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Lithium–sulfur battery hasreceived widespread attention because of its high energy
density, low cost, environmental friendliness, and nontoxicity. However, the insulating
properties of elemental sulfur, huge volume changes, and dissolution of polysulfides in
electrolytes that result in the shuttle effect, low sulfur utilization, and low rate performance
seriously hinder the commercialization of lithium–sulfur batteries. In this work, a composite
material of nitrogen-doped multiwalled carbon nanotubes and V2O5 was designed and
fabricated to serve as the positive electrode of lithium–sulfur battery via the hydrothermal
method. The positive electrode of the V2O5@N-CNTs composite material could reach an
initial discharge specific capacity of 1,453mAh g−1at a rate of 0.1C. Moreover, the
composite material could maintain a discharge ratio of 538 mAh g−1 at a rate of 0.5C
even after 200 charge and discharge cycles. After 400 cycles, the composite had a specific
discharge capacity of 439 mAh g−1 at a rate of 1.0C. The excellent electrochemical
performance of the V2O5@N-CNT/S composite cathode material was due to the fact
that V2O5 contains oxygen ions and has a strong polarized surface. Furthermore, nitrogen
doping changed the hybrid structure of carbon atoms and provided additional active sites,
thereby improving the conductivity of the material itself and effectively inhibiting the
dissolution and diffusion of polysulfides.

Keywords: lithium–sulfur battery, multiwalled carbon nanotubes, V2O5, nitrogen doping, cycle performance

INTRODUCTION

Lithium-ion batteries are widely used in energy storage and portable electronic device applications
(Goodenough and Park, 2013; Wu et al., 2018; Yang et al., 2018a; Yang et al., 2018b; Zhang et al.,
2018; Leng et al., 2019; Ye et al., 2019). However, the application of lithium-ion batteries in electric
vehicles is limited because of their low theoretical energy density. Lithium–sulfur batteries have
received increased attention because of their high energy density, low cost, environmental
friendliness, and nontoxicity (Yuan et al., 2016; Wu et al., 2019a; Gu et al., 2020; Zhang et al.,
2020). Nevertheless, the insulation of elemental sulfur, huge volume changes, and dissolution of
polysulfides in electrolytesthat result in the shuttle effect, low sulfur utilization, and low rate
performance seriously hinder the commercialization of lithium–sulfur batteries (Peng et al., 2017;
Zhang et al., 2017; He et al., 2018; Gu and Lai, 2019; Zhu et al., 2019).

The electrochemical performance of lithium–sulfur batteries can be improved to solve polysulfide
dissolution and diffusion. Various cathode materials, such as carbon nanotubes (CNTs), conductive
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polymers, and metal compounds, are widely used in
lithium–sulfur batteries (Chen et al., 2017; Guo et al., 2017;
Zeng et al., 2017; Gu et al., 2019; Wu et al., 2019b). Carbon
materials, carbon nanofibers, porous carbon, and grapheneare
used and applied as sulfur host materials because of their large
specific surface area, high conductivity, and suitable pore size
(Balach et al., 2015; Kong et al., 2018; Yang et al., 2018c; Zhao
et al., 2018; Yang et al., 2019). Nevertheless, the van der Waals
interaction between carbon materials and polysulfides is a weak
force and cannot effectively inhibit the shuttle effect. Polar
materials can effectively increase polysulfide adsorption via
strong chemical bonds, thereby reducing the dissolution and
shuttle of polysulfides. Numerous studies on various polar
materials, such as TiO2, MnO2, SiO2, and V2O5 have been
conducted (Liu et al., 2017; Xue et al., 2017; Lin et al., 2018;
Tang et al., 2018; An et al., 2019; Tong et al., 2019; Wang et al.,
2019; Qin et al., 2020). Moreover, Yuan et al. found that transition
metal phosphides can not only capture soluble polysulfides, but
also effectively catalyze the decomposition of Li2S, which improve
the utilization of active materials and cycle performance (Yuan
et al., 2017). However, the conductivity of polar materials is
generally lower than that of nanocarbon host materials, resulting
in lower sulfur utilization and rate performance. Therefore,
highly conductive and strongly adsorbing polar compound
host materials combined with nanocarbon must be developed
to increase electrical conductivity, improve electrolyte contact,
and provide more effective chemical and physical constraints on
polysulfides, thus improving battery performance (Hong et al.,
2018; Li et al., 2018).

