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To solve the global water shortages and serious water pollution problems, research on
semiconductor photocatalysts has generated significant research attention. The
degradation of pollutants by titanium dioxide (TiO2) exceeds other semiconductor
materials. However, its wide bandgap restricts the photocatalytic reaction under visible
light. The large specific surface area and good thermal conductivity of graphene yielded an
effective graphene-TiO2 catalyst combination effective under visible light. 2D graphene-
TiO2 composites (2D-GTC) have shown promise, so a study of the preparation methods,
mechanism and catalytic effect of different pollutants on this material was undertaken. In
this current review, the characteristics of different graphene and TiO2 composites and their
preparation methods, as well as the effects of different synthesis methods on the catalyst
are introduced. The reaction mechanism of 2D-GTC catalysts, the degradation effects of
different pollutants in water are all reviewed.
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INTRODUCTION

Water is necessary for life and overcoming water shortages represents one of the bigger challenges
worldwide. Also, the discharge of various chemical substances of various concentrations into water
by cities and some factories makes water conservation/purification evenmore important. In response
to existing water resource needs, existing wastewater treatment technologies are booming. Common
wastewater treatment methods include biological, membrane filtration, chemical precipitation and
photocatalysis. Among them, the photocatalysis has advantages in environmental protection, low
process cost, energy saving and easy control of the amount of catalyst used during wastewater
treatment (Herrmann, 2010). However, there are some disadvantages coexist including difficulty in
regenerating photocatalytic materials and lower efficacy in the presence of too many pollutants.

Various photocatalyst materials have been studied for their photocatalysis. Generally,
photocatalysis utilizes the light absorption by the semiconductor as well as transitions of
electrons from the lower to higher energy levels (electron-hole separation). In this process,
carriers may recombine and result in inefficient catalysts. Long-life charge carriers and fewer
charge trapping centers (abnormal centers of a physical location can “trap” charge carriers) are
important factors for improving photochemical efficiency. ZnS, CdS, TiO2, g-C3N4 (graphite carbon
nitride) or ZnO (Sudha and Sivakumar, 2015; Hao et al., 2017; Qi et al., 2017; Thirugnanam et al.,
2017) are common photocatalyst materials. Among them, titanium dioxide (TiO2) is a well-known
photocatalyst whose advantages include low cost, non-toxic and high photocatalytic activity
(Kurniawan et al., 2012; Kuwahara et al., 2012). However, titanium dioxide has disadvantages as
well, including a rapid recombination rate of photogenerated electron-hole pairs and its low activity
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in the visible region (Bak et al., 2002; Liu et al., 2010), and low
photocatalytic efficiency in the visible light region (Wang et al.,
2007; Afzal et al., 2012; Kruth et al., 2014). These shortcomings
degrades the quantum efficiency of TiO2 and limits wide
application.

Many methods can be used to improve the photocatalytic
performance of TiO2, such as doping precious metals (Ag, Pt, Au)
and nonmetals (C, N, S), coupling ions with other
semiconductors (ZnO, CdS, Bi2WO6), and loading TiO2 onto
large surface area materials (mesoporous materials, zeolites and
carbon-based materials) (Watanabe et al., 2014; Zhang et al.,
2012b; Jose et al., 2013; Wang et al., 2013; Sadanandam et al.,
2013; Sivaranjani et al., 2014; Awate et al., 2011; Gupta et al., 2016;
He et al., 2013; Murugan et al., 2013). In 2004, graphene was

discovered by Novoselov et al. (2004) and has attracted the
attention of many research groups (Liang et al., 2014; Li et al.,
2018; Alamelu et al., 2018; Niu et al., 2018). It is a tightly wrapped
honeycomb structure that contains sp2 hybridized carbon atoms
and has been called a “miracle” material of the 21st century
(Molina, 2016; Li et al., 2016; Mohan et al., 2018). Graphene can
be converted into different carbon nanostructures, such as 0D
C60 fullerene (Figure 1a), 1D carbon nanotube (Figure 1b) and
2D graphite flakes (Figure 1c) (Navalon et al., 2014; Yu et al.,
2016). At the same time, after different chemical treatments,
graphite can be converted into graphene oxide, and reduced
graphene oxide (as seen in Figure 2).

