to dispersion models
according to

0 � ~X − 2
Bo

τ

ε cin
R � ~X − CBoR, (15)

which is then used to calculate the mass-based thermal sensitivity
of a fixed-bed reactor. Together with the adapted energy-based
thermal sensitivity from Eq. 12 at elevated Bodenstein numbers
(Bo > 100) the previous criteria read as

stability(DM) : d~X
dT

<
1 + 2 St

Bo
ΔTad,in

, (16)

uniqueness(DM) : max
T∈O

d~X
dT

� d~X
dT

∣∣∣∣∣∣∣∣T�T*

≤
1 + 2 St

Bo
ΔTad,in

, (17)

multiplicity(DM) : max
T∈O

d~X
dT

� d~X
dT

∣∣∣∣∣∣∣∣T�T*

>
1 + 2 St

Bo
ΔTad,in

, (18)

with T � T* as inflection point of Eq. 11 corresponding to the
steepest conversion gradient. The evaluation of the reference
setting from Supplementary Table S1 leads to the same
results as in Figure 13 with n � Bo/2.

The generalized Criteria 16-18 have not been found in
literature yet. They can be used as an a priori estimate for any
exothermic reaction and reactors at any scale, only requiring
apparent rate expression, coolant heat transfer coefficient, inlet
condition, and back-mixing intensity. Note that no expensive
computation of the entire dispersion model is required, which
makes it easy to use for reactor design, operation, and safety
analysis. The criteria, however, demand for a representative
Bodenstein number either mass or energy-based. As illustrated
in State-Space Multiplicity, the energy feedback is of major
interest for thermo-kinetic multiplicity, which indicates that
the three to ten times smaller energy-based Bodenstein
number is the most reasonable choice. Furthermore, the here
proposed criteria recommends considering axial dispersion even
for high Bodenstein numbers beyond 400. This is contrary to
commonly accepted criteria of Hlaváček and Marek (1966),
Mears (1976), Young and Finlayson (1973), and Mederos et al.
(2009), which did neither consider multiplicity nor reactor
stability.

In order to access the mass-based sensitivity on the left, the
total differential applied to the implicit Eq. 15 may help:

0 � d~X
dT

− CBo
dR
dT

� d~X
dT

− CBo(zR
zT

+ zR

z~X

d~X
dT

).

Consequently, the sensitivity is represented by

d~X
dT

�
CBo

zR
zT

1 − CBo
zR

z~X

. (19)

Thus, themass-based sensitivity only requires valid reaction rates,
their partial derivatives and the main reactor parameters used in
Eq. 15. For first-order, equimolar reactions, the first Damköhler
number from Supplementary Eq. S7 can be used to further
simplify Eq. 19 via

~X � 2
Bo

DaI(1 − ~X) �
2
Bo

DaI

1 + 2
Bo

DaI
,

d~X
dT

�
2
Bo

DaI

1 + 2
Bo

DaI
(1 − ~X) EA

R T2
�

2
Bo

DaI

(1 + 2
Bo

DaI)2
EA

R T2
. (20)

With Eq. 20, the mass-based sensitivity can be evaluated within
the relevant temperature range to identify the maximum
gradient at T* and Da*I . Thus, there is no further need to
solve the implicit Eq. 15. Note that the here used Damköhler
number remains as a function of temperature such that the
above criteria condense to

aThis equivalence is exploited when the finite volume upwind scheme is used to
solve dispersion models numerically. In this case, the corresponding number of
finite volumes in flow direction inherently contains a certain degree of back-
mixing. If the number of finite volumes is too low, an artificial dispersion (so-called
numerical diffusion) will superimpose other dispersion components included in
the model.
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stability(1st − order, equimolar) :
2
Bo

