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Among the modern computational techniques, Artificial Neural Network (ANN) and
Adaptive Neuro-Fuzzy Inference System (ANFIS) are preferred because of their ability
to deal with non-linear modelling and complex stochastic dataset. Nondeterministic
models involve some computational complexities while solving real-life problems but
would always produce better outcomes. For the first time, this study utilized the ANN
and ANFIS models for modelling tobacco seed oil methyl ester (TSOME) production from
underutilized tobacco seeds in the tropics. The dataset for the models was obtained from
an earlier study which focused on design of the experiment on TSOME production. This
study is an an exposition of the influence of transesterification parameters such as reaction
duration (T), methanol/oil molar ratio (M:O), and catalyst dosage on the TSOME/biodiesel
yield. A multi-layer ANN model with ten hidden layers was trained to simulate the
methanolysis process. The ANFIS approach was further implemented to model
TSOME production. A comparison of the formulated models was completed by
statistical criteria such as coefficient of determination (R2), mean average error (MAE),
and average absolute deviation (AAD). The R2 of 0.8979, MAE of 4.34468, and AAD of
6.0529 for the ANN model compared to those of the R2 of 0.9786, MAE of 1.5311, and
AAD of 1.9124 for the ANFISmodel. The ANFISmodel appears to bemore reliable than the
ANN model in predicting TSOME production in the tropics.
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INTRODUCTION

Notable properties associated with methyl and ethyl esters of oils such as renewability,
environmental friendliness, and others, have propelled researchers and scientific communities to
substitute such renewable fuels for diesel fuel in diesel and automotive engines (cars, trucks, farm
machinery, marine vessels, and even aircraft) (Enweremadu and Mbarawa, 2009; Huang et al., 2012;
Huang et al., 2019; Jayaprabakar et al., 2019; Shrivastava and Verma, 2019). In time past, clean and
sparkling oily feedstock has been a preferred option for investigation by researchers in terms of
biodiesel production since the oils possess the shortest reaction time and do not need pre-treatment
prior to the base transesterification (Giwa et al., 2010). However, non-edible seed oils from castor,
rubber, jatropha, tobacco seed, and others have been considered for biodiesel production globally.
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This consideration is associated with non-edible oils as they can
lessen the cost of biodiesel production. Among non-edible oils,
tobacco seed oil (TSO) seemed appealing for biofuel production
which is often observed to possess close basic properties with
diesel fuel (Andrianov et al., 2010). In addition, the literature
(Giannelos et al., 2002; Moser, 2009) remarked on the viability of
biodiesel production from TSO.

The tobacco plant is readily available as it is abundant in over
118 nations globally (Usta, 2005). There is a remarkable growth in
tobacco cultivation. The African tobacco plantation grew from

440,000 tons in 2003 to 650,000 tons in 2012. Also, the 20 top-
ranked countries (global) in the production of tobacco in 2012
consisted of Malawi (sixth), Tanzania (eight), Zimbabwe (ninth),
Zambia (sixteenth), andMozambique (seventeenth) position (Hu
and Lee, 2015). Figure 1 depicts the tobacco production capacity
of some countries in 2018 (Statista, 2020), and that of Nigeria in
2017 (FAO statistics, 2008). As observed, China was the largest
producer in 2018 while the tobacco plantation in Nigeria was
higher compared to those of other countries. There is a need to
revamp tobacco farming to meet the feasible production for a
biorefinery in the nearest future.

The leaf from the tobacco plant and its seed possess
commercial values. For example, the tobacco industry
adopts leaves for cigarette production, but alternate use of
tobacco by-product is at the top gear (Grisan et al., 2016). The
authors further remarked that researchers are projecting
alternate application of tobacco such as biofuel. Such
reports might be attributed to people’s awareness of the
dangerous implication of cigarette smoking (Usta et al.,
2011). However, the by-product, which is tobacco seeds
contains no nicotine which can be employed for tobacco-
based biodiesel production. This will reduce undesirable
implications on the health and well-fare of the populace
and promote the socio-economic balance in Africa and the
world at large (Hu and Lee, 2015).