The most outstanding feature of graphene is its huge specific
surface area. In addition, graphene is only one atom thick, has

FIGURE 1 | Different forms of graphene.

FIGURE 2 | The structural differences of graphene and modified graphenes.
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good thermal conductivity (∼5000Wm−1 K−1) (Stoller et al.,
2008), and high mechanical strength (1 TPa) (Balandin et al.,
2008). It can also achieve ballistic transport (electron mobility at
room temperature that exceeds 15,000 m2 V−1 s−1) without
scattering (Kumar et al., 2017). These characteristics have
allowed graphene to achieve outstanding advancements in the
fields of photocatalysis and adsorption (Chakraborty et al., 2008).
When graphene and TiO2 are doped to form 2D composite (2D
Graphene-TiO2 Composite, which abbreviated as 2D-GTC in the
description below), the appropriate energy level of TiO2 shifts,
and electrons will convert the conduction band of TiO2 into the
energy level of graphene, which ultimately leads to higher
wastewater decomposition efficiency. The 2D-GTC not only
enhances the adsorption of reactants in the visible range but
also makes it easier to transfer and separate charges.

SYNTHESIS OF 2D-GTC

The current synthetic method for 2D-GTC includes the initial
preparation of graphene oxide (GO), preparation of nano-TiO2

and followed by a combination with GO and nano-TiO2. Each
step in the synthetic process uses different methods to generate
different composites. Here is the method currently utilized most
often, though other synthetic methods include chemical vapor

deposition, hydrothermal method, and ultrasonic treatment were
also be reported.

Preparation of Graphene Oxide (GO)
The GO is usually obtained by modifying graphene, and among
them the choice of graphene is very important. As shown in
Figure 3, graphene can be divided into single-layer graphene,
few-layer graphene, and multi-layer graphene, according to the
number of layers and thickness of graphene. A single-layer
graphene is an ideal membrane structure, and the pore size can
be adjusted with a porous distribution structure of atoms. The
structure of few-layer graphene is smooth, neat, flat and defect-
free, which can be stacked layer by layer for membrane
separation experiments. Multi-layer graphene is usually
stacked by single-layer graphene to form a film with a
thickness of about 3–9 nm. After stacking, vivid nano-
channels can be formed to penetrate gas and liquid. The
sub-nano-level layer spacing in this tightly packed
interlocking plate can be controlled to obtain the desired
flux and separation selectivity. Graphene is usually obtained
by mechanical peeling through block graphite (the "Scotch
tape" method), chemical preparation and chemical vapor
deposition (Schniepp et al., 2006; Stankovich et al., 2007; Xu
et al., 2008; Li et al., 2008; Lomeda et al., 2008; Si and Samulski,
2008; Lotya et al., 2009; Behabtu et al., 2010).

FIGURE 3 | Schematic diagrams of single-layer and multi-layer graphenes.
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The synthesis of GO was first demonstrated in 1859 and
involved the addition of potassium chlorate to a graphite
slurry dissolved in fuming nitric acid (Brodie, 1859). In 1898,
Staudenmaier (Staudenmaier, 1898) improved that method by
dissolving graphite in concentrated sulfuric acid and fuming
nitric acid, and adding chlorate several times during the
reaction. Although this was only a minor improvement, it
represented a more convenient and feasible way to make GO.
The Hummers method, which is the most widely developed now,
was published in 1958. The method oxidized graphite using
KMnO4 and NaNO3 in concentrated H2SO4. However, this
method also produces several gases (such as N2, N2O4, and
Cl2), some of which are toxic. Due to this, many researchers
sought to improve the Hummers methods (Marcano et al., 2010).
The reaction equations of Hummers and two improved
Hummers were shown in Figure 4. The two different
improved Hummers method are safer than the original
Hummers method due to the lack of heat and toxic gases
released during the reaction and represents a significant
synthetic step forward. The GO produced by the improved
Hummers method oxidized more readily and did less damage
to the graphite base surface.

