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Compared to liquid electrolytes, lithium solid-state electrolytes have received increased
attention in the field of all-solid-state lithium ion batteries due to safety requirements and
higher energy density. However, solid-state electrolytes face many challenges, including
lower ionic conductivity, complex interfaces, and unstable physical or electrochemical
properties. One of the most effective strategies is to find a new type of lithium solid-state
electrolyte with improved properties. Traditional trial and error methods require resources
and time to verify the new solid-state electrolytes. Recently, new lithium solid-state
electrolytes were predicted through machine learning (ML), which has proved to be an
efficient and reliable method for screening new functional materials. This paper reviews the
lithium solid-state electrolytes that have been discovered based on ML algorithms. The
selection and preprocessing of datasets in ML technology are initially discussed before
describing the latest developments in screening lithium solid-state electrolytes through
different ML algorithms in detail. Lastly, the stability of candidate solid-state electrolytes
and the challenges of discovering new lithium solid-state electrolytes through ML are
highlighted.

Keywords: lithium ion battery, solid-state electrolyte, machine learning, simulating calculation, material

INTRODUCTION

Air pollution control has become an increasingly severe problem in recent years. Some
countries aim to ban new gasoline and diesel-powered vehicles by 2030, and governments
have implemented policies that develop renewable energy. However, most renewable energy
sources, such as wind and solar power, are intermittent energy sources that use rechargeable
batteries for storage to enable daily usage. Rechargeable batteries, especially lithium ion
batteries (LIBs) with an organic liquid electrolyte, are used in portable consumer
electronics and electric vehicles owing to their high energy density and long life span. Even
though the energy density of the LIBs has improved tremendously over recent decades, it still
needs to be further enhanced to meet the high requirements of the consumers. Moreover, safety
is another vital issue that has impeded the application of these types of batteries after LIB safety
accidents caused by organic liquid electrolytes (Qu et al., 2015). An efficient solution to this
problem is to replace flammable organic electrolytes with solid-state electrolytes, which could
significantly reduce the risk of leaks, evaporation, and decomposition and ensure higher safety.
Solid-state lithium ion batteries (ASSLIB) are being explored in next-generation LIBs. This
research faces the challenge of creating stable solid-state electrolytes with high ionic
conductivity (Borodin et al., 2015).
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Ideal solid-state electrolytes should ideally have the followingmerits:
high ionic conductivity, a low migration energy barrier, a wide
electrochemical window, strong electrochemical stability, and high
mechanical rigidity to suppress dendrite growth on the anode. In
the past few years, Li10GeP2S12 (Kamaya et al., 2011), Li7P3S11 (Yamane
et al., 2007), and some solid polymer electrolytes were widely
investigated. However, the lithium solid-state electrolytes reported
to-date do not meet these commercial requirements and properties
(Do et al., 2013; Sun et al., 2014; Zhang et al., 2014; Chai et al., 2017;
Yang et al., 2017) and new solid-state electrolytes with better
performance are required. Traditional searching tactics involve trial-
and-error methods that require a lot of time to fabricate and verify the
new solid-state electrolytes, with slow progress and low efficiency.

The Materials Genome Initiative (founded in 2011) has
successfully used a machine learning (ML) algorithm to screen
new solid-state electrolytes (Holdren, 2011; Sendek et al., 2019;
Hatakeyama-Sato et al., 2018; Xie and Grossman, 2018; Cubuk
et al., 2019; Zhang et al., 2019). ML is a statistical method involving
different algorithm structures that can learn the key information from
available data and extract useful characteristics. The computation speed
of ML algorithms is much faster than density functional theory (DFT)
(Li et al., 2017; Sendek et al., 2018). Conventionalmethods (e.g., thefirst
principle-based DFT) may take over four weeks to predict, while ML
only takes 1 s (Saal et al., 2013). ML technology is usually applied in
forecasting attributes, aiming to reflect molecular materials and
targeted attributes. Figure 1A shows the typical workflow used in
screening lithium solid-state electrolytes through ML algorithms. The
whole screening process begins by selecting suitable descriptors
(datasets) divided into three parts: training data, testing data, and
validating data. They then use different ML algorithms, including
supervised, semi-supervised, and unsupervised learning, to calculate

andpredict potential candidates. The ionic conductivity of candidates is
further verified by the DFT or Vienna Ab-initio Simulation Package
(VASP) simulation.

