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The automatic identification of the topology of power networks is important for the data-
driven and situation-aware operation of power grids. Traditional methods of topology
identification lack a data-tolerant mechanism, and the accuracy of their performance in
terms of identification is thus affected by the quality of data. Topology identification is
related to the link prediction problem. The graph neural network can be used to predict the
state of unlabeled nodes (lines) through training on features of labeled nodes (lines) with
fault tolerance. Inspired by the characteristics of the graph neural network, we applied it to
topology identification in this study. We propose a method to identify the topology of a
power network based on a knowledge graph and the graph neural network. Traditional
knowledge graphs can quickly mine possible connections between entities and generate
graph structure data, but in the case of errors or informational conflicts in the data, they
cannot accurately determine whether the relationships between the entities really exist. The
graph neural network can use data mining to determine whether a connection obtained
between entities is based on their eigenvalues, and has a fault tolerance mechanism to
adapt to errors and informational conflicts in the graph data, but needs the graph data as
database. The combination of the knowledge graph and the graph neural network can
compensate for the deficiency of the single knowledge graph method. We tested the
proposedmethod by using the IEEE 118-bus system and a provincial network system. The
results showed that our approach is feasible and highly fault tolerant. It can accurately
identify network topology even in the presence of conflicting and missing measurement-
related information.
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INTRODUCTION

With access to new energy sources continuously increasing and the scale of power grids growing, the
variability and complexity of the operation of power grids has increased drastically (Li et al., 2018). In
recent years, several blackouts in areas across the world have caused substantial economic losses and
led to adverse social impacts. The prevalent online security defense systems for power grids, which
focus on modeling, simulation, and fault prediction, have been severely challenged. With the rapid
development of power grid measurement systems and the increasing maturity of big data technology,
the state cognition and control of grid operations based on operational information on power grids
has emerged as the newmodel for their secure operation (Liu et al., 2018). In addition, the increasing
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uncertainties surrounding the use of renewable power has
provided unprecedented challenges for ensuring the secure
and economic operation of the current power systems (Li
et al., 2019).

Understanding the topological structure of a power grid and
laws of changes within it in a timely manner based on
measurements is the basis for realizing the data-driven
operation and control of power grids. Research on identifying
the topology of a power network can be divided into several
classes. Several studies have used the incidence matrix and the
adjacency matrix constructed by using the switching state of the
system to determine its connectivity and track topological
changes (Zhu et al., 2011; Ma et al., 2014; Lourenco et al.,
2015). Such methods are less tolerant of faults and conflicting
telemetry data, and their effect depends entirely on the quality of
remote signaling data. Other attempts have been made to identify
the network topology based on graph theory and object-oriented
technology (Song et al., 2005; Nian et al., 2008; Wang et al., 2009;
Li et al., 2011; Yansheng et al., 2017). Such approaches involve
using technology for the matrix-based identification of topology
(Wang et al., 2019). They can compensate for the lower
computational efficiency of the original process in terms of
timeliness by optimizing the method, but are still reliant on
remote signaling data for topology identification and have
poor fault tolerance. Recently, the topology identification
problem has been transformed into an optimal combination of
measurement data problem. (Liu et al., 2019). It is a new attempt
to identify network topology based entirely on data. The
feasibility of this approach has been verified. Still, this method
is not fault tolerant, and requires complete information
concerning the active power. The determined optimal
combination of data is directly affected when data are missing
or when significant errors occur. Furthermore, this algorithm
requires a large amount of redundant information as a supporting
condition. As Power Management Units are not fully operational,
owing to the massive investment required, the requisite
supplementary data are difficult to obtain. In summary,
current methods of topology identification depend on the
quality of data. We thus need a fault-tolerant method of
topology identification.

The use of knowledge graph technology has emerged in
recent years in several fields, and has attracted widespread
attention from both industry and academia (Liu and Wang,
2018). The knowledge graph is a mesh knowledge base of
entities with attributes linked through relationships. Its value
lies in organizing related information at minimal cost and
generating useful knowledge. The topology of a power network
is graph data reflecting node-to-node relationships. So the
knowledge graph is an excellent vehicle for describing
topological information (Park et al., 2019). However,
information conflicts may occur in the knowledge graph
due to errors or missing information. We thus need a data
mining method to identify relationships that cannot be
confirmed owing to the informational conflicts.

