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In wind energy applications, voltage source converters are employed to achieve energy
conservation. Recently, multilevel converters have been showing promising advantages
compared to the traditional 2-level converter scheme, due to the fact that they can
overcome certain limitations during transient conditions. This paper investigates the
transient performance of variable DFIG-based speed wind turbines taking into account
different scheme configurations of the power converter system. The schemes investigated
are a 2-level six step IGBT inverter, a parallel interleaved 2-level six step IGBT inverter, and
a 3-level IGBT inverter. All schemes were compared during severe three-phase to ground
fault at the terminal of the DFIG wind turbine using the conventional Phase Lock Loop (PLL)
and a DC-chopper protection. A coordinated approach of improving the performance of all
the converter schemes with series dynamic braking resistor (SDBR) was analyzed.
Investigation of the best location for the SDBR in the DFIG architecture considering the
best switching signal was also carried out. Furthermore, a new control strategy of PLL for
the DFIG system was proposed in conjunction with the SDBR scheme for the converter
systems. Simulations were carried out in Power System Computer Aided Design and
Electromagnetic Transient Including DC (PSCAD/EMTDC). The results show that the
proposed PLL and SDBR hybrid scheme in the various inverter topologies considered in
the study can enhance the performance of the wind generator variables during severe
three-phase to ground fault. This is because the proposed hybrid scheme could help to
boost the capability of the current and recovery of the wind generator after post-fault
scenarios. Also, the voltage source converter leg switched output voltage would be
enhanced to maximum change in common mode voltage by the inverter schemes’
modulation of the space vector using the proposed strategy.

Keywords: index terms-doubly fed induction generator, series dynamic braking resistor, wind energy, power
converters, stability, protection schemes

Edited by:
Alexis B. Rey-Boué,

Universidad Politécnica de Cartagena,
Spain

Reviewed by:
Haibo Li,

Tsinghua University, China
Mehdi Firouzi,

Islamic Azad University, Iran

*Correspondence:
Kenneth E. Okedu

kenokedu@yahoo.com
okedukenneth@nu.edu.om

Specialty section:
This article was submitted to

Smart Grids,
a section of the journal

Frontiers in Energy Research

Received: 09 September 2020
Accepted: 03 December 2020
Published: 19 January 2021

Citation:
Okedu KE and Barghash HFA (2021)

Investigating Variable Speed Wind
Turbine Transient Performance
Considering Different Inverter

Schemes and SDBR.
Front. Energy Res. 8:604338.

doi: 10.3389/fenrg.2020.604338

Frontiers in Energy Research | www.frontiersin.org January 2021 | Volume 8 | Article 6043381

ORIGINAL RESEARCH
published: 19 January 2021

doi: 10.3389/fenrg.2020.604338

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2020.604338&domain=pdf&date_stamp=2021-01-19
https://www.frontiersin.org/articles/10.3389/fenrg.2020.604338/full
http://creativecommons.org/licenses/by/4.0/
mailto:kenokedu@yahoo.com
mailto:okedukenneth@nu.edu.om
https://doi.org/10.3389/fenrg.2020.604338
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles
https://www.frontiersin.org/journals/energy-research#
https://www.frontiersin.org/journals/energy- research#editorial-board
https://www.frontiersin.org/journals/energy- research#editorial-board
https://doi.org/10.3389/fenrg.2020.604338


INTRODUCTION

The use of Insulated Gate Bipolar Transistors (IGBTs) has been
increasing lately for high power applications among
semiconductor devices. This is because the current capability
of the IGBT switches can be increased by configuring them in a
parallel connection (Gohil et al., 2015). Because the IGBT
switches are high power and are subjected to high voltage and
current, their transient operations during periods of several
microseconds are vital (Okedu, 2013; Wang et al., 2013).
Therefore, the ability for variable speed IGBT-based wind
turbines to withstand abnormal conditions is necessary to
achieve the lifetime specifications (Ohi et al., 2002; Volke and
Hornkamp, 2012) of the wind turbine and at the same time fulfill
the requirement of grid codes.