Multiwalled CNTs (MWCNTs) are extensively utilized in
energy storage materials because of their high structural
stability and good electronic conductivity. Razzaq et al.
(2019) prepared thin-film composites with CNTs as the
main chain via electrospinning; these composites exhibited
excellent cycle performance on the positive electrode of
lithium–sulfur batteries. Other researchers adopted solid-
state growth strategies for preparing highly nitrogen-doped
graphene and carbon tube composite cathode materials with a
3D structure; Yuan et al. synthesized nitrogen-doped
nanoparticles with a coordinated nitrogen structure and a
controllable concentration. Pyridine nitrogen-doped carbon
not only shows the strongest lithium polysulfide trapping
ability, but also can accelerate the conversion of Li2S. The
cathode based on pyridine nitrogen-doped carbon has higher
capacity and better cycle stability (Yuan et al., 2018). Their
studies proved that the introduction of nitrogen atoms can
change the hybrid structure of carbon atoms to increase the
conductivity of the composite material and the adsorption of
polysulfides (Ding et al., 2016; Chen et al., 2018; Yin et al.,
2018; Fan et al., 2019; Fang et al., 2019) . Several works
fabricated CNTs whose surfaces are coated with V2O5 of
different thicknesses; their bonding point is located on the
surface of the CNTs. Coating with V2O5 effectively inhibits the
shuttle of polysulfides and improves sulfurutilization (Carter
et al., 2017). Given that MWCNTs have high conductivity and
polar metal oxides have excellent adsorption and catalytic
abilities, their interwoven conductive network structure can

quickly transfer electrons, and the 3D network structure that
they form provide greater adsorption for sulfur point (Wang
et al., 2016).

In this study, a combination of a polar metal oxide, namely,
V2O5, and nitrogen-doped MWCNTs was used as the sulfur host
material. A nitrogen-doped 3D conductive network structure,
namely, MWCNT/V2O5/S composite cathode, was prepared via
simple melting and hydrothermal synthesis methods. The
preparation process is uncomplicated, and the conductive
network structure of MWCNTs can absorb V2O5

nanoparticles well.

EXPERIMENT

Material Preparation
Preparation of nitrogen-doped V2O5/MWCNTs: NH3VO4

powder was calcined in air at 350°C for 2 h to obtain V2O5

powder. Carbon tubes and urea were uniformlymixed at a ratio of
1:10 and then placed onto the lining of a 100 ml reactor. The
mixture was hydrothermally reacted at 200°C for 12 h. The
mixture was repeatedly centrifuged with deionized water and
absolute ethanol to obtain nitrogen-doped MWCNTs
(N-MWCNTs). Subsequently, 0.2 g of the V2O5 powder was
added to a suspension containing 0.3 g of N-MWCNTs, and
then it was ultrasonicated for 30 min. The sonicated aqueous
solution was vacuum-filtered with deionized water, dried in an
oven at 60°C for 12 h, and completely and uniformly ground to
obtain the composite material, namely, V2O5/N-MWCNT.

Preparation of V2O5/MWCNTs: V2O5/MWCNTs and sulfur
were placed in an agate mortar at a ratio of 3:7 and evenly ground.
The ground material was put into a glove box to remove oxygen,
and then it was put onto the lining of a 25 ml reactor. Finally, it
was melted in an oven at 155°C for 12 h to obtain a composite
material loaded with sulfur. V2O5/MWCNT/S and MWCNT/S
composite materials doped with nitrogen were obtained via the
same method and at the same ratio.