Different ML algorithms with advantages could lead to varying
results in screening lithium solid-state electrolytes. Generally,
supervised learning (e.g., support vector machine, neural network,
decision tree, regression method) needs huge data with an effective
label to support the calculation andmore accurate data. Unsupervised
learning (e.g., clustering) could calculate the results by itself without
labeling. Semi-supervised learning inherits the previous frame and is
trained in many datasets. There is little cost involved in training new
data, resulting in increasing calculation speed. This review offers a
systematic comparison and discussion of the different algorithms
used to boost discovery and further advance this new technology in
screening the solid-state electrolytes.

The review first illustrates how others address and prepare with
datasets, then introduces and discusses the latest developments in
screening lithium solid-state electrolytes through different ML
algorithms including Neural Network (NN), Support Vector
Machine (SVM), Regression, and Clustering in detail. The review
finally verifies the stability of some ML predicted materials and
highlights the limitations and current challenges faced by ML-based
screening for solid-state materials.

SCREENING ELECTROLYTES THROUGH
DIVERSE MACHINE LEARNING

Dataset and Preprocessing
ML technology prioritizes choosing an appropriate dataset and
then transferring it to a shape that an algorithm can handle. The

FIGURE 1 | (A)Workflow of screening solid-state electrolytes through the ML algorithm. (B) The distribution of Li-contained compounds from the Material Project
database. Inset: histogram of materials conductivity over standard value. (C) Computationally observed ionic conductivity in candidate materials and extrapolation to
room temperature. Reprinted (adapted) with permission from (Sendek., et al 2018). Copyright (2019) American Chemical Society. (D) Predicted ionic conductivities for
the system Li8-cAaBbO4. (E) Relationship between experimental and predicted ionic conductivity.

Frontiers in Energy Research | www.frontiersin.org February 2021 | Volume 9 | Article 6397412

Liu et al. Screening Lithium Solid-State Electrolyte

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles


Material Project is a database of materials and core program of
the Materials Genome Initiative (Jain et al., 2013). It contains
information about compounds from the Inorganic Crystal
Structure Database (ICSD). Figure 1B gives the lithium ionic
conductivity distribution of all Li-contained compounds by
pymatgen (Ong et al., 2013). The data can be computed and
analyzed by the Materials Application Programming Interface.
The database includes information on the lattice structure, band
structure, density of state, space group, energy, and phase
diagram, etc. Different ML algorithms may use diverse
descriptors and various representations as an input (Curtarolo
et al., 2012; Jain et al., 2015; Kiran and Joseph, 2017). The more
suitable the representation of the input data, the more accurately
an algorithm can map it to the output data. For this reason,
suitable input data should be easier to acquire than the output
attributes that will be predicted, and it is better when the
dimensionality is lower (Ghiringhelli et al., 2015).

To solve simulation errors, data should be preprocessed
deliberatively. The preprocessing stage extracts raw data
features and gives the subset unique characteristics, consisting
of a continuous curve or discrete data. Feature extraction involves
the transformation of the original data to essential characteristics.
Its transforms, maps, or changes the dimensions of the original
data into new data that reflects the input information more
clearly. A large number of descriptors encode structures and
properties, including: CoulombMatrix (Rupp et al., 2012); Finger
Prints; Graph Theory (Bonchev and Rouvray, 1991); 3D
Geometry, Voronoi Tessellations (Ward et al., 2017);
Simplified Molecular Input Line Entry Systems (SMILES)
based on radial distribution functions (Schütt et al., 2014); and
property-labeled material fragments (Isayev et al., 2017).

Neural Networks
Neural networks, like the human brain, have many layers and
units. Weights store knowledge and then form a completed net. It
can process the input data layer by layer, thus converting the
initial input representation into a more closely related
representation to the output target. Learning is the process of
adjusting the weights so that the training data is more accurate.