In wind energy applications, the Doubly Fed Induction
Generator (DFIG) has one main merit of utilizing only
20–30% of the wind generator rating for the power converters
linking the rotor side and the grid side (Xu and Cartwright, 2006;
Okedu, 2020). In addition, this wind turbine technology has low
power loss, cost effective power converters, four quadrants of
power regulation for active and reactive power, and an improved
mechanism for wind energy capture in comparison with the
earlier technology of fixed speed induction generators (Djeriri
et al., 2013). All these features mean this type of wind turbine is
widely employed in wind energy conversion systems. However,
this wind turbine technology has two fragile back-to-back power
converters that are vulnerable to damage when operating under a
severe three line to ground fault. Consequently, these power
converters need to be protected to avoid damage and also to
fulfil the grid requirements, by controlling frequency and voltage
via its rotor circuit. Basically, this AC three phase voltage can be
controlled using various switching techniques ranging from six
step switching (Murphy and Turnbull, 1988), Pulse Width
Modulation (PWM) (Muller et al., 2002), and space PWM
(Mohan, 2005). In traditional wind generators based on DFIG,
the power converters are connected back-to-back and this
topology is limited in its applications regarding high power.
Therefore, if converters based on multilevel topology are
employed, this drawback could be overcome. Consequently, in
wind energy generation applications, themultilevel converters are
gaining popularity (Nabae et al., 1981; Stemmler and
Geggenbach, 1993). This is because this type of converter
topology for wind turbines has higher power ratings than the
power converter structure, leading to less impact on the switches
of the IGBTs. Hence the low harmonic contents with improved
voltage waveforms would be achieved considering this type of
converter strategy.

The Neutral Point Clamped (NPC) converter (Bansal et al.,
2003) is one of the most popular structures in the multilevel
voltage source inverter proposed in the literature. However, a lot
of reports on the control of converter currents have been
proposed in recent years. In (Brod and Novotny, 1985; Nagy,
1994; Kazmierkoswki and Malesani, 1998), various current
controller classifications of the power converter system were
reported, of which some have been developed, ranging from
hysteresis and linear proportional integral to predictive dead-beat

(Buso et al., 1998; Ghennam et al., 2013). The hysteresis current
controller is mainly used because it is simple and does not require
any knowledge of the load with an advantage of a fast dynamic
response (Salama and Lennon, 1991; Nagay et al., 1996; Kwon
et al., 1998). The major disadvantages of this conventional
controller are the limit cycle oscillations, switching at a
random rate, and interaction of phase currents (Ueda et al.,
1995; Baiju et al., 2002; Tekwani et al., 2005). The application
of a three level NPC voltage source converter for DFIG and a
vector hysteresis current control were reported in (Djeriri et al.,
2013; Ghennam et al., 2013) respectively for effective power
control of the variable speed wind turbines. References (Ueda
et al., 1995; Asiminoaci et al., 2008; Zhang et al., 2010; Gohil et al.,
2015) reported that when the carrier signals of a voltage source
converter connected in a parallel configuration was interleaved,
enhanced waveforms of the effective voltage in high power
applications could be achieved, despite the harmonic quality
present. An evaluation of the reliability and effectiveness of
the IGBT switches considering short circuit faults was
analyzed in (Ma et al., 2015; Reigosa et al., 2015), respectively.
A comparative study of power quality improvement for the DFIG
system by subjecting the wind generator to various types of rotor
converters was presented in (Nashed and Eskander, 2012). It was
reported that in the two-level six-step IGBT inverter schemes, the
harmonic contents are very high because frequency of switching
the switches is low. Consequently, the inverter performance is
reduced. The production of high harmonic contents in the
conventional two-level DFIG system because of low switching
frequency reduces the performance of the variable speed wind
turbine system. Therefore, interleaving the converters in a parallel
configuration could help improve the wind generator
performance.