The graph neural network (GNN) is applicable mainly to non-
Euclidean spatial data (Park et al., 2019). It has been applied to a
variety of fields (Wu et al., 2018; Jing et al., 2020; Li et al., 2020;

Xie et al., 2020; Yu et al., 2020). Multiple types of graph neural
networks have been derived for different problems (Zhang et al.,
2019; Nikolentzos et al., 2020; Su et al., 2020; Wu et al., 2020).
Because the knowledge graph is a kind of graph data, a
combination of the GNN and the knowledge graph can be
used to solve all types of knowledge graph-related problems.
For example, some researchers have modeled the knowledge
graph with the GNN (Nathani et al., 2019). The GNN-based
approach can adequately capture information on complex and
hidden patterns in ternary neighborhoods. It can also achieve the
relational complementation of the knowledge graph, in contrast
with knowledge-based reasoning that uses individual ternary
relationships. A GNN-based entity alignment scheme has been
proposed (Cao et al., 2019), and it has been experimentally shown
to yield highly consistent data that improve the quality of the
knowledge graph on multiple datasets.

In the context of power network topology, a knowledge graph
can indicate relationships between entities in the network. The
graph neural network can serve as a technical tool for analyzing
graph data, mining, and reasoning for relationships among
entities in the knowledge graph. It also allows us to consider
missing information and determine the correctness of the data,
significantly improving the quality of the knowledge graph. Thus,
the characteristics of the knowledge graph and the graph neural
network are fully compatible with the requirements of topological
recognition.

This paper proposes a method of topological identification based
on the knowledge graph and the graph neural network. First, we set-
up an entity–relationship–entity and entity–attribute/attribute value
information triad based on remote signaling data, telemetry data,
and a database of component information to construct an
informational knowledge base. Second, based on the graph neural
network, we determine the relationships that cannot be established
owing to conflicting information. Finally, based on knowledge
inference, we generate the topology of the power network and
track changes in it. The results of tests show that the proposed
method is fault tolerant and can accurately determine the network
topology of a simulated network as well as a real power grid.

DEFINITION AND STRUCTURE OF
KNOWLEDGE GRAPH

Definition of Knowledge Graph
A knowledge graph is a structured semantic knowledge base used
to describe concepts and their interrelationships in the physical
world in symbolic form. The basic unit is the
“entity–relation–entity” triad, and the entity and its associated
attribute–value pairs are interconnected through relationships to
form a networked knowledge structure.

Based on the above definitions, we can draw the following
conclusion:

(1) Essentially, the knowledge graph is a semantic network that
reveals the relationships between entities.

(2) The research value of the knowledge graph lies in the fact that
it is a reticular knowledge base built based on data and
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information. It organizes the information into usable
knowledge at minimum cost.

(3) The applicative value of the knowledge graph is that it can
change the existing method of information retrieval. On the
one hand, retrieval is achieved by reasoning. On the other
hand, it can graphically display the structured knowledge
after classification.

Architecture of the Knowledge Graph
The architecture of the knowledge graph consists of a data layer
and a schema layer, as shown in Figure 1. The data layer is toward
the logical architecture of the knowledge graph and the schema
layer toward its technical architecture. The primary function of
the data layer is the extraction of data and information to generate
relationships inherent within the latter. The schema layer builds
on top of the data layer and is an essential part of processing and
analyzing data to generate knowledge, including such means as
information fusion and processing, and creating knowledge based
on inference.

METHODS OF CONSTRUCTING POWER
GRID TOPOLOGY-ORIENTED
KNOWLEDGE GRAPHS
The power information system records a large number of
structured or semi-structured data. These data are descriptions
of the measured attributes and results, and the determined entity
attributes. All these data provide the necessary information units to
construct knowledge graphs of the topology of the power network.