DaI

(1 + 2
Bo

DaI)2

EA

R T2
<
1 + 2 St

Bo
ΔTad,in

,
(21)

uniqueness(1st − order, equimolar) :
2
Bo

Da*I

(1 + 2
Bo

Da*I)
2

EA

R T*2
≤
1 + 2 St

Bo
ΔTad,in

,
(22)

multiplicity(1st − order, equimolar) :
2
Bo

Da*I

(1 + 2
Bo

Da*I)
2

EA

R T *2
>
1 + 2 St

Bo
ΔTad,in

,
(23)

with T* and Da*I as arguments of the maximum gradient of Eq.
20. Although these simplified criteria are not adequately
applicable for methanation due to the strong influence of the
thermodynamic equilibrium, they comprehensively show how
the key parameters affect multiplicity. At the beginning of this
section, the current state in the literature was highlighted to be
rather qualitative. The statement of Jensen and Ray (1982) saying
that the solution will be unique for sufficiently high Bodenstein
numbers (Bo→∞), large heat transfer coefficients (St→∞), or
small Damköhler numbers (Da→ 0) is perfectly represented by
the Criteria 22 and 23. Furthermore, the limiting case of an
adiabatic CSTR (St→ 0, Bo/2→ 1) applied to Criteria 21 is
equivalent to the stability criterion presented by Kimura and
Levenspiel (1977).

In extension to the infinite back-mixing case in CSTR
Analogy, it can be confirmed that stability and uniqueness
are closely related under finite back-mixing conditions.
However, the finite back-mixing case (1<Bo/2<∞) is
typically not considered in the literature (Szeifert et al., 2007;
Kummer and Varga, 2019), or was found to be insignificant

(Balakotaiah et al., 1995) for stability analysis. In contrast, this
work shows a distinct relevance of multiplicity for real reactors,
so that back-mixing must also be highly relevant for stability,
runaway, and parametric sensitivity. In this regard, the
quantitative description of all features results in the here
proposed Criteria 17 and 22.

DISCUSSIONS

In summary, uniqueness and multiplicity of real non-isothermal
reactors have proven to be decisive characteristics. In addition to the
qualitative descriptions prevailing in the literature, the criteria
proposed here represent a novel quantitative measure applicable
to any exothermic reaction and reactors at any scale. This work
also shows that mass and energy back-mixing represents the
essential link between uniqueness, multiplicity, stability, runaway,
and parametric sensitivity, which are usually treated independently
in the literature. The observation that back-mixing remains relevant
for these characteristics even at high Bodenstein numbers implies
that generally accepted back-mixing criteria of Hlaváček and Marek
(1966), Mears (1976), Young and Finlayson (1973), and Mederos
et al. (2009) are insufficient for real non-isothermal reactors.

In addition, the CSTR cascade model indicates that a narrow
reaction front, not larger than two representative CSTR stages
(key stages), mainly determines uniqueness and multiplicity in
real non-isothermal fixed-bed reactors. The illustrated state-
clustering of the cascade model accounts for the fact that this
reaction front may occur at any position within the fixed-bed.
From this, a three-level hierarchy is derived, which unifies
controversial opinions that still exist in the literature.

In summary, the presented methodology, as well as the
derived criteria, shall allow for easier accessibility of
fundamental reactor characteristics. This is particularly
useful for the future objective of operating chemical
reactors more flexible and within larger operating ranges.

FIGURE 13 | First stage mass and energy-based sensitivity for non-isothermal CSTR cascades with various stage number, effectiveness factor and Stanton
number, reference setting taken from Supplementary Table S1.
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Therefore the derived criteria may be used for reactor design,
control, and safety purposes. Ignoring uniqueness and
multiplicity would disregard a broad operating range and
thus a substantial reactor performance potential.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

JB and KS contributed conception and design of the study. JB
organized the content, ran the computational experiments,
and derived the criteria. KS motivated the detailed
bifurcation analysis and supervised the project. JB wrote
the first draft of the manuscript. All authors contributed to
manuscript revision, read and approved the submitted
version.

FUNDING

This research work was partly supported by the DFG Priority
Program SPP 2080 “Catalysts and reactors under dynamic
conditions for energy storage and conversion”, funded by
the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Grant Number 406914011.
The author Jens Bremer is also affiliated to the
International Max Planck Research School (IMPRS) for
Advanced Methods in Process and Systems Engineering,
Magdeburg, Germany. Open Access funding provided by
the Max Planck Society.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fenrg.
2020.549298/full#supplementary-material.