Preparation of Nano-TiO2
TiO2 is an extensively studied photocatalyst. Due to different
reaction processes for TiO2, the final form and photocatalytic
effects are also different. Common forms include nano-sheets,
nano-tubes, nano-spheres, nano-rods among other forms. After
dissolving the raw materials in ethanol or deionized water, they
are mixed by stirring or ultrasonic waves and placed in a
polytetrafluoroethylene autoclave to react. The product is
centrifuged (or suction filtered) and dried to obtain the
titanium dioxide product. Nano TiO2 can be obtained by the
method above, and the time and temperature in the reaction can
be controlled to obtain different forms of titanium dioxide (Chen
et al., 2018; Li et al., 2020).

Different synthetic methods produce different TiO2 crystal
structures and morphologies. TiO2 has three different crystal
structures: rutile, anatase, and brookite. Among them, rutile TiO2

is the most stable, and other types readily convert to rutile TiO2 at
high temperatures. Most of the TiO2 used to prepare 2D-GTC is
anatase TiO2 or mixed crystals such as P25 (20% rutile phase and
80% anatase phase mixed). The heterojunction formed between

different crystal phases facilitates the transfer of photogenerated
electrons from one phase to another and reduces e-h+

recombination, which promotes the generation of free radical
groups. The rutile phase is located at 27.1 ° of the {110} crystal
plane, and the anatase phase is located at 24.2 ° of the {110} crystal
plane. At low graphene levels during the synthesis of 2DGT, the
24.2 ° peak easily overlaps with the anatase peak (Rong et al.,
2015).

Combination With GO and Nano-TiO2
The commonly used methods for combination with GO and
nano-TiO2 to form 2D-GTC including stirring (or ultrasonic)
mixing, sol-gel method and hydrothermal/solvothermal methods
et al. (Mishra and Ramaprabhu, 2011; Zhang et al., 2012c).
Different methods have an impact on the morphological
characteristics and structure of the catalyst and influence the
way that TiO2 adheres to the GO surface.

Stirring (or ultrasonic) mixing: Stirring (or ultrasonic)
mixing is the simplest way to synthesize 2D-GTC which relies
on van der Waals forces for bonding, so the interaction between
the various components is very poor. In the reaction, GO
(concentration: 0.01–10% by weight) is mixed with TiO2.
Experimental results showed the addition of TiO2 altered the
size of the GO colloid, which decreased accordingly (Park et al.,
2011).

Sol-gel method: This method is another simple technique to
prepare 2D-GTC; the 2D-GTC produced by sol-gel not only rely
on van der Waals forces but also covalent oxygen bridges and
hydroxyl bridges formed between GO and the metal center
(Zhang et al., 2010).

Hydrothermal/solvothermal methods: The primary benefit
associated with hydrothermal/solvothermal syntheses comes

FIGURE 4 | Different conversion pathways from graphene to GO.

TABLE 1 | Method for preparing GT under different reaction conditions.

Catalyst Solvent T (°C)/t(h) References

TiCl4/GO Ionic liquid 120/24 Nagaraju et al., 2013
P25/GO 10 mol/L NaOH 180/6 Zhang et al., 2012a
TiO2 nanosheet/GO 1:2 ethanol/water 180/1 Wong et al., 2013
Ti(SO4)2/GO Deionized water 100/72 Xiang et al., 2011
P25/GO Deionized water 180/6 Zeng et al., 2012
P25/GO 98% ethanol 180/8 Fan et al., 2011
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from the synergistic effects of temperature, pressure, and solvent;
this allows insoluble or poorly soluble substances to enter the
solution in the form of complexes. Table 1 describes
hydrothermal/solvothermal preparation methods for 2D-GTC
and shows a variety of solvents, temperature, and times that
be used. The temperature is between 100 and −180 °C and takes
between 1 and −72 h. Regarding to the choice of raw materials,
most differences come from titanium sources, which can usually
come from TiO2 nanosheet, P25, titanium tetrachloride (TiCl4)
or titanium sulfate [Ti(SO4)2]. Alkaline solution, deionized water,
ethanol and ionic liquid can all be used as solvents in 2D-GTC
preparation. Compared with the conventional TiO2 catalyst,
morphology and characteristics of the hydrothermal/
solvothermal prepared 2D-GTC changed. Research show the
agglomerate size of the particles decreases and the crystallites
are more regular with a clearer shape. The concentration of -OH
groups on the surface of hydrothermally prepared TiO2 is also
about 33% higher than calcined TiO2 (Maira et al., 2001).