Methods of Entity–Property Construction
A large number of fields in databases recorded by the power
management information system are deconstructed. Themeasured
set of items of entity information O is thus obtained. It contains all
information on nodal entities and line entities, given as:

O � {Ni,Nj, Lij} (1)

where Ni and Nj are node information units and Lij is a line
information unit.

The information provided by each entity corresponds to its
entity attribute and attribute value. For example, an entity node
(Ni) section corresponds to the description node inject telemetry
(Kni) and node inject telemetry (Pni). Remember that an entity
node (Ni) has the following attributes:

vi � (Kni, Pni) (2)

The resulting set of properties corresponding to the entity is as
follows:

V � {vi} (3)

Entity O and attribute V correspond in a one-to-one manner.
The expression for entity–attribute Q is as follows:

Q � (O,V) (4)

Methods of Constructing Entity
Relationships
Relationships are key to the knowledge graph because they
require its use to solve a number of problems. In general, they
make it possible to further parse the entity correspondences in the
entity information set O, and to organize the entity–relationship
information. The expression for the relationship is given as:

Rni,lij � (Ni, Lij) (5)

where Ni represents node i, Lij represents the line ij directly
connected to node i, and Rni,lij is the value of the relationship
between them. 1 indicates that they are directly connected and 0
indicates that they are not.

Methods for Constructing Knowledge
Graph Triangles
In this paper, entity–relation–entity and entity–property–attribute
(value) are transformed into an integrated entity (attribute–attribute

FIGURE 1 | The architecture of the knowledge graph.
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value)–relation–entity (attribute–attribute value) triad to form a
knowledge base for generating topologies. The expression is given as:

G � (O,V ,R) (6)

where G denotes the set of ternary groups, O the set of
entities, and each object is unique. V denotes the set of
attributes, including the number of nodes and states of
line switches, the magnitude of node-injected power, the
first-end power of the line, and the line first-end power
difference. R denotes the set of relationships of direct
correlations between entities.

GRAPHICAL NEURAL NETWORK

Traditional neural networks have had great success in extracting
features from spatial Euclidean data, but are deficient in
processing non-Euclidean spatial data. In recent years,
researchers have learned from the ideas of convolutional
networks, cyclic networks, and deep autoencoders. They have
used this knowledge to design a neural network structure, called
the graph neural network, for processing graph data.

A graph is composed of many vertices and edges, usually
represented and stored using an adjacency matrix. The
spatial features in graph data have the following
characteristics:

(1) Node features: Each node has certain features.
(2) Structural features: Each node in the graph data has certain

structural features.

Thus, there is a connection between pairs of nodes. In general,
graph data should consider both node and structural information,
and a graph neural network should be able to automatically learn
both the characteristics of a node and node-to-node correlation-
related information.

GCNs are the first graph-based networks to apply the simple
convolution operation to image processing for graph data
processing. This paper explains the principles of graph

convolutional neural networks mainly from the perspective of
spatial construction.

A grid can be substituted with a graph g � (Ω,A), where Ω is
defined as a discrete set of nodesΩ ∈ RN×1, andW denotes the set
of edge weights W ∈ RN×N . A straightforward way to represent
edge weights on W is to set a threshold δ > 0. Nodes adjacent to
Node j can be represented as:

Ni � {i ∈ Ω : Wij � δ} (7)

As shown in Figure 2, we want to convolve node 6, and
adjacent to it are nodes 1 and 5 (including node 6 itself); that is
N[6]. Therefore, a convolution of node 6 can be expressed as
W1,6x1 +W5,6x5 +W6,6x6, and x denotes the features of every
node, and w denotes the weight of the convolution.

ov , as the convolution of the node v, can be expressed as:

ov � ∑
u ∈ N[v]

Wu,vxu (8)

The input node feature may be a vector with dimensions D. A
single convolution operation may contain multiple convolution
kernels with dimensions d. We convolve every dimension of the
input feature and sum it to obtain the convolution of node v. The
formula is as follows:

ov,j � ∑D
i�1

∑
u ∈ N[v]

wi,j,u,vxu,i, j � 1/d (9)

The basic idea of the GCN is to reduce the dimensionality of a
node’s high-latitude adjacency information in the graph to a low-
dimensional vector representation by aggregating feature-related
information from adjacent nodes. It can aggregate the global
information of the graph to represent features of the nodes. The
process of updating the feature-related information of the node is
shown in Figure 3.