Material Characterization and Analysis
The micro morphologies of the composite materials were
examined via scanning electron microscopy (SEM,
HITACHIS-4800). Excitation voltage was set to 5 kV, and
relative pressure (P/P0) was set to 0.05–0.2. The crystal
structures of the materials were analyzed via X-ray diffraction
(XRD, MiniFlex-600) by using Cu–Ka as the radiation source at a
scanning rate of 20 min−1, cavity voltage of 40 kV, and tube
current of 30 mA. The elemental compositions of the composite
materialswere measured via X-ray energy spectrometry (EDS, S-
00123). The electronic binding energies of the V2O5/
N-MWCNT/S composite materials were measured via X-ray
photoelectron spectroscopy (XPS, Escalab-250XI) to determine
element valence distributions and bonding modes. Raman
spectra under argon ion laser excitation were characterized
using a Thermo Fisher-DXR system. The sulfur contents of
the composite materials were detected via TGA analysis
within the temperature range of 400–700°C at a heating rate
of 20°C/min.

Frontiers in Energy Research | www.frontiersin.org February 2021 | Volume 8 | Article 6155582

Liu et al. V2O5@N-CNT/S Composite for Lithium–Sulfur Battery

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles


Electrochemical Performance Test
Theactive materials, namely, Super P (conductive agent) and
polyvinylidene fluoride (battery-grade binder),were uniformly
mixed in N-methylpyrrolidone ata mass ratio of 7:2:1. The
active materials were uniformly coated onto an aluminum
foil via the doctor blade coating technology, and sulfur
loading was 1.1 mg cm−2. Pole pieces were dried in an oven
at 60°C for 12 h, cut into positive pole pieces with a diameter of
16 mm, and then assembled into a button cell (CR 2025). The
contents of O2 and H2O in the glove box were strictly controlled
to less than 0.1 ppm, and the prepared electrode sheet was used
as the positive electrode. A Celgard 2,400 polypropylene
microporous membrane was used. A metal lithium sheet
served as the negative electrode. The electrolyte type was LS-
002 type. The main components were 1,3-dioxolane and 1,2-
dimethoxyethane (at a volume ratio of 1:1) containing a 1 wt%
LiNO3 additive. The top–down assembly sequence was
completed in the order of positive electrode shell, positive
electrode sheet, electrolyte, separator, metal lithium sheet,
foamed nickel, and negative electrode shell. The assembled
battery was left to stand overnight for 12 h, and a BTS
battery test system (Neware BTS 7.0) was used for the
relevant electrochemical performance tests at a constant
temperature of 25°C. The ratio of electrolyte to sulfur is
20 µl mg−1.

RESULTS AND DISCUSSION

The MWCNTs consisted of numerous closely intertwined
CNTs that formed a 3D conductive network structure
(Figures 1A,B). The diameter of the carbon tubes was about
120 nm. This 3D network structure could tightly wrap the
sulfur particles, and the internal 3D network space structure
could hold large amounts of the active substances. Thus, these
structures effectively alleviated the problem of sulfur volume
expansion. The length of the MWCNTs could be extended
from tens to hundreds of nanometers (Figure 1C), thus
effectively improving the overall conductivity of the
composite materials. The V2O5 particles loaded onto the
surface of the MWCNTs not only promoted the rapid
transmission of lithium ions but also exerted a certain
catalytic effect, thereby accelerating the conversion process
of the intermediate product lithium polysulfide.
Simultaneously, the higher structural stability of the 3D
network constructed by the MWCNTs effectively inhibited
polysulfide dissolution and diffusion. The V2O5/MWCNT/S
composite material after nitrogen doping is shown in
Figure 1D. The morphology of the composite materials
after nitrogen doping did not evidently change compared
with that before nitrogen doping. Therefore, the composite
materials were further analyzed using an elemental energy
spectrometer. The EDS mapping of the samples corresponding
to C, N, O, V, and S elements is shown in Figure 2. The overall

FIGURE 1 | (A,B) SEM images of MWCNTs at different magnifications.
(C) SEM images of the V2O5/MWCNT composite material. (D) SEM images of
the nitrogen-doped V2O5/MWCNT composite material.
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FIGURE 2 | SEM images of the nitrogen-doped V2O5/MWCNT/S composite materials, and EDS spectrum of the nitrogen-doped V2O5/S composite material.