REFERENCES

Adaje, J., and Sheintuch, M. (1990). Comparison of multiplicity patterns
of a single catalytic pellet and a fixed catalytic bed for ethylene
oxidation. Chem. Eng. Sci. 45, 1331–1342. doi:10.1016/0009-2509(90)
87125-C

Agrawal, R., West, D. H., and Balakotaiah, V. (2007). Modeling and analysis of
local hot spot formation in down-flow adiabatic packed-bed reactors. Chem.
Eng. Sci. 62, 4926–4943. doi:10.1016/j.ces.2006.11.057

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M. (2018).
CasADi—A software framework for nonlinear optimization and optimal
control. Math. Program. Comput. 11(3), 1–36.

Arce, P., and Ramkrishna, D. (1991). Pattern formation in catalytic reactors:
the role of fluid mixing. AIChE J. 37, 98–110. doi:10.1002/aic.
690370109

Balakotaiah, V., Kodra, D., and Nguyen, D. (1995). Runaway limits for
homogeneous and catalytic reactors. Chem. Eng. Sci. 50, 1149–1171. doi:10.
1016/0009-2509(94)00463-2

Balakotaiah, V., and Luss, D. (1983). Multiplicity features of reacting systems.
Chem. Eng. Sci. 38, 1709–1721. doi:10.1016/0009-2509(83)85028-3

Bilous, O., and Amundson, N. R. (1956). Chemical reactor stability and sensitivity:
II. Effect of parameters on sensitivity of empty tubular reactors. AIChE J. 2,
117–126. doi:10.1002/aic.690020124

S. M. Biollaz and T. J. Schildhauer (Editors) (2016). Synthetic natural gas from
coal, dry biomass, and power-to-gas applications. Hoboken, NJ: John Wiley &
Sons, Inc.

Bostandzhiyan, S. A., and Shkadinskii, K. G. (2010). Multiple steady states and
transitional regimes in a cylindrical fixed-bed catalytic reactor. Theor. Found.
Chem. Eng. 44, 119–125. doi:10.1134/S0040579510020016

Bremer, J., and Sundmacher, K. (2019). Operation range extension via hot-spot
control for catalytic CO2 methanation reactors. React. Chem. Eng. 4, 1019.
doi:10.1039/C9RE00147F

Dochain, D. (2018). Analysis of the multiplicity of steady-state profiles of two
tubular reactor models. Comput. Chem. Eng. 114, 318–324. doi:10.1016/j.
compchemeng.2017.10.028

Dommeti, S. M. S., Balakotaiah, V., and West, D. H. (1999). Analytical criteria for
validity of pseudohomogeneous models of packed-bed catalytic reactors. Ind.
Eng. Chem. Res. 38, 767–777. doi:10.1021/ie980365g

Dramé, A. K., Lobry, C., Harmand, J., Rapaport, A., and Mazenc, F. (2008).
Multiple stable equilibrium profiles in tubular bioreactors. Math. Comput.
Model. 48, 1840–1853. doi:10.1016/j.mcm.2008.05.008

Eigenberger, G. (1972a). On the dynamic behavior of the catalytic fixed-bed
reactor in the region of multiple steady states-I. The influence of heat
conduction in two phase models. Chem. Eng. Sci. 27, 1909–1915. doi:10.1016/
0009-2509(72)87049-0

Eigenberger, G. (1972b). On the dynamic behavior of the catalytic fixed-bed reactor
in the region of multiple steady states-II. The influence of the boundary
conditions in the catalyst phase. Chem. Eng. Sci. 27, 1917–1924. doi:10.
1016/0009-2509(72)87050-7

Eigenberger, G. (1983). Dynamik und stabilität verfahrenstechnischer prozesse.
Chem. Ing. Tech. 55, 503–515. doi:10.1002/cite.330550702

Elnashaie, S., and Elshishini, S. S. (1993). “Modelling, simulation and optimization
of industrial fixed bed catalytic reactors,” in Topics in chemical engineering.
Philadelphia, Pa: Gordon and Breach, Vol. 7.