As the use of multilevel converters is becoming popular in
wind energy conversion systems, because of their robustness
during transient conditions, this paper aims to improve the
performance of the six-step 2-level IGBT inverter by
proposing a coordinated control of the inverter system with a
new Phase Lock Loop (PLL) configuration together with a Series
Dynamic Braking Resistor (SDBR). The high voltage usually
experienced during grid disturbances is shared by the small,
inserted resistance because of the series connection strategy of
employing the braking resistor. Thus, the loss of the converter
control system is not experienced in this topology due to induced
overvoltage. In addition, the series connected braking resistor
strategy significantly reduces the very high current in the rotor
circuitry of the wind generator to lower values. Consequently, the
overvoltage of the DC-link that was supposed to be dangerous to
the power converters of the wind generator are avoided because of
the low DC-link capacitor charging current (Okedu and Muyeen,
2011; Okedu et al., 2012; Okedu, 2019). Although many studies in
the literature considered the use of fault current limiters for
enhancing power quality and limiting fault currents of DFIG
wind turbines in wind farms (Chen et al., 2015; Rashid and Ali,
2016; Firouzi and Gharehpetian, 2018), in this paper, the
preferred position of the braking resistor in the wind
generator system was analyzed considering different switching
signals. The optimal braking resistor position and switching
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strategy were used for further analysis of the proposed wind
generator schemes used in this study. In addition, a comparative
study using the proposed scheme for the 2-level IGBT inverter
was carried out with the schemes having a parallel interleaved
IGBT inverter and 3-level IGBT inverter. Simulations were run
in PSCAD/EMTDC (PSCAD/EMTDC Manual, 1994). The
proposed hybrid scheme could help to increase the current
capability and post-fault recovery of the wind turbine. In
addition, the space vector modulation of the inverter
schemes resulted in maximum value change in common
mode voltage, using the proposed hybrid control strategy of
the PLL and SDBR scheme. Consequently, there is improved
switched output voltage of the converter leg of the voltage
source converter. The results show that the hybrid scheme in
the various inverter topologies considered in the study can
enhance the performance of the wind generator variables
during severe three-phase to ground fault.

MODEL SYSTEM OF STUDY

The model system of the study is shown in Figure 1. The wind
turbine is modeled using Eqs 1–6. The wind generator consists of
a rotor, also known as the prime mover, a gearbox system, and a
shaft. The wind generator’s torque, which is aerodynamic in
nature, and the mechanical power are expressed by (Okedu et al.,
2012; Justo et al., 2015):

TM � 0.5ρCt(λ)πR3V2
w[NM] (1)

Pwt � 0.5ρCp(λ, β)πR2V3
w[W] (2)

Where ρ is the air density, R is the radius of the turbine, Vw is the
wind speed, and Cp(λ, β) is the power coefficient given by

Cp(λ, β) � 0.5(Γ − 0.02β2 − 5.6)e−0.17Γ (3)

Ct and Cp are related by

Ct(λ) � Cp(λ)
λ

(4)

λ � ωwtR
Vw

(5)

Γ � R(3600)
λ(1609) (6)

The rotational speed [rad/s] of the wind turbine is ωwt , the
tip speed ratio is λ, and Cp is the power coefficient. In Figure 1,
the rotor side (A), the grid side (B), and the stator side (C) of
the wind generator show the insertion of the proposed braking
resistor scheme in series connection, respectively. A three-
phase to ground fault was used to investigate the optimal
position of the braking resistor considering the model system
of study in Figure 1 that is connected to an infinite bus.
Figure 2 shows the various control signals: DC-link voltage,
current of the rotor for the wind generator, and terminal
voltage of the grid, along with the conditions of operation
of the braking resistor. The optimal position and switching
strategy of the braking resistor in the wind generator was used
for further analysis of the inverter schemes proposed in
this paper.

FIGURE 1 | Model system.

FIGURE 2 | SDBR control strategy.
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VARIABLE SPEED DRIVE CONTROL

Figure 3 shows the control strategy of the DFIG-based variable
speed wind turbine. The cost of the crowbar protection scheme
used in a conventional DFIG system is more than the other
schemes, such as the braking resistor or DC chopper. During
grid fault, the crowbar makes the DFIG-based variable speed
wind generator act like a fixed speed wind generator. This is
done by disconnecting the wind generator’s rotor side converter.
In this paper, the DC-link (chopper) scheme is the alternative
employed in place of the traditional crowbar switch, as shown in

Figure 3. The coordinated controls of the active and reactive
power of the DFIG system via abc to dq and dq to abc
conversion to generate pulses for the switching of the PWM
are shown in Figure 3.

The new PLL control strategy used in this study has a delay
element incorporated to improve the performance of the DFIG
system. The PLL scheme is designed based on a frequency of
50 Hz and rated a line-to-line voltage of 0.69 kV. Unlike the
conventional PLL scheme, the proposed PLL scheme in this work
links the Sine and Cosine function angles for the three phases via
a multiplier before the insertion of a delay element in order to

FIGURE 3 | DFIG control strategy.
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boost its synchronizing strength with the grid for better
performance during transient conditions.