Refs. (Uzun et al., 2012; Samuel et al., 2020a; 2020b) hinted that
optimization is a prerequisite to boost yield and biofuel production
in a biorefinery plant. Among high-level optimization techniques, a
breed of Artificial Neural Network (ANN) and the Fuzzy Logic
(FL), which gives the hybrid algorithm, Adaptive Neuro-Fuzzy
Inference System (ANFIS), has been the preferred option in terms
of problem-solving, the combination has numerical advantages
discussed elsewhere (Okwu and Adetunji, 2018). The ANFIS is a

FIGURE 1 | Tobacco production capacity for ten countries.

FIGURE 2 | Tobacco seeds.
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controlling data-driven and adaptive computational tool having
the capability ofmapping non-linear and complex data (Gupta and
Sharma, 2014). On the contrary, the limitation of ANN is its black
box which fails to link input parameters with the response. Jang
and Sun (1995) linked the failure of the black box technique of the
ANN model to the inability of the model to accommodate
linguistically information unswervingly. On the other hand,
Yaghoobi et al. (2016) attributed the superiority of the ANFIS
model to its capacity to handle lapses in the ANN model.

Relevant studies on the TSO biodiesel have been reported by
researchers. For instance, Veljkovic et al. (2016) indicated the
feasibility of a two-way process on biodiesel production from
TSO having high FFA. Usta et al. (2011) indicated suitable for the
antioxidant for TSOME. Sharma et al. (2020) explored RSM for
modelling the diesel engine performance parameters of IC
engines fuelled with TSOME and diesel blends. However,
published literature on ANN-ANFIS based modelling of
biodiesels from non-edible oils is scarce. A hybrid of ANN
and ANFIS was adopted to optimize biodiesels from sorrel oil
(Ishola et al., 2019), palm kernel oil (Betiku et al., 2018), Vitis
vinifera seed oil (Hariram et al., 2019), and waste cooking oil,

FIGURE 3 | Fatty acid composition of TSO.

FIGURE 4 | Tobacco seed oil’s GC chromatogram.
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aided with a prepared heterogeneous catalyst (Betiku and Ishola,
2020).

To the best of the authors’ knowledge, a hybrid tool such as
ANN integrated with the ANFIS has not been explored to model
transesterification parameters of biodiesel production from TSO.
On the contrary, the hybrid tool has been employed in other
engineering applications. For instance, a handful of exploration of
ANN and ANFIS in the distributed system (Okwu and Adetunji,
2018), mechanical properties of concrete (Boğa et al., 2013), wind
speed sensor (Rahman and Rahim, 2016), grade estimation
(Tahmasebi and Hezarkhani, 2012; Amirkhani et al., 2015),
and under convective hot air dryer (Kaveh et al., 2018), sheet
hydroforming process (Yaghoobi et al., 2016), etc., have appeared
in the literature. Also, the adoption of ANN and ANFIS models
are relevant since it strengthens the performance of the model
and enables robust modeling for effective productivity and
sustainability. Unfortunately, the perusal of the survey showed
that there are (1) no established ANN model for TSOME
production and (2) comparison capacity of hybrid models
such as RSM and ANN models for TSOME’s parameters in
the literature are scarce. Hence, there is a need to truncate the
lapses in the knowledge of such reports and establish robust
models models capable of promoting sustainable production of
biodiesel alongside tobacco production in developing countries.

MATERIALS AND METHOD

Data Preparation and Modelling Technique
Creative and intelligent techniques should be adopted for modeling
and optimizing limited nonlinear as well as ill-defined engineering
problems such as the methylic process. To end this, the ANN and
ANFIS were employed herein to model the methylic biodiesel
production from TSO on a lab scale. Figure 2 portrays tobacco

seeds (TS) as a by-product from leaves of tobacco, and the TS are
small but compact together (Giannelos et al., 2002). TSO comprises
linoleic acid (C18:2; 73.19 wt %), oleic acid (C18:1; 7.97 wt %), and
palmitic acid (C16:0; 11.73 wt %) (Figure 3). As detected in Figures
3 and 4, the overall saturated and unsaturated fatty acids contained
in TSO were 73.43 and 26.57 wt %, respectively. TSO having high
saturated fatty acid content has a tendency to improve the cetane
number of the fuel (Samuel et al., 2020a).