Sendek et al. reported a neural network for predicting the fast
Li-ion conduction at room temperature (RT). They found that
Li5B7S13, Li3InCl6, and Li2B2S5 had high ionic conductivity
(Sendek et al., 2018). As shown in Figure 1C, 11 crystalline
compounds were identified from 317 candidate materials by the
ML-guide method. The ionic conductivity of Li5B7S13 was
predicted to be 0.074 S/cm, six times higher than the best-
known material (Ding et al., 2009; Zhao and Daemen, 2012;
Chou and Hwang, 2014; Cubuk and Kaxiras, 2014; Xiao et al.,
2015). This study built a convolution neural network to train the
atomistic structure, and five descriptors were used as input data.
The ML-based simulation revealed a 44-times improvement in
the log-average of conductivity compared to random guesswork
and manual computation. However, the input data contained less
information about properties, the number of materials screened
was small, and the training precision was low.

Zeeshan et al. predicted that LiAuI4 and Ba38Na58Li26N were
superionic conductors with ionic conductivity of 9.4 × 10–4 and

10–3 S/cm respectively through crystal graph convolutional
neural network (CGCNN) (Xie and Grossman, 2018; Zeeshan
et al., 2018). The 100 networks model was used to predict shear
and bulk moduli as well as some mechanical properties. The
accuracy of the screening results was further confirmed by
measuring electronic conductivity and thermodynamic
stability. Compared to the usual models, the CGCNN method
was more general but required more data to train. This method
significantly decreased the costs involved with first-principles
calculations.

Support Vector Machine
A support vector machine classifies various samples by different
labels to find a partition hyperplane. However, there have many
partition hyperplanes that can separate the training samples. The
boundary should classify the input samples robustly and have the
strongest generalization ability to the unseen examples. The
Fujimura team employed the support vector regression (SVR)
method to predict ionic conductivity (Fujimura et al., 2013).
Figure 1D shows the predicted 72 compositions. This work
indicated that Li4GeO4 had the highest ionic conductivity.
They used the SVM method with a Gaussian kernel to predict
the low-temperature conductivities of the compounds. The phase
transition temperature (Tc), diffusivity at 1600 K (D1600), the
average volume of the disordered structures (Vdis), and
experimental temperature T were regarded as independent
variables, while the logarithm of ionic conductivity as the
dependent variable. To confirm which descriptor combinations
can show the best performance, they undertook many
experiments and included different numbers of variables to
estimate the prediction error. The bootstrapping error was
lowest when it chose a combination of these three: D1600, T.

Cubuk et al. discovered that LiN5P3O, Li3Na4O3, LiPO3,
LiMg3K2O4, LiNaMg3O5, Li2K3GaO4, Li5Na2O3, Li4NaGaO4,
Li2MgO2, Li5K2O3, and Li5Na2NO2 satisfied all of the
screening criteria, including stability, high Li conductivity, low
cost and weight, and a large window of electrochemical stability
(Cubuk et al., 2019). They used 30 elemental descriptors from 40
materials to train a linear SVM through the leave-one-out cross-
validation (Sendek et al., 2016). The prediction accuracy is low
because the selected 40 materials are out of Material Project or
ICSD. In order to solve the trade-off between ML model accuracy
and previously uncharacterized materials, they took the outputs
of the structure model in Sendek’s research (Sendek et al., 2018)
as the labels to train the generic descriptors model, named
transfer learning (Pan and Yang, 2010). Through this transfer
learning, a new generic model was trained using three datasets,
including 40 data, Material Project data, and 21 of the
12,716 lithium-containing materials, with an accuracy of
87.5%, 92.0%, and 85.7%, respectively.

Because of these complex chemical systems, it is still difficult to
completely calculate total conductivity by existing computing
capacity. Most conductors have added polymers, such as
plasticizers, which makes the calculations more complicated.
To solve this complex interaction computing, Kan
Hatakeyama-Sato’s team used a polymer database to train a
gradient boosting model, which shows a 90% accuracy for

Frontiers in Energy Research | www.frontiersin.org February 2021 | Volume 9 | Article 6397413

Liu et al. Screening Lithium Solid-State Electrolyte

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles


training data and 81% accuracy for the testing data (Hatakeyama-
Sato et al., 2018). As shown in Figure 1E, experiment data were
similar to the predicted ionic conductivity. The analysis indicated
that electronegativity and polarity of the monomer units were
dominant variables in determining ionic conductivity.