FIGURE 3 | (A) XRD patterns of the V2O5/MWCNT/S composite
material, V2O5, and sulfur samples, and (B) Raman spectra of the V2O5/
MWCNT and V2O5/N-MWCNT composite materials.

FIGURE 4 | (A) TG curves for the MWCNT/S, V2O5/MWCNT/S, and
V2O5/N-MWCNT/S composite materials. (B) N2 adsorption-desorption
isotherm of V2O5@N-MWCNTs.
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elemental distribution was relatively uniform. The presence of
nitrogen could also be clearly observed, indicating that
nitrogen was successfully doped into the V2O5/MWCNT/S
samples via the hydrothermal method. Although the overall
nitrogen content was relatively small, its distribution was
relatively uniform. The introduction of nitrogen played a
certain role in increasing the conductivity and adsorption of
the composite materials.

The diffraction patterns of S, V2O5, and V2O5/MWCNT/S
samples are depicted in Figure 3A, which shows that the
composite sample retained the diffraction characteristic
peaks of V2O5 that corresponded to the (001), (110), (400),
and (310) crystal planes. At 23.1°, the strongest characteristic

peak of sulfur was still maintained in the composite materials,
and this peak corresponded to the characteristic peak of the
typical S8 bond structure. The Raman spectra of the V2O5/
MWCNT and V2O5/N-MWCNT composite materials are
shown in Figure 3B. The D and G peaks of graphite could
be observed at 1,350 and 1,590 cm−1 (Hou et al., 2016). Peak D
indicated the presence of crystal defects in carbon atoms,
whereas peak G denoted sp3 hybridization. The values of
the V2O5/MWCNT and V2O5/N-MWCNT composite
materials were 1.00 and 1.02, respectively. Results
demonstrated that the nitrogen-doped MWCNTs had a
greater degree of defects and were more conducive to
electron conduction, thus increasing the cycle efficiency of

FIGURE 5 | (A) XPS full scan spectra of V2O5/N-MWCNT/S. (B) High-resolution N 1 s, (C) C 1 s, (D) V2p, and (E) S2p XPS spectra of the V2O5/N-MWCNT/S
composite material.
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the lithium–sulfur battery (Hou et al., 2016; Ma et al., 2017).
The thermogravimetric diagrams of the samples are shown in
Figure 4. The weight loss of the MWCNT/S, V2O5/MWCNT/S,
and V2O5/N-MWCNT/S composite materials was 68.3, 68.2,
and 68.5%, respectively, indicating that the MWCNTs
supported a higher sulfur content while providing more
active sites.

The chemical composition of the structure of the V2O5/
N-MWCNT/S composite material was analyzed via XPS.
Figure 5A shows the C, N, O, V, and other elements in the
V2O5/N-MWCNT/Scomposite material. N peak could be
clearly observed, indicating that nitrogen was successfully
doped into the CNTs. The peak positions of V2p and V2s

corresponded to about 517 and 630 eV, respectively. A high-
resolution map of nitrogen in the material is displayed in
Figure 5B. N 1S was fitted via the Gaussian peak splitting
method. The four peaks clearly corresponded to pyridine N
(398.5 eV), pyrrole N (399.6 eV), oxide N (400.9 eV), and
graphite N (402.1 eV). Pyridine N and pyrrole N from urea
can introduce more defects, thereby changing the electronic
distribution state of charge, providing additional active
adsorption sites for polysulfides, and effectively improving
the cycle stability of lithium–sulfur batteries (Xiao et al.,
2017; Jiang et al., 2018). The two peaks at 284.6 and 286.6 eV
were C–C/C�C and C–O, respectively (Figure 5C) (Zheng et al.,
2017). The XPS peak position of V2p3/2 was located at 517.1 eV,