Figure 4 shows the conventional three-phase PLL scheme,
which is basically an error signal feedback system based on the
principle of a synchronous rotating frame, with low pass filters
and a voltage-controlled oscillator (Justo et al., 2015). The
working principle is based on the conversion of measured
voltage of a three-phase system to d-q component via
conversion coordinates and set DC voltage reference of q-axis
vref. Figure 5 shows the vector partition diagram for the PLL.
From Figure 5, the d-axis component is fully co-phased with the
vector voltage when the q-axis component is zero, despite the
values of the voltages on the various q-axes. The PI controller in
Figure 4 helps in obtaining the frequency of the system. With the
grid voltage having only positive sequence fundamental

components, the d-q steady value coordinate is the DC
current, and its phase and frequency can be locked by
controlling the q-axis component to zero. Frequency detection
when the grid voltage is balanced is achieved for the conventional
three-phase PLL based on tracking the grid voltage positive
sequence fundamental components, as the inner of the PLL is
a closed loop controller. However, during transient conditions,
there will be a sudden change giving rise to an instantaneous
negative sequence and zero sequence fundamental components
which leads to the oscillation of the PLL output angle.

If the grid voltage becomes unbalanced, there exists positive,
negative, and zero sequence fundamental components. For a
typical three-phase system without a neutral point, the zero
sequence is not usually considered. Thus, the grid voltage can
be expressed as (You-wei et al., 2012).

vabc � v+abc + v−abc

� V+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosωt

cos(ωt − 2
3
π)

cos(ωt + 2
3
π)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + V+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(ωt + θ−0 )
cos(ωt − 2

3
π + θ−0)

cos(ωt + 2
3
π + θ−0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

From Eq.7, V+, V− gives the voltage amplitude separately for
the positive and negative sequences, respectively. θ−0 gives the
relative phase angle of the initial voltage negative sequence. The
voltage of the output is achieved after a 3/2 conversion, in αβ
static coordinates and expressed as (Jung-Woo et al., 2007; Da
Silva et al., 2008):

vαβ � [ vαvβ ] � Tαβvabc (8)

FIGURE 4 | Conventional PLL scheme.

FIGURE 5 | PLL vector partition.
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Tαβ � 2
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 −1

2
−1
2

0

�
3
2

√
−

�
3
2

√ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

In the static αβ coordinates of the grid voltage, the
fundamental positive and negative sequence component is
given as:

vαβ � v+αβ + v−αβ � V+[ cosωt
sinωt

] + V−[ cos(ωt + θ−0 )
−sin(ωt + θ−0 ) ] (10)

After d-q transformation to the synchronous coordinate
system, the following equation is obtained:

v+dq � T+
dqvαβ � T+

dqv
+
αβ + T+

dqv
−
αβ (11)

T+
dq � [ cos θ sin θ

−sin θ cos θ
] (12)

Considering Eqs 11, 12 leads to

v+dq � V+[ cosωt − θ
sinωt − θ

] + V−[ cos(ωt + θ−0 + θ)
−sin(ωt + θ−0 + θ) ] (13)

The effective working of the PLL requires that ωt ≈ θ, so Eq.13
can be expressed as

{ v+dq � V+ + V− cos(2ωt + θ−0 )
v+dq � V− sin(2ωt + θ−0 ) (14)

From Eq.14, it could be observed that a synchronous sequence
due to the positive system coordinates enables the conversion to
DC components from the positive sequence, and for the
components of the negative sequence, a value that is twice the
frequency component is obtainable. This is because the
traditional PI controller can only be used to remove the steady
state error, thus the negative voltage will have influence on the
output of the PLL.

The traditional PLL strategy has a negative sequence
component during transient conditions in the grid. Therefore,
a low loop filter cutoff frequency is required to help achieve an
improved performance of the system during steady state. Based
on this, since the transient performance of the system would also
be affected, this study aims to propose a new configuration and
control topology of PLL with a delay element as shown in
Figure 6, in order to overcome this drawback. The negative
effects due to the component of the voltage sequence would be
greatly mitigated during transient conditions in the grid with the
help of the delay element e−sT.