The efficacy of ANN and ANFIS models are indicated in
biodiesel productions from palm kernel oil (Betiku et al., 2018),
Vitis vinifera seed oil (Hariram et al., 2019), waste cooking oil (Najafi
et al., 2018). The theory associated with the models can be found
elsewhere (Ighose et al., 2017). Table 1 highlights the databases
utilized for the development of ANN and ANFIS models (Waheed
et al., 2015).

The comprehensive information on the employed materials,
biodiesel development methodology, and analytical techniques
could also be found elsewhere (Waheed et al., 2015). Reaction
time, A (40, 60, and 80°C), methanol/oil molar ratio, B (4:1, 6:1,
and 8:1), and catalyst amount, C (0.5, 1.0, and 1.5 wt %) were
adopted as input variables to the hybrid models. The biodiesel
yield/TSOME’s yield was separately adopted as the response of
the models. To implement the predictive models, MATLAB®
R2019a was employed. The established models for the prediction
were the ANN technique based on a multilayer perceptron (MLP)
algorithm integrated with the ANFIS.

ANN and ANFIS Modelling
ANN Modelling
The ANN modelling was systematically conducted by using the
dataset presented in Table 1. The steps involved in the ANN
modelling for TSOME production are presented in the
Supplementary Figure S1. The optimum model implemented
based on the ANN technique focused on three key steps: (1)

TABLE 1 | Dataset for TSOME (Waheed et al., 2015).

Run Reaction time (min) Methanol to oil molar
ratio

Catalyst (w/w. %) TSOME yield (%)

E1 40 4 0.5 48.06
E2 80 4 0.5 55.63
E3 40 8 0.5 58.36
E4 80 8 0.5 56.04
E5 40 4 1.5 62.97
E6 80 4 1.5 76.01
E7 40 8 1.5 65.13
E8 80 8 1.5 73.45
E9 40 6 1 79.38
E10 80 6 1 89.75
E11 60 4 1 81.15
E12 60 8 1 78.18
E13 60 6 0.5 59.71
E14 60 6 1.5 74.71
E15 60 6 1 90.07
E16 60 6 1 86.04
E17 60 6 1 86.04
E18 60 6 1 90.07
E19 60 6 1 85.13
E20 60 6 1 85.13
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optimum neuron value, (2) selection of the appropriate training
algorithm, and (3) model testing and validation. Twenty samples
of the dataset were considered for the experiment, with 70%

allocated for sample training, 15% samples used for validation,
and 15% of samples engaged for testing. Utilizing the presented
experimental data, the Levenberg–Marquardt (LM) ANN fitting

FIGURE 5 | Membership function of (A) reaction time, (B) methanol/oil molar ratio and (C) catalyst amount.

TABLE 2 | Parameters for membership for input and output for TSOME.

Membership function/range Reaction time (min) Methanol/oil molar ratio Catalyst amount Yield (%)

Low 40–45–50 4–4.5–5 0.5–0.65–0.8 45–55–60
Medium 55–60–65 5.5–6–6.5 0.9–1–1.1 55–65–75
High 70–75–80 5–5.5–6 1.2–1.35–1.5 75–85–95
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tool and Logistic Sigmoid Activation Transfer Function 3–10–1
(number of the input layer, neurons in the hidden layer, and
output layer nodes) model were applied as portrayed in the
Supplementary Figure S2. The LM back propagation highlights
the process of data training, network inputs, and target/response
standardized with a fitted maximum and minimum level. The

literature provides details on the adoption of the standardization
limits (Aghbashlo et al., 2016; Okpalaeke et al., 2020; Okwu et al.,
2020).

ANFIS Modelling
The ANFIS is a high-level creative algorithm obtained by
combining the quantitative strength of ANN and the
qualitative strength of Fuzzy Logic. The architecture of the
ANFIS showing the input variables is presented in the
Supplementary Figure S3. The step presented in the
fuzzification was such that the crisp value of inputs and
output variables was transformed into linguistic
terminologies leading to the sectioning of the membership
function plot for easy and accurate analysis. The triangular

TABLE 3 | Rule base of fuzzy inference system.