DEGRADATION EFFECT OF 2D-GTC ON
DIFFERENT WATER POLLUTANTS

Degradation of Antibiotics
Antibiotics are used frequently because they can be used for more
than just human treatment. However, overuse of antibiotics can
contaminate desoxyribonucleic acid (DNA) and lead to bacterial
resistance in an organism (Wang et al., 2016; Chang et al., 2017;
Zheng et al., 2018). Many countries have explicit regulations on
the use and residual levels of antibiotics. The limits of tetracycline

antibiotics in China and the EU specify the content of edible
animal muscle tissue should contain less than 100 μg kg−1. The
United States has set clear chlortetracycline limits in animal
muscle tissue at 200 μg kg−1. However, antibiotic levels in
current water bodies are not within the range of water quality
indicators. Antibiotics themselves are extremely durable, difficult
to degrade, and often discharged in the original form from the
human body (Xu et al., 2019). Therefore, the removal of
antibiotics in wastewater has become a problem we must solve.

Tetracyclines (TCs) are a class of broad-spectrum antibiotics
produced by actinomycetes, including tetracycline (TC),
tetracycline hydrochloride (TCH), chlortetracycline (CTC) and
oxytetracycline (OTC) etc. The structure of tetracycline
antibiotics all contain naphthophenyl skeleton (Figure 5). Li
et al. (2017) obtained a TiO2-rGO-TiO2 photocatalyst by a
sol-gel method to degrade, and found under the same
degradation conditions, the degradation efficiency of TCH
increased by 22.8% using ultraviolet light and 32.8% under
simulated sunlight than a pure TiO2 catalyst. The two main
factors that promote the photocatalytic reaction are the number
of pores and reactive oxygen species (ROS), and the addition of
GO reduces the band gap energy of TiO2. Li et al. (2017) also used
TiO2 particles compounded on the surface of GO sheet to form a
2D-GTC catalyst and applied it to remove chlortetracycline
(CTC) from water. Those results showed that the removal
efficiency of 2D-GTC (10 mg/L) on CTC in real sewage
approached 100%. Wang et al. (2019) also reported the
removal rate of oxytetracycline (OTC) by hydrothermal
synthesised 2D-GTC nearly reached 100% under visible light,
and found during the photocatalytic reaction, h+/e− pairs are

FIGURE 5 | Structure diagram of tetracycline antibiotics.
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generated and the appearance of h+ is determined to be the main
reason for OTC removal.

Degradation of Other Organic Pollutants
Table 2 summarizes the removal effect of 2D-GTC on other
organic pollutants like phenol, Methylene blue (MB), 2, 4-
Dichlorophenol and perfluorooctanoic acid. Under different
light conditions (UV-Vis/visible light), 2D-GTC has different
removal effects on organic pollutants. The time to reach the best
removal effect, the content of 2D-GTC, and the final removal rate
are all different. Pollutant removal effects by 2D-GTC is as
follows: addition of GO reduces the band gap energy of TiO2

and generates voids during photocatalysis. The hole/electron (h+/
e−) serves as the primary reactant for TiO2 catalysts.