The principle of the delay element is based on phase shifting
after abc/dq transformation in the controller, as shown in
Figure 6, compared to the traditional strategy employed for

FIGURE 6 | Proposed PLL scheme.
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the PLL in Figure 4. The proposed control PLL scheme would
counteract twice the amount of grid frequency disturbances based
on Eq.15.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v+d � cos 2ωt + cos 2ω(t − π

4
)

v+q � sin 2ωt + sin 2ω(t − π

4
) (15)

DFIG NEUTRAL POINT CLAMPED
MULTILEVEL CONVERTER TOPOLOGY

Figure 7 shows the model system for the DFIG wind generator
NPC MLC topology. The NPC has three legs, A, B, and C, with
three different voltage states. Switch 1 and 3 are complementary
on each leg, therefore, when switch 1 is on, switch 3 is off, and vice
versa. Similarly, switch 2 and 4 are complementary. From
Figure 7, each of the capacitors has a constant voltage of

0.5 Vdc, therefore having the two upper switches on will lead
to an output voltage of Vdc compared to 0 level. Also, switch 2 and
3 being on will lead to 0.5 Vdc and having the two lower switches
on leads to an output voltage level of 0. There exists a forbidden
state whose scenario is when the first switch is on and the second
is off, in addition to the three states. Table 1 shows the bridge leg
voltages at different combinations of the switch states. The
excitation parameters of the DC circuitry and the DFIG wind
generator parameters are given in (Takahashi et al., 2006).

DFIG PARALLEL INTERLEAVED
MULTILEVEL CONVERTER TOPOLOGY

Figure 8 shows the model system for the DFIG wind generator
Parallel Interleaved MLC topology (Okedu, 2016). Figure 9
shows the table of switching, with the switching sequence of
the pulse width modulation represented by the numbers. The
space vector reference Vref is formulated based on the nearest
three voltage vector summation geometries in region 1, as shown
in Figure 10. The connections of the passive filters of the grid side
to the parallel interleaved MLC are shown in the model system.
The reduction of the harmonics is achieved by the grid filters with
a value of 9.6 mH and also with the help of the common mode
inductor. The IGBTs are numbered for both RSC and GSC power
converters.

For the operation of the two-level conventional SV
modulation, the converters cycle through switching cycles with
four switch states. However, for the 180° parallel interleaved MLC

FIGURE 7 | DFIG model system with NPC MLC scheme.

TABLE 1 | DFIG NPC MLC bridge leg voltages for different combinations of
switches .

State of
leg

Va0 TA1 TA2 TA3 TA4

2 Vdc On On Off Off
1 0.5 Vdc Off On On Off
0 0 Off Off On On
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scheme, its SV modulation gives voltage and the common mode
changes with a peak value to ±Vdc, whereas for the clamped
Discontinuous Pulse width Modulation (DPWM) schemes, this
value is ±(2Vdc/3). The common leg flux can be mitigated by the
time integral reduction of the common mode voltage change.
Avoiding the zero vectors voltage would help achieve this
purpose. In this paper, the Near State PWM scheme with

three nearest active voltage vectors to synthesize the reference
voltage vector V

→
ref is used. The table of switching sequence in

Figure 11, for the parallel interleaved MLC, is formulated by the
vector space diagram in Figure 12, with six regions, like the NPC
MLC scheme earlier discussed. The formulation considers the
voltage vectors corresponding to the sequence numbers.
However, in the parallel interleaved MLC scheme, the 612

FIGURE 8 | DFIG model system with parallel interleaved MLC scheme.

FIGURE 9 | Switching table for the parallel interleaved MLC scheme.
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sequence of switching is employed in sub-sector 1, for 0° ≤ φ ≤ 30°,
and sub-sector 12, for 330° ≤ φ ≤ 360°. Region 1 is formulated by
the geometry for the voltage of reference V

→
ref as shown in

Figure 12. The two sub-sections and the reference voltage
make up region 1. The table of switching and their
corresponding dwell times, based on V

→
1, V

→
2 and V

→
6 active

voltages, are (Gohil et al., 2015; Okedu, 2016):

T1 � ( �
3

√ Vα,r

Vdc
+ Vβ,r

Vdc
− 1)Ts (16)

T2 � (1 − 2�
3

√ Vα,r

Vdc
)Ts (17)

T6 � (1 − 1�
3

√ Vα,r

Vdc
− Vβ,r

Vdc
)Ts (18)

T1,T2, and T3, in Eqs 16–18 are the active vector voltages dwell
times, while the time of switching is Ts. The α, β components in
Figure 10 are given by Vα,Vβ, while the α and β components for
region 1, at the beginning of the region, are Vα, r and Vβ, r . These
are expressed mathematically as:

Vα,r1 �
�
3

√
2
Vα − 1

2
Vβ (19)

Vβ,r1 � 1
2
Vα −

�
3

√
2
Vβ (20)

T1 � 2�
3

√
∣∣∣∣∣∣V→ref

∣∣∣∣∣∣
Vdc

Ts sin(60° − φ) (21)

T2 � 2�
3

√
∣∣∣∣∣∣V→ref

∣∣∣∣∣∣
Vdc

Ts sin φ (22)

T3 � T6 � (TS − T1 − T2)/2 (23)

The active vectors (T1, T2) adjacent dwell time for the PWM
zero state and for the traditional space vector modulation in Eqs
21–23 are the same. Though in this case, the (V→3, V

→
6) voltage

vectors, which are actively opposing two near vectors, are used
instead of the zero vectors. Consequently, the operation range of
modulation (0≤M ≤ 2/

�
3

√ ) is obtained.

FIGURE 10 | Reference voltage SV formation for parallel interleave MLC
scheme.

FIGURE 11 | Switching sequence for parallel interleave MLC scheme.
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FIGURE 12 | DC-link voltage of DFIG.

FIGURE 13 | Active power of DFIG.

FIGURE 14 | Grid side reactive power of DFIG.

FIGURE 15 | Terminal voltage of DFIG.

FIGURE 16 | Rotor speed of DFIG.

FIGURE 17 | DC-link voltage of DFIG.
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The DFIG parallel interleaved MLC switching sequence and
common mode (CM) voltages are shown in Figure 13 for both
converter sides. The two converter halves are tagged A and B,
respectively. With a voltage common to each voltage source
converter, the maximum individual VSCs’ common mode
voltage is constrained to ±(Vdc/6). VCM, A and VCM, B and
their difference ΔVCM is shown in Figure 13. Since only active
vectors are used in this topology, the peak CM voltage of the
individual VSCs is constrained to ±(Vdc/6). The CM voltages’
polarity are equal but opposite for the power converters scheme.
Due to the individual CMvoltages’ opposite polarity, the combined
use of V

→
1 and V

→
2 in VSCA and VSCB, respectively, and the other

configuration in sub sector 1, makes the change in the common
mode ΔVCM to confine its value to ±(Vdc/3). Consequently, the
flux linkage for a switching λCM,p depends on the voltage vectors’
time of overlap, as shown in Figure 11, for the voltage of a
particular DC-link. These voltage vectors V

→
1 and V

→
6 overlap

time in V
→

ref sub sector 12, as shown in the table of switching,
controls the λCM,p value, which varies with the voltage vector V

→
ref

reference. Because the changes in the reference voltage is with
respect to the space vector angle φ, different values of the switching
cycle for the power converter are obtained.

SIMULATION RESULTS AND
DISCUSSIONS

SDBR Switching and Position
Simulations were done based on the optimal switching signal
(Figure 2) and placement (Figure1) of SDBR with a value 0.01 pu
for a severe 3LG fault, which occurs at 0.1 s. The two-level inverter

FIGURE 18 | Grid side converter of DFIG.

FIGURE 19 | DC-link voltage of DFIG.

FIGURE 20 | Rotor speed of DFIG.

FIGURE 21 | DC-link voltage of DFIG.
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scheme with a DC chopper was used in this investigation. As seen
from Figures 12–14, the following wind generator variables—DC-
link voltage, active power, and reactive power—show improved
performances with low distortions, with the use of the braking
resistor, when subjected to transient conditions. This was mainly
due to the fact that most of the harmonics and vibrations experienced
during the transient period were transferred by the rotor current and
DC-link voltage signals to the braking resistor circuitry, compared to
when the grid voltage signal was employed. The scenario where the
braking resistor was inserted at the stator side of the wind generator,
considering the grid voltage switching signal, led to an enhanced
performance of the terminal voltage and rotor speed variables of the
wind generator (Figures 15, 16). The reason for this is because the
wind generator active power was enhanced, and consequently, its
stability was improved. The braking resistor also limits the rotor
speed at times of transient changes, thus improving the power output

FIGURE 22 | Real power of DFIG.

FIGURE 23 | Grid side converter of DFIG.

FIGURE 24 | Rotor current of DFIG.

FIGURE 25 | DC-link voltage of DFIG.