Run Reaction time (min.) Methanol to oil molar
ratio

Catalyst (w/w. %) Experimental yield

E1 L L L VL
E2 H L L L
E3 L H L M
E4 H H L M
E5 L L H M
E6 H L H M
E7 L H H M
E8 H H H M
E9 L M M H
E10 H M M VH
E11 M L M H
E12 M H M H
E13 M M L L
E14 M M H M
E15 M M M VH
E16 M M M VH
E17 M M M VH
E18 M M M VH
E19 M M M VH
E20 M M M VH

Note: L, low; M, moderate; H, high and V, very.

FIGURE 6 | Membership function plot of TSOME.

TABLE 4 | ANN training dataset.

Performance Samples MSE R

Training 14 5.5487 0.9909
Validation 3 28.6023 0.9266
Testing 3 24.3977 0.9181
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membership function is selected for the input parameters as
portrayed in Figure 5. It can be observed that the reaction
time (40–80 min), methanol/oil molar ratio (4–8), and
catalyst amount (0.5–1.5 wt %) are presented in Figures
5A–C, respectively. The trapezoidal membership function
was preferred for the yield of TSOME (Figure 5).

The characteristics fuzzy instruction indicated by Ighose
et al. (2017) have been accosted for this study. Table 2
presents the number of membership functions and their
ranges. From this, fuzzy rules were formulated as given in
Table 3 using the input output-data pair specified in Table 1.
Thereafter, the defuzzification the yield was completed and
presented in Figure 6. To predict the yield of TSOME, a
Mamdani-type fuzzy inference system IF-THEN rules were
implemented.

The mathematical expression that forecasts the behavior of the
dependent parameters was expressed with the aid of Eq. 1
(Quesada et al., 2019).

ye �
∫mr

l�l a1*[∏nr
l�lμ

l
Fi*(xi ,θli)]∫mr

l�l[∏nr
l�lμ

l
Fi*(xi ,θli)] (1)

where mr, nr is the number of rules and number of independent
parameters while a1 and ye are the constant model and appraised
values of the studied characteristics, respectively.

Assessment of the Development Models
The precision of both ANN and ANFIS models were investigated
with the aid of Eqs. 2–6 as applied by Samuel et al. (2020b).

R2 � 1 − ∑n
i�1(Ei,p − P1,e)2∑n

i�1(Ei,p − Pe, ave)2 (2)

MSE �
														∑n

i�1(Ei,e − Pi,p)2
n

√
(3)

MAE � ∑n

i�1
[Ei,e − Pi,p]

n
(4)

SEP � RMSE
Te, ave

(5)

AD � 100
n

∑n

i�1
[Ei,e − Pi,p](Yi,e) (6)

where Ei,e, Pi,p, and n are the experimental value, predicted value,
and several data, respectively. MSE is the mean standard error,
MAE is the mean average error, RMSE is the root mean square
error, AD is an average deviation, and SEP is the standard error of
prediction.

RESULTS AND DISCUSSION

ANN Modelling
Employing MATLAB® R2019a, the prediction of TSOME’s yield
using ANN has been effectively implemented in this study.
Table 2 highlights the grouped available dataset. As obtained,
the first sample collection includes 70% dataset for training, 15%
for testing, and another 15% for validation. The iteration
provided an unsatisfactory result for the first iteration since
the MSE value for the training was high. If R-value is close to

FIGURE 7 | Fuzzy logic rule viewer.
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unity with low MSE values, it becomes appropriate and good for
prediction. The iteration performance value was observed until
the best values of R and MSE were obtained as shown in Table 4,
with the best training value of 0.9909. To achieve the best value as
presented in Table 2, the iteration was conducted repeatedly. The
best solution was observed for training, testing, and validation at
the twenty-fifth iteration with the lowest MSE value and the
highest R values.

Figure 7 presents the relationship between the output and
target data. As observed, the straight lines correlate the data. Also,
the real and expected correlation coefficients (R) are 0.9909
(training), 0.9181 (testing) and 0.9267 (validation). Therefore,
in terms of correlation, the prediction of ANN is significant with
an overall value of 0.8941, as presented in Figure 8. Figure 9
depicts the best validation performance drawn from the curve of a
different epoch. As shown, the best validation performance is
286.02 at the epoch of 1. Error histogram is another tool used to
obtain more information about the neural network Figure 10
portrays the error histogram attained for the regression curves for

the chosen network. As seen, a good signal of the values of outliers
is obtained.