The convolution operator can be defined as (Kipf andWelling,
2017):

FIGURE 2 | Schematic diagram of spatial convolution for node 6.
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hv � f⎛⎝ 1∣∣∣∣n(v)∣∣∣∣ ∑
u ∈ N[v]

WXu + b⎞⎠,∀v ∈ Ω (10)

where hv is the linearly transformed feature value of node ] after
aggregating features of neighboring nodes, u is the set of nodes
adjacent to ], n(v) is the number of nodes neighboring ],W is the
weight, and b is the bias. The formula for passing features through
multiple hidden layers is given as:

hk+1v � f⎛⎝ 1∣∣∣∣n(v)∣∣∣∣ ∑
u ∈ N[v]

Wkhku + bk⎞⎠,∀v ∈ Ω (11)

The matrix form of the above equation is as follows:

H(k+1) � σ(~D− 1
2~A~D

− 1
2H(k)W(k)) (12)

The adjacency matrix A does not contain information on the
nodes themselves. To solve this problem, given ~A � A + I, I is a
unit array. Define the degree matrix D, D ∈ RN×N , that is a
diagonal matrix characterizing the degree of connectivity of a
node to other nodes Dii � ∑Aij. Thus, the normalized
~D
− 1/2~A~D

− 1/2
is used as a medium to pass information in the

topological space to solve the diagonal problem so that the
training covers information on the nodes. H(k) ∈ RN×F is the
feature matrix after k-layer activation, H(0) � X, and W(k) is the
learnable parameter matrix of the kth layer.

In short, compared with the basic structure of a neural
network, the MLP, the feature matrix multiplied by the weight
matrixH � σ(XW), adds an adjacency matrix to the graph neural
network H � σ(AXW).

The core framework of a graph neural network consists of
two matrices: 1) the adjacency matrix A, A ∈ RN×N , where N is
the number of nodes, and 2) the feature matrix X, X ∈ RN×F ,
where N represents the number of nodes in the graph. F is the
number of dimensions of the feature of each node. Moreover,
the output matrix is Z, Z ∈ RN×C , and C represents the number
of convolutional kernels used to implement the classification.
The graph neural network is designed to maximally match the
input and the output, and continually train itself to classify the
input data. Figure 4 shows the flow of the graph neural
network.

PROPOSED METHOD FOR IDENTIFYING
POWER NETWORK TOPOLOGY
Constructing Overall Topology of Power
Grid
Through information extraction, elements of knowledge such as
entities, relations, and properties can be extracted from the
original corpus to obtain a series of basic factual expressions.

The relationship between entities can be extended
according to knowledge inference. For example, the node
Na in the entity information set O directly connects to line
Lab, and node Nb in the set is also directly connected to Lab.
The relationship can be extended to Na-Lab-Nb. Multiple
entity–relation unit elements can form a topology
containing all entity–relation information.

Identifying Power Network Topology
The above is not identical to knowledge. To obtain a structured
and networked knowledge system, it is necessary to carry out
knowledge processing and reasoning. Knowledge processing
and knowledge reasoning are the essential means and critical
parts of the construction of a knowledge graph. In practice,
remote signaling data may be mixed with incorrect information
owing to the possible existence of the blade gate relation.
Telemetry data may also be combined with errors, such that
the resulting data do not comply with the operating rules of the
power system. Ambiguity may thus persist within the
entity–relation–attribute triad, which is required for the most
critical step in topological identification based on the knowledge
graph. The authenticity of the entity–relation units is thus
verified through the data mining method of graph neural
networks.

The main problem in determining power network topology is
to identify the connectivity of the lines based on their properties
(values). In applying the graph neural network, we use the
relationship between entities in the knowledge graph (lines) as
“vertices” and the entities (nodes) as “edges.” In this way, the
connectivity of lines is directly generated by line training, which
helps to avoid the conventional approach of first determining the
nodes and then identifying connectivity. The follow chart of the
proposed method is shown in Figure 5.