Fache, A., Marias, F., and Chaudret, B. (2020). Catalytic reactors for highly
exothermic reactions: steady-state stability enhancement by magnetic
induction. Chem. Eng. J. 390, 124531. doi:10.1016/j.cej.2020.124531

Fischer, K. L., and Freund, H. (2020). On the optimal design of load flexible fixed
bed reactors: integration of dynamics into the design problem. Chem. Eng. J.
393, 124722. doi:10.1016/j.cej.2020.124722

Gao, J., Wang, Y., Ping, Y., Hu, D., Xu, G., Gu, F., et al. (2012). A
thermodynamic analysis of methanation reactions of carbon oxides for
the production of synthetic natural gas. RSC Adv. 2, 2358–2368. doi:10.
1039/c2ra00632d

Gilles, E. D. (1977). Dynamisches verhalten von Festbettreaktoren. Chem. Ing.
Tech. 49, 142–149. doi:10.1002/cite.330490211

Gilles, E. D., and Hofmann, H. (1961). Bemerkung zu der Arbeit: “an analysis of
chemical reactor stability and control”. Chem. Eng. Sci. 15, 328–331. doi:10.
1016/0009-2509(61)85038-0

Harold, M. P., and Luss, D. (1985). An experimental study of steady-state
multiplicity features of two parallel catalytic reactions. Chem. Eng. Sci. 40,
39–52. doi:10.1016/0009-2509(85)85045-4

W. M. Haynes (Editor) (2017). CRC handbook of chemistry and physics: a ready-
reference book of chemical and physical data. 97th Edn. Boca Raton, London and
New York: CRC Press.

Heinemann, R. F., and Poore, A. B. (1981). Multiplicity, stability, and oscillatory
dynamics of the tubular reactor. Chem. Eng. Sci. 36, 1411–1419. doi:10.1016/
0009-2509(81)80175-3

Heinemann, R. F., and Poore, A. B. (1982). The effect of activation energy on
tubular reactor multiplicity. Chem. Eng. Sci. 37, 128–131. doi:10.1016/0009-
2509(82)80079-1
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Puszyński, J., and Hlavacek, V. (1984). Experimental study of ignition and
extinction waves and oscillatory behavior of a tubular nonadiabatic fixed
bed reactor for the oxidation of carbon monoxide. Chem. Eng. Sci. 39,
681–692. doi:10.1016/0009-2509(84)80175-X
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GLOSSARY

Latin
A surface (m2)

Bo Bodenstein number

c concentration (mol/m3)

cp heat capacity (J/(kgK))

C constant (various)

DaI first Damköhler number

D diffusion coefficient (m2/s)

EA activation energy (kJ/mol)

F specific gas flow (NL/(hgcat))
k heat transport coefficient (W/(mK))

k reaction rate constant (mol/(bar gcats))
K adsorption and equilibrium constant (various)

L reactor length (m)

_m mass flow (kg/s)

M molar mass (kg/mol)

n total stage number in CSTR cascade

Pe Péclet number

p pressure (bar)

r mass-based reaction rate (mol/(gcats))
~r molar reaction rate (mol/(m3

cats))
R inner radius of tubular reactor (m)

R reactive source term (mol/(m3s))
R universal gas constant (J/(molK))
St Stanton number

T temperature (K)
v superficial velocity (m/s)

V reactor volume (m3)

_V volume flow (m3/s)

w mass fraction

X conversion

x molar fraction

Greek
ΔH adsorption enthalpy (J/mol)

ΔR~G
0
Gibbs free energy of reaction (STP) (J/mol)

ΔR ~H
0
Reaction enthalpy (STP) (J/mol)

ΔTad adiabatic temperature rise (K)

ε fixed-bed void fraction

η catalyst effectiveness factor

λ thermal conductivity (W/(mK))

ν stoichiometric coefficient

ρ density (kg/m3)

τ residence time (s)

Subscripts
α component {CH4, CO2, H2O, H2}
Bo Bodenstein number

cat catalyst phase

cool cooling

eq equilibrium

gas gas phase

in inlet

meth methanation reaction

mix mixture

n total stage number

op operation

OP operation point

out outlet

ref reference

P particle

z axial

Superscripts
0 STP
c
catalyst

e
energy

eff
effective

exp
experimental

g
gas

m
mass

* arg max value

Abbreviations
ATR adiabatic temperature rise

CM cell model

DM dispersion model

DEN denominator

CSTR continuously stirred tank reactor

PFTR plug flow tubular reactor

RWGS reverse water-gas shift

STP standard temperature and pressure
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