ANFIS Modelling
Figure 11 depicts the architecture of the developed ANFIS model
of the membership functions for three inputs (reaction time,
methanol/oil molar ratio, and catalyst amount). Figure 12
displays the actual yield and those of ANN and ANFIS
models. As seen, the yield predicted by the ANFIS model is
closer to the actual TSOME yield compared to the ANN model.
Also, the effectiveness of the models was further substantiated
through the plots of experimental values against model predicted
values (Figure 13). As seen in Figures 13A,B, the linear equations
such as (0.9104x + 9.1009) and (1.0401x − 2.6601) are detected to
be appropriate for the variations of ANN predicted and actual
TSOME yields and ANFIS predicted and actual TSOME yields.
The high regression coefficients (R2) of 0.9048 in the ANNmodel
and 0.9496 in the ANFIS model imply that over 90.5 and 95% of
the data fit into the respective models. Hence, the ANFIS model

FIGURE 8 | Regression plots for the selected network.
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could predict the yield better than the ANN model with high
accuracy. Similar reports were reported by researchers elsewhere
(Betiku and Ishola, 2020; Giwa et al., 2020).

Figures 14A–F present the response surface plot of
transesterification parameters on the ANFIS predicted TSOME
yield in comparison with RSM predicted yield. As observed in
Figures 14A,D, TSOME yield remarkably increased from a
methanol/oil molar ratio of 4–6 and reaction time of
40–60 min. The yield decreased outside these ranges. Similar
observations were documented in the literature by other
researchers (Encinar et al., 2010; Betiku et al., 2018). The
reduction in TSOME’s yield can be related to the interference
of the separation between the esters and glycerol (Samuel et al.,
2019). Tabatabaei et al. (2015) and Dhar and Kirtania (2009)
hinted that suitable methanol needs to be employed in the
transesterification process to minimize the cost of production.
Pugazhendhi et al. (2020) attributed the enhanced yield at the
range of reaction temperature to maximum activation energy
attained during this period. The researchers further stressed that
the reduction in TSOME yield at the high temperature is due to
the reversal effect of the transesterification reaction. Figures 14
B,E demonstrate the yield of TSOME as a function of catalyst
amount and reaction duration (RT). As noticed, TSOME yield
remarkably increased from a catalyst amount of 0.5–1.0 wt % and
reaction time (RT) of 40–60 min. The yield decreased outside
these ranges. A similar observation was reported by researchers
elsewhere (Rodrigues et al., 2009; Waheed et al., 2015). This
reduction in the TSOME’s yield is ascribed to the triglyceride in
the TSO contributing to the soap formation rather than yield
enhancement. Figures 14 C,F depict the yield of TSOME as a
function of methanol/oil molar ratio (MR) and catalyst amount.
As seen, TSOME yield remarkably increased from a catalyst
amount of 0.5–1.1 wt % and MR of 4–6. Beyond these ranges,
the yield decreased. This observation is further corroborated by
Musa (2016) and Dhingra et al. (2016) emphasized that high
catalyst amount reduced the yield of TSOME.

Comparative Evaluation of ANN and ANFIS
Models
Figure 15 depicts the statistical indices of ANN and ANFIS
models. As noticed, the higher R2 (0.978613), lower values of

FIGURE 9 | Performance-plot of the selected network.

FIGURE 10 | Error histogram of the selected network.

FIGURE 11 | Architectures for model.
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RMSE (3.0635), SEP (4.1370), MAE (1.5311), and AAD (1.9124)
for the ANFIS model compared to those of R2 (0.8979), RMSE
(7.1026), SEP (9.5916), MAE (4.3446) and AAD (6.0529) for
ANN model, establish the superiority of the ANFIS model over
the ANN model.

Validation of Optimized Condition for
TSOME
Table 5 summarizes the optimal conditions for TSOME. As seen,
the yield of TSOME (90.11%) was optimum at the methanol/oil
molar ratio of 5.99/1, catalyst dosage of 1.10 wt %, and reaction
time of 77.6 min (Waheed et al., 2016). The justification test using
the optimized experimental factors produced a predicted for the
hybrid yield (90.15%). The average error between the RSM based
predicted and that of hybrid model were 0.066 and 0.004%. The
validation results showed that the hybrid model developed was

precise since the percentages of error in prediction were in a
good pact.