PHOTOCATALYTIC MECHANISM AND
INFLUENCING FACTORS OF 2D-GTC
Photocatalytic Reaction Influencing
Factors of 2D-GTC
GO is a structural material with an aliphatic sp3 carbon structure,
an aromatic sp2 structure and contains an oxygen intercalation
group. Some studies have conducted theoretical calculations and
model studies and found that GO can fix gases (even gases as
small as helium) because the gap in its aromatic ring is blocked by
the π orbital cloud (Bunch et al., 2008). One simulation found that
single-layer GO has a high salt removal rate, approximately two
to three orders of magnitude higher than other permeable
membranes (Cohen-Tanugi and Grossman, 2014), and its
water flux can reach 400–4,000 m2 h−1 bar−1. Moreover, single-
layer GO is selective to certain pollutants (O’Hern et al., 2014).
The GO structure has sp3 hybridized carbon atoms and a
topological network, so it is easy to wrinkle and obtain
corrugated nanosheets. These GO films also have outstanding
adsorption capacity because the oxidized area of GO can divide
the next layer, and its non-oxidized area allows a liquid material
to flow without friction. Nano multilayer GO nanosheets are
highly compatible, whose uneven structure improves the mobility
and contact efficiency of the reactants, and have unique
permeability and unique molecular transmission characteristics
(Wakabayashi et al., 2008; Han et al., 2013; Ji et al., 2015). In
addition, the nano-layered GO has the ability to transport water,
oil or oil/water mixture at the same time.

Although the GO has so many characteristic advantages, it
does not have a photocatalytic effect by itself. It is still TiO2 that
plays a photocatalytic role in 2D-GTC.When the energy captured
by TiO2 exceeds the photon of its band gap (anatase: ∼3.2 eV or
rutile: ∼3.0 eV), the photoelectron e–is excited to the conduction
band (CB) and is in the valence band (VB) and holes are left on
the top, resulting in electron-hole pairs (Di Valentin et al., 2004).
Figure 6 details the reaction of TiO2 during photocatalysis to
generate reactive oxygen species (ROSs). Holes in the VB oxidize
the adsorbed water or OH− groups to produce hydroxyl groups
(OH) while CB electrons reduce O2 molecules. Producing
superoxide (O2-) (2.5, 2.6). O2- can generate hydroperoxy
radicals (HO2), it can also generate H2O (2.7–2.9) after further
protonation (Chong et al., 2010). The electrons captured by O2

after a direct, two-electron reduction generate H2O2 as seen in
2.10 (Zheng et al., 2019). The role of ROSs is the photocatalytic
oxidation of pollutants. As shown in Figure 6, the CB potential
(–0.1 eV) of TiO2 is more negative than typical oxygen anions,
which confirms the thermodynamic photocatalytic reduction of
TiO2 (Hou et al., 2018). In an ideal situation, the corresponding
half-reaction of photogenerated electrons that reduce oxygen
anions is the oxidation of water (Eq. 2.11). However, this was
not the case in the actual reaction process. The competition
between e− and oxygen anions (CB electrons) reduces the light

TABLE 2 | The removal effects of 2D-GTC on some organic pollutants.

Pollutant Reaction
conditions

Removal effects References

Phenol and MB UV-vis The GO weight of loadings (1.0–1.5wt%) have the best photodegradation
efficiency

Hamandi et al., 2017

Rhodamine B and 2, 4-
Dichlorophenol

Visible light Remove 20 ppm RhB and 10 ppm 2、4-DCP in 2 h Rong et al., 2015

MB Visible light Under 2 h of light, the MB removal rate can reach up to 52% Torkaman et al., 2020
Perfluorooctanoic acid (PFOA) UV-A 200 μg/L TiO2-graphene nanocomposite can decompose more than 90% of

PFOA
Panchangam et al.,
2018

FIGURE 6 | Schematic diagram of photocatalysis.
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reduction activity of the catalyst (Marinho et al., 2017). The OH
formed in the reaction oxidizes the ions generated and results in a
low catalytic performance (Zuo et al., 2015). Formation of H2 as a
by-product consumed a large amount of CB electrons, the H2 was
generated when the oxygen anions were removed (see Eq. 2.12).
Therefore, to eliminate side reactions, it was necessary to generate
such ROS and side products as little as possible. The oxidization
of VB holes and reduction of CB electrons occur simultaneously,
so if one of the two reaction pathways is blocked, the charge
accumulates on the catalyst surface. Similarly, improvements to
one process accelerate the other processes (Jiang et al., 2012).