FIGURE 6 | (A–C) Cycle performance of the V2O5/N-MWCNT/S, V2O5/MWCNT/S, and MWCNT/S composite materials at 0.2, 0.5, and 1 C (D–F) Cycle
performance of the MWCNT/S, V2O5/MWCNT/S, and V2O5/N-MWCNT/S composite materials at 0.1 Cwithin 1.5–3.0 V from the 1st to the 200th discharge and charge
curves.
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corresponding to the V5+ valence state of the V2O5 compound
(Figure 5D). This result proved that the valence of V2O5 did not
change. The binding energies of 163.9 and 165.1 eV
corresponded to the S2p1/2 and S2p3/2 orbitals, respectively
(Figure 5E), consistent with the position of the binding
energy peak of elemental sulfur reported in the literature
(Wang et al., 2014; Li et al., 2016).

Whenthe V2O5@MWCNT/S composite material was charged
and discharged at a rate of 0.2°C, the first discharge specific
capacity could reach 1,257 mAh g−1 (Figure 6A). Even after 200
cycles, the discharge specific capacity was still 518 mAh g−1.
Therefore, the cycle performance of the V2O5@MWCNTs/S
composite material was better than that of the MWCNT/S
composite material. Similarly, when charging and discharging
at a rate of 0.5C, the specific capacity of the nitrogen-doped V2O5/
MWCNT/S composite material could reach 538 mAh g−1 even
after 200 cycles, and its overall cycle performance was also better
than that of the V2O5/MWCNT/S (465 mAh g−1) and MWCNT/
S composite materials (395 mAh g−1) (Figure 6B). In terms of
rate performance, the overall performance of the V2O5/
N-MWCNT/S composite material was also better than that of
the MWCNT/S composite material (Figure 6C). The excellent
rate performance of the V2O5/N-MWCNT/S composite material
was due to the 3D conductive network system constructed by
V2O5 and MWCNTs. Nitrogen doping effectively improved the
conductivity of carbon and its chemical adsorption capacity for
lithium polysulfide. Moreover, V2O5 promoted the rapid transfer
of electrons in the intermediate polysulfide. The
charge–discharge cycle curves of different samples at a rate of
0.1C are exhibited in Figures 6D–F. The two obvious discharge
platforms at 2.1 and 2.3 V were clearly similar to the multistep
conversion process of sulfur. The charge–discharge platform at
2.3 V was relatively stable, transforming sulfur into long-chain
polysulfides; at 2.1 V, the other stable segment belonged to short-
chain polysulfides that further transformed into Li2S2/Li2S. The
change in charge platform was actually the transition from Li2S2/
Li2S to Li2S8/S8. Furthermore, the number of cycles increased, and
the potential difference between the charge and discharge curves
gradually increased. The polarization potential between the
charge and discharge curves of the V2O5/MWCNT/S
composite material after nitrogen doping was considerably
smaller than that of the MWCNT/S and V2O5/MWCNT/S
composite materials. This result also demonstrated that the
positive electrode of the nitrogen-doped V2O5/MWCNT/S
composite material had better cycle stability and played a
certain role in inhibiting the shuttle effect of polysulfides.