Hybrid Models for TSOME and its
Comparison with Literature
Table 5 summarizes the ANN-ANFIS models of TSOME yield.
As observed, the models of TSOME are comparable with those in
the literature (Betiku et al., 2018; Najafi et al., 2018; Hariram et al.,
2019). The variation in the hybrid models of the present study
with those in literature might be ascribed to transesterification
conditions and topologies associated with the ANN model.

Table 6 highlights the overview of R2 of ANN and ANFIS
models in the literature and TSOME. As observed, the R2 value of
ANN and ANFIS models for TSOME are comparable to those of
literature but those of ANN model are lesser than ANFIS (Betiku
et al.,2018; Hariram et al., 2019; Betiku and Ishola, 2020).

Fuel Properties of TSOME Produced
Supplementary Table S2 recapitulates the basic properties of
TSOME formed. As detected, the density of TSOME (891.1 kg/
m3) concurred with the EN 41214 (850–900 kg/m3) standard,
though somewhat higher than B0 (850 kg/m3). TSOME having
higher density compared to B0 will not significantly influence
brake fuel consumption when injected (Niculescu et al., 2019).

The KVs of TSOME (3.87 mm/s2) agreed with the ranges of
ASTM D6751 (1.9–6.0 mm2/s) and EN14214 (3.5–5.0 mm2/s),
however, it was higher than that of fossil diesel (3.61 mm2/s). Fuels
with modest values of KVs will safeguard complete combustion
requiring to enhance engine power and reduction in the exhaust
emission profile (Samuel and Gulum, 2019). Flash point (FLAP) of
TSOME (126°C) is higher than that of diesel fuel (75°C), and it
certified the safety requirements for both international standards. A
higher value of FLAP diminishes the risk of fire and this property is a
benefit of biodiesel over fossil diesel.

The lower calorific value (LCV) of TSOME (42.53 MJ/kg) was
lower than that of B0 (43.78 MJ/kg). HSOME possessing LCV can
lead to an upsurge in the brake-specific consumption (Xue et al.,
2011; Adaileh and AlQdah, 2012; Samuel et al., 2020b).

FIGURE 12 | Runs vs. Experimental, ANN, and ANFIS predicted yields.

FIGURE 13 | Comparison of actual and predicted ANN and ANFIS yield: (A) Actual and ANN predicted yields and (B) actual and ANFIS predicted yields.
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FIGURE 14 | 3D plots by (A–C) ANFIS and (D–F) RSM.
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CONCLUSION

The study established the application of the ANN model in
comparison with the hybrid ANFIS in the modelling of
transesterification parameters of biodiesel production from
TSO. The suitability of TSOME produced was also verified for
its appropriateness in internal combustion engines. The
efficacy of the ANN and ANFIS models was assessed based
on the statistical indices such as R2, MAE, and AD. The R2 of
0.8979, MAE of 4.3446, and AD of 6.0529 for the ANN model
compared to those of the R2 of 0.9786, MAE of 1.5311, and
AD of 1.9124 for the ANFIS model. The ANFIS model
appears to be more reliable than the ANN model in
predicting TSOME production for the tropics. The analysis
of basic properties indicated that the produced TSOME is
comparable to that of fossil diesel. To get a robust study in the
nearest future, (i) other transesterification variables namely
stirring speed and reaction time and (ii) the second law of
thermodynamics can be explored on the TSOME production
can be further investigated.

FIGURE 15 | Comparative of statistical indices of ANN and ANFIS.

TABLE 5 | Hybrid model of TSOME.

Feedstocks Operation conditions and
yield (%) for
RSM

Topologies
of ANN/ANFIS model

R2 and MAE References

Palm kernel oil C � 0.75–2.00 w/v ANFIS model (generalized bell MF (or bell-shaped function
employed)); ANN model (3:15:1 layer employed)

R2
ANFIS � 0.9900 Betiku et al.

(2018)M:O � 0.25–0.5 v/v R2
ANN � 0.9900

Ti � 30–90 min MAEANFIS � 0.21
MAEANN � 0.22

Vitis vinifera
seed oil

C � 0.4–1.35 g/g NS R2
ANFIS � 0.9978 Hariram et al.