Regression Method
The regression model studies the relationship between dependent
variables (targets) and independent variables (predictors), used in
predictive analysis, time series models, and finding causal
relationships between variables. The kernel ridge regression
and gradient boosting regression algorithm model were used
to find the potential solid-state electrolytes LiOH, LiAuI4, LiBH4,
Li2WS4, and Ba38Na58Li26N, etc. (Zeeshan et al., 2018), through
training the elastic tensor from the materials project database. An
elastic tensor can assess the interface stability between Li anode
and solid-state electrolytes. Sendek’s team related the
crystallographic directions with the elastic tensor. They took
DFT-computed information on 482 electrolyte materials as
input data and set up an ‘rbf’ kernel ridge model with α and γ
equal to 0.01, and two gradient boosting models with different
max depth, minimum samples per leaf, and minimum samples
split. This study predicted the elastic tensor of 548 materials with
a cubic crystal structure. Although the training data was small, the
regression model was useful. They found a relationship between
material stiffness and other characteristics like mass density, the
ratio of bond ionicity, volume per atom, and sub lattice
electronegativity.

Another study employed logistic regression (LR) to identify
superionic (σ ≥ 10–4 S/cm) and non-superionic (σ < 10–4 S/cm)
structures (Sendek et al., 2016). Austin’s team found that these
compounds (BaLiBS3, Li5B7S13, Sr2LiCBr3N2, SrLi(BS2)3, LiErSe2,

Li2B2S5, Li3ErCl6, Li2HIO, Li2GePbS4, LiSO3F, LiCl, LiSmS2,
Li3InCl6, CsLi2BS3, LiMgB3(H9N)2, RbLiS, LiHoS2, LiErS2,
LiHo3Ge2(O4F)2, KLiS) had superionic probability ≥50%, band
gap ≥1 eV, upper bound oxidation potential ≥4 V, no transition
metals, energy above the convex hull � 0 eV per atom. The dataset
consisted of 40 materials with 20 diverse feature characteristics
shown in Table 1. It is worth noting that the Li–B–S system was
also selected using NN methods (Sendek et al., 2018). The
regression illustrated how a multi-descriptor could build a
model with better predictive power than a single feature alone.
They used LR to build all possible models and then calculated the
training misclassification rate (TMR) and the cross-validated
misclassification rate (CVMR). As shown in Figure 2A, the 5-
feature model had minimal CVMR, proving that the model had
statistical significance. The X-randomization performance metric
parameter was above the conventional threshold of 0.5 for the
optimal LR model. Figure 2B shows the classification
performance. The y-axis presents the conductivity higher than
10–4 S/cm, and four materials were misclassified.

Clustering Algorithm
It is difficult and time-consuming to calculate the migration
barriers and ion diffusion of the solid-state electrolytes,
especially considering the huge material space. The
unsupervised learning algorithm can discover the relationship
between properties and X-ray diffraction (XRD) intensities have
emerged in screening lithium solid-state electrolytes. Zhang et al.
found that Li8N2Se, Li6KBiO6, and Li5P2N5 (i.e., three new
materials systems) had an ionic conductivity higher than
10–2 S/cm (Zhang et al., 2019). Figure 1C shows the tree
dendrogram generated using the agglomerative hierarchical
clustering method. The highest result appears in groups Ⅴ and Ⅵ.

TABLE 1 | Pearson correlation coefficient, training data standard deviation, training data mean, and normalized regression coefficient of 20 features.