FIGURE 26 | Real power of DFIG.
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of the wind turbine. Consequently, the recovery of the variables of the
wind generator after fault is better because of the control capability of
the braking resistor in the acceleration of the rotor speed.

2-Level Interleave Inverter and SDBR
A comparison was made between the single 2-level converter
system and when it is interleaved for the wind turbine system.
As seen from Figures 17, 18 for the DC-link voltage and
reactive power of the wind generator, interleaving the two side
converters using the 2-level converters enhances the stability
of the wind turbine during transient changes by providing
more reactive power within the DFIG power converters
(Figure 18). Based on the best SDBR performance for the
stator side, as given in section SDBR Switching and Position of
the simulation results, a further investigation was carried out
for the 2-level interleave inverter system to improve the

stability of the wind turbine for the DC-link voltage and the
rotor speed variables, shown in Figures 19, 20, respectively.
The DC-link charging current of the capacitor is mitigated
during fault scenario in order to avoid the under-or over-
voltage experienced, as shown in Figure 19. In addition, this
topology effectively controls the voltage and current in the
rotor circuitry. This would definitely improve the rotor speed
of the DFIG as shown in Figure 20.

3-Level Inverter, 2-Level Interleave Inverter,
and SDBR
Investigation was further carried out comparing the responses of
the 3-level inverter and the 2 level interleave inverter. The
responses of the DFIG DC-link voltage and active power in
Figures 21, 22, respectively, is better for the 2-level interleave
inverter than the 3-level inverter due to more reactive power
being supplied, as shown in Figure 23. However, the response of

FIGURE 28 | Rotor speed of DFIG.

FIGURE 29 | DC-link voltage of DFIG.

FIGURE 30 | Reactive power of DFIG.

FIGURE 27 | Grid side converter of DFIG.
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the rotor current is almost the same, but in different directions, as
shown in Figure 24, for both converter systems. An addition of
SDBR to both systems, as shown in Figures 25–28, shows that the
SDBR can further enhance the performance of both inverter
schemes for the DC-link voltage, real power, reactive power of the
grid side converter, and rotor speed of the wind generator. The
response of the 2-level interleave inverter is slightly better because
the SDBR more greatly limits the reactive power (Figure 27) for
the 3-level inverter.

Proposed PLL Control Strategy and the
Various Schemes
The conventional PLL has been used in the earlier analysis.
This section investigates five schemes. Scheme 1 is the 2-level
converter (2LC) using the conventional PLL, scheme 2 is the

2LC with the proposed PLL scheme in Figure 6, scheme 3 is
the 2LC with a proposed PLL scheme and SDBR. Schemes 4, 5
uses the 3-level converter (3LC), and parallel Interleave
converter (IC), having the proposed PLL scheme and
SDBR, respectively. Figure 29 shows the response of the
DFIG wind turbine DC-link voltage considering the various
converter schemes without SDBR. The response of the DC-
link voltage using the proposed PLL scheme for the 2-level
converter system is better than when the conventional PLL
scheme was used. This is because the proposed PLL scheme
helps in enhancing the reactive power of the DFIG grid side
converter (Figure 30). The coordinated control of SDBR with
the proposed scheme shows that a better performance of the
wind turbine variables could be achieved during transient
changes for the DC-link, real power, and rotor speed of the
wind generator as shown in Figures 31–33. In Figure 31, the
SDBR and the proposed PLL scheme enhances the single step
2-level inverter, thus giving a better response than the
interleaved and 3-level inverter schemes. This is also the
same for the wind turbine real power in Figure 32 and
rotor speed in Figure 33, respectively.

CONCLUSION

In this paper, the DFIG variable speed wind turbine performance
operating with three types of inverter system has been
investigated. The 2 level single step inverters, 2 level parallel
interleaved inverters, and 3 level inverter systems for a DFIG
wind turbine during transient changes were presented. An SDBR
was used to enhance the performances of all the inverter systems.

Furthermore, a Phase Lock Loop (PLL) was proposed in
conjunction with the SDBR system to improve the
performance of the wind turbine using a 2-level single step
inverter system. It was observed that the proposed PLL SDBR
strategy can further improve the performance of the 2-level single

FIGURE 32 | Real power of DFIG.

FIGURE 33 | Rotor speed of DFIG.

FIGURE 31 | DC-link voltage of DFIG.
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step inverter system during transient changes, thus enhancing the
transient responses of the wind turbine.
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