(2019)M:O � 0.17–0.33 v/v; Ti � 40–80 min R2
ANN � 0.9921

Waste cooking oil C � 0.5–1.5 wt %; M:O � 3:1–9:1; Te �
60–80°C; Ti � 30–90 min

ANFIS model (gbell, Gaussian, and trap MFs used) ANN model: NS MAEANFIS � 1.58 Najafi et al
. (2018)MAEANN � 2.04

Tobacco seed oil C � 0.5–1.5 wt % ANN model (Transfer function of 3:10:1); ANFIS model (triangu-
lar MF)

R2
ANFIS � 0.9786 Present

study
M:O � 4:1–8:1 R2

ANN � 0.8979
Ti � 40–80 min MAEANFIS �

1.5311
MAEANN � 4.3446

Ti, reaction temperature; M:O, Methanol/oil molar ratio; C, catalyst dosage; MF, membership function; NS, not specified.

TABLE 6 | An overview on R2 for ANN and ANFIS on TSOME with literature.

Oily feedstocks R2
ANN R2

ANFIS Remarks References

Palm kernel oil (PKO) 0.9900 0.9900 R2
ANN for PKOME is � R2

ANFIS Betiku et al. (2018)
Vitis vinifera seed oil (VVSO) 0.9921 0.9978 R2

ANFIS for VVSOME is > R2
ANN Hariram et al. (2019)

Sorrel oil (SO) 0.9991 0.9971 R2
ANFIS for SOME is > R2

ANN Betiku and Ishola (2020)
TSO 0.8979 0.9786 R2

ANFIS for TSOME biodiesel is > R2
ANN Present study

Frontiers in Energy Research | www.frontiersin.org January 2021 | Volume 8 | Article 61216512

Samuel et al. Modeling of Biodiesel Production

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles


DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

OS provided the dataset and wrote the part of the first draft of the
manuscript. MO and LT modelled the dataset and wrote part of
the first draft of the manuscript. SG and ZO wrote the final draft
of the manuscript, which was proofread, improved, and edited by
MS. The concept of the study was envisioned by SG and SO.

ACKNOWLEDGMENTS

The authors are grateful to Pastor Akinola Omotayo and
Tayo of Food Science and Technology, Federal University of
Agriculture, Abeokuta, Nigeria, for their assistance during
the research work.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fenrg.2020.612165/
full#supplementary-material.

REFERENCES

Adaileh,W.M., and AlQdah, K. S. (2012). Performance of diesel engine fuelled by a
biodiesel extracted from a waste cocking oil. Energy Procedia. 18, 1317–1334.
doi:10.1016/j.egypro.2012.05.149

Aghbashlo, M., Tabatabaei, M., Hosseinpour, S., Hosseini, S. S., Ghaffari, A.,
Khounani, Z., et al. (2016). Development and evaluation of a novel low power,
high frequency piezoelectric-based ultrasonic reactor for intensifying the
transesterification reaction. Biofuel Res. J. 3, 528–535. doi:10.18331/BRJ2016.
3.4.7

Amirkhani, S., Nasirivatan, S., Kasaeian, A. B., and Hajinezhad, A. (2015). ANN
and ANFIS models to predict the performance of solar chimney power plants.
Renew. Energy. 83, 597–607. doi:10.1016/j.renene.2015.04.072

Andrianov, V., Borisjuk, N., Pogrebnyak, N., Brinker, A., Dixon, J., Spitsin, S., et al.
2010). Tobacco as a production platform for biofuel: overexpression of
Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the
composition of lipids in green biomass. Plant Biotechnol. J. 8, 277–87. doi:10.
1111/j.1467-7652.2009.00458.x

Betiku, E., and Ishola, N. B. (2020). Optimization of sorrel oil biodiesel production
by base heterogeneous catalyst from kola nut pod husk: neural intelligence-
genetic algorithm versus neuro-fuzzy-genetic algorithm. Environ. Prog. Sustain.
Energy. 39, e13393. doi:10.1002/ep.13393

Betiku, E., Osunleke, A. S., Odude, V. O., Bamimore, A., Oladipo, B., Okeleye, A.
A., et al. (2018). Performance evaluation of adaptive neuro-fuzzy inference
system, artificial neural network and response surface methodology in
modeling biodiesel synthesis from palm kernel oil by transesterification.
Biofuels. doi:10.1080/17597269.2018.1472980
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