The specific steps are as follows:

FIGURE 3 | Schematic diagram of node feature update based on graph convolutional neural network.
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Step 1. Extract the attributes and attribute values of edges in
the knowledge graph that contain the line input power Pij and the
line output power Pji, and the head switch statuses of the line Sij
and Sji to form a description of the characteristic matrix of the
line:. Pij or Pji is the measured power, and Sij and Sji are the
descriptions of the on and off states of the line: on is 1 and off is 0.

Step 2. Pji and Pij in xij are normalized to form x̂ij to ensure that
the eigenvalues x̂ij are in the interval [-1,1], such that all x̂ij are
aggregated into X, X ∈ RN×4, and N is the total number of lines.

Step 3. Define zij as the line category identifier, and make all
aggregates into Z, which contains all line categories for the graph
neural network training comparison.

Step 4. Extract all entity relations of the knowledge graph
G � (O,V ,R), that is, the node–line relationship, to form an
adjacency matrix A, with a line as the vertex and a node as the
edge, to describe the direct connection between lines. Aij

represents whether there is a common node between lines i and j.
Step 5. Set ITmax to the maximum number of iterations.

Substitute the adjacency matrix A and the feature matrix X
into the feature transfer formula, calculate Z ’.

����Z ’ − Z
���� as a

loss function, and modify the weight matrix continuously.
After iterative computation, use the weight matrix W of each
hidden layer, on behalf of the graph neural network after self-
training rules of decision, directly to determine line connectivity.

Step 6. After connectivity determination, update the adjacency
matrix A’. Finally, generate the topology by deducing the
correlation between the internal line and the line according to
depth search to analyze the generated topology and determine
whether isolated nodes and islands are in operation.

FIGURE 4 | Flowchart of graph neural network.

FIGURE 5 | The flowchart of the proposed method.

TABLE 1 | comparison of variables and parameters.

Node i Node j Line input
power/
MW

Line
output
power/
MW

Line head
switching
status

Line end
switching
status

8 30 0 0 0 0
48 49 0 0 0 0
17 18 0 0 1 1
21 22 −42.837 43.256 0 0
34 36 0 −30.162 1 1
76 77 −61.150 0 1 1
84 85 0 36.791 1 1
92 100 31.479 0 1 1
105 107 26.755 −26.347 0 1
114 115 1.358 −1.358 1 0
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EXPERIMENT AND RESULTS

Experimental Results on a Test Sample
The IEEE 118-node system containing 186 lines was used for our
experiment. The initial active power of the nodes was obtained by
the MATPOWER software simulation. We set-up two
disconnected lines: 8–30 and 48–49. The lines 17–18, 21–22,
34–36, 76–77, 84–85, 92–100, 105–107, and 114–115 contained
conflicting information. The remaining lines were normal.
Details of the information in the lines are shown in Table 1.
Algorithm 1 shows the overall training and testing processes.

The above sample was selected to demonstrate the
effectiveness of the proposed method. We followed the flow of
Algorithm 1 in calculating the sample data, and then used the
result of the judgment of this sample with the original features of
the line. The probability of categorization and the number of line
characteristics that determine the presence of conflicting
information and “off” lines are shown in Figure 6 and Table 2.

It is clear that only lines 8–30 and 48–49 had a high probability
of falling into category ⅲ in the above diagram. According to the
results of training of the graph neural network, these two lines
were judged to be disconnected, consistently with the original
perturbation.

According to the probability distribution, lines 27–115, 114–115,
68–116, 12, 117, 54–55, 80–81, 75–118, and 76–118 were all judged
to be connected but had conflicting information. The results were
consistent with the original settings. We updated the knowledge
graph based on the above results of identification. A comparison of
the results of topological identification is shown in Figure 7.