Equation of TiO2 during photocatalysis:
Photoexcitation: TiO2 + hv → e- + h+ (2.1)
(n-1) + Chare − carrier trapping of e−: e−CB → e−TR (2.2).
Chare–carrier trapping of h+: h+CB → h+TR (2.3).
Electron–hole

recombination: e−TR + h+CB(h+TR)→ e−CB + heat/light (2.4).
Oxidation of hydroxyls: OH- + h+ → OH (2.5)
Photoexcitation of e− scavenging: O2 + e− → O−

2 (2.6).
Photoexcitation of superoxide: O−

2 + OH→HO2 (2.7).
Co–scavenging of e−: HO2 + e− →HO−

2 (2.8).
Formation of H2O2: HO−

2 + e− →HO−
2 +H+ →H2O2 (2.9).

or O2+2H
++2e-→ H2O2 (2.10)

Water splitting: 2H++2e-→ H2 (2.11)
and 2H2O+4h

+→ 4H++O2 (2.12)
The combination of GO and TiO2 promotes their respective

advantages, so that 2D-GTC becomes a photocatalyst with great
application potential. Studies have shown that, under visible light,
TiO2 transfers photogenerated electrons to GO and
simultaneously transfers holes from GO to TiO2, which causes
adsorbate oxidization. Pollutants adsorb onto the TiO2 surface
(Wang et al., 2012a), the delayed recombination of
photogenerated electron-hole pairs allows organic pollutants to
undergo redox reactions with more h+ (Geng et al., 2013). Active
oxygen appears when photogenerated electron-hole pairs form.
Radical O2- anions, hydroxyl radicals (•OH) and h+ in these
reactive oxygen species (ROSs) react with organic pollutants to
cause mineralization (Chen and Liu, 2017; Reshak, 2018).

Photocatalytic Reaction Influencing
Factors of 2D-GTC
Many factors affect the photocatalysis of titanium dioxide and
graphene composites, such as the mass ratio of graphene to
titanium dioxide, pH, and light intensity. During
photocatalysis, the primary photocatalytic material is titanium
dioxide, and the addition of GO increases the number of pores.
The degradation efficiency of pollutants initially increases but
decreases with an increasing weight percentage of GO (Zhou
et al., 2011; Wang et al., 2012b), because the addition of GO can
guide nucleation of TiO2. At the same time, carrier recombination
decreases and TiO2 crystals are evenly distributed. The
introduction of pores leads to an attraction between the
photocatalyst and the adsorbent. As the weight ratio of GO

increases, the relative levels of TiO2 decrease which lowers
carriers induced by photocatalysis as well as the photocatalytic
reaction sites of TiO2. Also, high levels of TiO2 crystals cause
agglomeration and reduce the number of catalytic sites. To
combat this, the catalyst can be used multiple times by
washing or high-temperature combustion (Wang et al., 2012a).
Alteration of pH levels also led to different degradation effects.
For some antibiotics, a higher pH initially increased the
degradation effect though it subsequently decreased. The
degradation effect maximized at a pH of 7 (for some antibiotics).

CONCLUSION

Graphene and TiO2 can form composites through a variety of
different composite methods, and a variety of pollutants, such as
dyes, antibiotics can be removed through photocatalytic reactions
by 2D-GTC. TiO2 is a good semiconductor with multiple catalytic
sites. Compounding GO and TiO2 produces a large number of
pores that provide space for adsorption so that liquid
contaminants can diffuse onto the interface, which further
increases degradation. Therefore, the addition of GO increases
the photocatalytic active sites of titanium dioxide. In addition to
the mass ratio of GO, the pH and the form of different materials
also play vital roles in the catalytic effect. 2D-GTC materials not
only treat water pollutants under ultraviolet light but also
perform photocatalytic reactions under sunlight.

Although a long time has passed since the discovery of 2D-
GTC materials as photocatalysts, and its charge carrier transport,
photo-generated electrons and photocatalytic properties are
remarkable. But in its normal form it can theoretically stretch
indefinitely across its width. In order to make the 2D-GTC
material a practical engineering material, there are still
challenges in improving the efficiency of photocatalysis and
the cost of catalyst preparation, so there is still a lot of work
to be done in the further.
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