After 400 charge and discharge cycles at a rate of 1C, the
discharge specific capacity was 439 mAh g−1 (Figure 7A). The
nitrogen-doped V2O5/MWCNT/S composite material
maintained an excellent cycle performance. The charge and
discharge performance curves of the battery at different rates
are illustrated in Figure 7B. As current density increased, the
overall discharge specific capacity of the battery gradually
decreased, and the polarization phenomenon between the
charge and discharge curves became increasingly serious.
Nevertheless, the lithium–sulfur battery still maintained a

FIGURE 7 | (A) Long cycle performance of the V2O5/N-MWCNT/S
composite material at 1 C. (B) Initial charge and discharge curves of the V2O5/
N-MWCNT/S composite material. (C) CV curves of the V2O5/N-MWCNT/S,
V2O5/MWCNT/S, and MWCNT/S composite materials. (D) EIS spectra
of the V2O5/N-MWCNT/S, V2O5/MWCNT/S, and MWCNT/S composite
materials.
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typical charging and discharging platform overall. The cyclic
voltammetry characteristic curves of the MWCNT/S and
V2O5/N-MWCNT/S composite materials are depicted in
Figure 7C, which shows one oxidation peak and two
reduction peaks. The reduction peaks at 2.3 and 2.0 V
corresponded to the conversion of S8 to Li2SX (4 ≤ x ≤ 8) and
the conversion of Li2SX (4 ≤ x ≤ 8) to Li2S2/Li2S, respectively. The
CV curve also had an oxidation peak at 2.5 V, which
corresponded to the conversion reaction of Li2S2/Li2S to Li2SX
(4 ≤ x ≤ 8) and S8. The oxidation peak potential of the V2O5/
MWCNT/S composite material was lower and its reduction peak
potential was higher than that of the MWCNT/S composite
material. This observation also indicated that the V2O5/
MWCNT/S composite material had a lower oxidation and a
higher reduction potential than the other composite materials.
In addition, the polar metal oxide (V2O5) accelerated the kinetic
conversion process, and the synergy of V2O5 and MWCNTs also
played a certain role in improving the cycle stability of the
lithium–sulfur battery. After the Z-view software was fitted,
the charge transfer resistance of the nitrogen-doped V2O5/
MWCNT/S became smaller after the cycle, also indicating that
the charge transfer ability of the composite sample was stronger
(Figure 7D). Table 1 is demonstrated according to the different
materials of Li-S batteries performance.

CONCLUSION

In this work, MWCNTs were doped with nitrogen via the
hydrothermal reduction method. V2O5 nanoparticles were
attached onto the surface of the MWCNTs and combined
with sulfur (i.e., MWCNT/S) to prepare battery cathode
materials. The 3D conductive network structure constructed
by the MWCNTs accelerated electron transfer. The polar metal
oxide, i.e., V2O5, had greater chemical adsorption and catalytic
abilities that allowed it to accelerate the entire kinetic reaction
process. The hybrid structure of carbon atoms changed,
polysulfide adsorption improved, and the dissolution and
diffusion of polysulfides were effectively inhibited by using
the nitrogen source provided by urea to introduce more
defects. Under the synergistic effects of V2O5 and MWCNTs,

the overall electrochemical performance of the composite
cathode materials was effectively enhanced. The initial
discharge specific capacity could reach 1,453 mAh g−1 at a
rate of 0.1C, and a high discharge specific capacity of
538 mAh g−1 was maintained even after 200 charge and
discharge cycles at a rate of 0.5C. The capacity retention rate
was 60%. At a rate of 1.0C, the composite material still had a
specific discharge capacity of 492 mAh g−1 even after 400 charge
and discharge cycles. The excellent cycle performance of the
composite material was mainly due to the effective binding of
V2O5 to polysulfides that reduced the further dissolution of the
active substances. The improvement in the rate performance of
the V2O5/N-MWCNT composite material was due to the stable
and efficient 3D conductive network system built by the
nitrogen-doped MWCNTs. This structure provided
numerous active adsorption sites for sulfur and effectively
improved the utilization of the active materials. The
conductive 3D network structure that formed exhibited good
electrochemical performance. This result offers a promising
prospect for developing lithium–sulfur batteries.
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