Experimental Results on the IEEE 118-Node
System
We used an IEEE 118-node system containing 186 lines. The
initial active power of the nodes was obtained by MATPOWER
software simulation. A 1% random error obeying a Gaussian

Algortihm 1 | Overall training and testing process
Input:
Graph G(V , ε); Input features {Xv ,∀v ∈ V}; randomly initialized network weight W; non-linearity σ; the maximum number of iterations ITmax; GCN structure;
Output:
Network model , the weight value W, Generate topology

1.Function:
2.Calculating the graph structure G;
3.Normalize input features;
4.Integrate features to get GCN input through G;
5.Integrate features to get corresponding labels.
6.for range of ITmax do
7.Calculate network through input;
8.Calculate loss through network output and labels;
9.Do backpropagation algorithm through optimizer, update network weight W
10.end

11.Calculate network output;
12.Do anti-normalization for the network output
13.generate topology;
14.Save network model;

FIGURE 6 | Histogram of probability of line determination for a disconnected line or missing information.
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distribution for active node power was mixed in to generate 1,000
training samples. For each sample, two lines were randomly
disconnected, and eight lines were made to randomly miss
some attribute values. We formed an information base for the
topology of the power grid according to the construction of the
knowledge graph, and organized the data and relationships in the
node, line feature matrix, and adjacency matrix. The feature
matrices of 900 training samples were labeled as follows: lines
in label category ⅰ represented connected lines, those in label
category ⅱ represented lines with conflicting information in the
feature matrix despite being related lines, and lines in label
category ⅲ represented disconnected lines. One hundred
samples were retained as unlabeled samples.

Seven hundred labeled samples were used as input to the graph
neural network for training and another 200 were used to
compare the ingested topology with the generated topology
through the rules learned from the graph neural network.

For each sample, the results of identification of line
connectivity could be organized into a 186 × 1 column vector,
and the number of dimensions of the matrix of results for 200
samples were 186 × 200. By marking different categories with
different colors, a map of the results of connectivity was obtained
for all samples. We statistically determined the determinations of
the remaining 199 samples. The results are shown in Figure 8.

In the figure above, the abscissa represents the number of test
samples and the ordinate the line number. The blue blocks
represent lines judged to belong to category ⅱ and the red
blocks represent those judged to be in category ⅲ. Each
sample contained two category ⅲ lines and eight category ⅱ
lines. Compared with the initial topology, the graph neural
network method accurately identified the disconnected lines.

By using the rules learned from the graph neural networks, we
identified the topologies of the remaining 100 unlabeled samples.
The results are shown in Figure 9.

TABLE 2 | Probability distribution of the presence of conflicting information and disconnected lines in various classifications.

Node i Node j Category ⅰ probability Category ⅱ probability Category ⅲ probability

8 30 0.0051 0.0163 0.9786
48 49 0.0051 0.0163 0.9786
17 18 0.0012 0.8854 0.1134
21 22 0.0009 0.9987 0.0004
34 36 0.0001 0.9996 0.0004
76 77 0.0003 0.9969 0.0028
84 85 0.0055 0.9772 0.0172
92 100 0.0016 0.9963 0.0021
105 107 0.0019 0.9979 0.0002
114 115 0.0014 0.9984 0.0002

The number in bold is the value with the largest probability distribution for each line. It indicates that the lines are grouped into the corresponding categories.

FIGURE 7 | Comparison of results of topological identification.
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As shown in the figure above, we were able to identify the
operating status of each line. Each unlabeled sample contained
two Category ⅲ lines and eight Category ⅱ lines, which is
consistent with the original assumption.

For the samples remaining as labels, the right decision is made
to compare the decision results with their original feature
quantities, and the results are consistent.

To further verify the proposed method, we selected the above
100 unlabeled samples as test samples. The method used for
comparison with the proposed one was a topology identification
method based only on knowledge graphs. Both methods are
applied to the same data sample.

Each sample contained 184 connected lines and two
disconnected lines. Eight of the connected lines were partially

missing information. As is shown in Figure 8, the proposed
method accurately identified the line connections and determined
the classification of each line. We thus determined that there were
18,400 connected lines and 200 disconnected lines in the 100 test
samples; 800 of the connected lines had missing partial information,
which was consistent with the original settings. The comparison of
the results with those of themethod for topology identification based
only on knowledge mapping is shown in Figure 10.

The method for topology identification based only on
knowledge mapping accurately identified disconnected lines,
but its accuracy of identifying connected lines was 95.65%.
This is mainly because knowledge-based topology
identification was less fault tolerant than the proposed method
and struggled to deal with missing information.

FIGURE 8 | Scatter plot of results of identification of test samples.

FIGURE 9 | Scatter plot of results of identification of unlabeled samples.
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In summary, the proposed method for topology identification
based on a combination of the knowledge graph and the graph
neural network can determine the state of line connectivity, identify
topological changes, and has strong fault tolerance. Even in the case
of conflicting information, it can identify the topology of the power
network, and is thus superior to the traditional method of
recognition based only on the knowledge graph.

Experimental Results on a Provincial
Network
The proposed method was applied to a provincial network
consisting of 132 nodes and 181 lines. The data were recorded at
intervals of 1 min. We combined the knowledge graphs and the
graph neural networks to identify the topology of the power network.

Historical operational data provided a sufficient number of
samples to train the graph neural network, thus enabling it to
make more accurate decisions. Nevertheless, with increasing
numbers of training samples, the number of dimensions of the

FIGURE 10 | Results of topological identification of the two methods.

FIGURE 11 | Network structure after topology identification.

FIGURE 12 | Changes in the number of lines in operation on the isolated networks in the time series.
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adjacency matrix A increased from the original N × N to the
original ~N × ~N , ~N � Np(t + 1). Considering that the training
time increased with the amount of input data, we trained the
samples with a window length of 10 min and a step length of
10 min, used the number of line features in period t as input, and
determined the network topology in period t+1 based on the
results of training.

Based on one-month data from the power grid, we found that the
provincial network comprised two orphaned network topologies and
several isolated nodes. The details are shown in Figure 11.

As shown in Figure 6, the full-time network consisted of 13
remote nodes and two isolated networks, with a total of 119 nodes
in continuous operation and 153–155 lines involved. The
structural information of the network is shown in Table 3.

We verified that 13 of the isolated nodes were planned nodes that
had not yet been put into use in the givenmonth, which is consistent
with the results of topology identification. Isolated network 1
contained 75 nodes with 94–95 lines in operation, of which lines
28–46, 42–52, and 65–67 had pitching and cutting variations. The
remaining lines in isolated network 1 were in stable operation.
Isolated network 2 contained 44 nodes and 59–60 lines in operation,
of which lines 91–96 and 118–125 had pitching and cutting
variations. The number of lines in operation in chronological
order in two isolated networks are shown in Figure 12.

The results show that the proposed method is feasible. It can
accurately identify the state of line switching, generate network
topology, update the knowledge graph, and improve its quality. It
also provides a good basis for analyzing the islanding operation,
demodulation control, and the operating state and control of
power grids.

CONCLUSION

The main contribution of this paper is the proposal of a method
based on a knowledge graph and a graph neural network. This
method transforms the traditional problem of topology
identification into one of inferring the state of line
connections based on graphical data for topology identification.

The proposed method is distinct from methods that used
knowledge graphs only for topology identification because it
contains an additional process for inferring conflicting
information. After obtaining the overall topology covering all
entities in the network, we performed knowledge inference on
contradictory information based on graph neural networks. We
then determined the line connectivity and updated the
entity–relation information in the graph. In this way, we
compensated for the deficiency of topological identification based
only on the knowledge graph while making substantial gains in
identifying topology and tracking changes in it.

We experimentally demonstrated that our proposed method is
fault tolerant, unlike traditional methods, and correctly identifies
line connectivity even in the case of informational conflicts.

We tested the proposed approach on an operational power grid to
show that it can identify network topology, isolated island operations
in the network, and can track changes in topology. This can yield
valuable information for analyzing power system operations.T
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The graph neural network expands the training samples using
historical data. The dimensionality of the adjacency matrix
increases exponentially, which inevitably reduces training
efficiency. Optimizing the graph neural network to improve
efficiency should be investigated in future work.
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