Feature Pearson correlation
coefficient

Training data
standard deviation

Training data
mean

Normalized regression
coefficient

1 Volume per atoma 0.20 4.582 13.342 0
2 Standard deviation in Li neighbour count 0.22 1.430 1.766 0
3 Standard deviation in Li bond ionicity −0.04 0.274 0.858 0
4 Li bond ionicitya −0.18 0.372 1.403 0
5 Li neighbour counta −0.19 6.393 21.359 0
6 Li–Li bonds per Lia 0.06 4.432 6.218 +0.817
7 Bond ionicity of sublatticea −0.28 0.330 0.978 −1.323
8 Sublattice neighbour counta −0.13 7.087 20.660 0
9 Anion framework coordinationa −0.06 2.202 10.073 −1.028
10 Minimum anion–anion separation distancea 0.09 0.708 3.395 0
11 Volume per anion (Å3) −0.01 35.131 36.614 0
12 Minimum Li–anion separation distancea (Å) 0.20 0.288 2.072 +2.509
13 Minimum Li–Li separation distancea (Å) −0.10 0.746 2.730 −1.619
14 Electronegativity of sublatticea −0.16 0.306 2.780 0
15 Packing fraction of full crystal 0.16 0.173 0.465 0
16 Packing fraction of sublattice 0.19 0.186 0.234 0
17 Straight-line path widtha (Å) 0.07 0.247 0.852 0
18 Straight-line path electronegativitya −0.29 0.707 2.535 0
19 Ratio of features (4) and (7) −0.03 0.719 1.611 0
20 Ratio of features (5) and (8) −0.18 0.152 1.057 0

Constant term — — — −1.944
The features “a” are averaged over the relevant parameter: bonds, atoms, Li–Li pathways, etc.
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These new materials comprise new structures, chemistries, and
compositions that are significantly different from existing
chemistries. Using clustering methods to classify modified X-ray
diffraction (mXRD) can define every anion lattice and fully capture
the anionic crystal structure information. The data contained
528 compounds, and three different models were generated to
classify the results. The latter two models were set to evaluate the
robustness of the clustering algorithm.

The unsupervised learning rising algorithm discovered a
quantitative correlation between group and conductivity. The
clustering model captured the physical dependence of fast solid-
state Li-ion diffusion on anion lattice and gathered excellent
materials together. The unsupervised method solves the problem
created by scarce datasets, unlike supervised learning models,
which need label training data. In unsupervised learning, the label
of training data is unknown. It relies on learning non-labeled data
to reveal intrinsic properties and laws of data, which form the
basis of data analysis. The variances and errors of model
parameters are rarely affected by the experimental method.

DISCUSSION

This study used different ML algorithms to screen and discover
typical solid-state electrolytes with high ionic conductivity. As
shown in Figure 2D, most materials were concentrated in the
range of 10–4 S/cm. In particular, Li5B7S13, Li8SeN2, KLi6BiO6,
and Li5P2N5 exhibit a high ionic conductivity near 10–2 S/cm. As
a screening method for solid-state electrolytes, the NN structure
had the most robust ability in precision or recall. The neural units
can learn about the strange input layer by layer, resulting in a high

learning rate, meaning that classification tasks often use the NN
model. As for the clustering method, it can discover the complex
unseen patterns hiding behind multi-dimensional data. If the
clustering is sufficiently subdivided, the conductivity of the same
species will be very similar. SVR has higher prediction accuracy
and stability when there is less label data. Compared to the SVR,
the LR algorithm has advantages in prediction efficiency, but the
prediction accuracy fluctuates greatly. Gradient Boosting, Kernel
Ridge Regression, and Crystal Graph Convolution Neural
Network were distributed at lower ionic conductivity. Thus,
clustering and the NN method provide robust prediction and
a highly efficient screening method for solid-state electrolytes.
Our recent work illustrates ML methods in applications,
advantages, challenges, and typical references, as summarized
in Table 2.

It is important to verify the stability of the predicted materials,
which could be determined by their formation energy and energy
above hull: Ehull (Ong et al., 2008; Jain et al., 2011). Theoretically,
the formation of energy should be negative and Ehull � 0 eV for
thermodynamically stable materials. First principles were used to
calculate the formation of energy and Ehull of the screening results
from previous research via VASP. As shown in Figure 2E, the
typical predicted materials have negative formation energy, and
most of the samples exhibit a low Ehull, almost equal to zero,
confirming a stable thermodynamically. It is worth to mention
that Li6Ho(BO3)3, with ionic conductivity of up to 5.1 × 10−3 S/
cm in (Sendek et al., 2018) shows both low formation energy and
zero energy above the hull, which could be a promising material.
In addition to the ionic conductivity, the electrochemical stable
window (Wang et al., 2015) is another crucial feature in screening
excellent solid-state electrolytes. Yizhou Zhu’s team (Zhu et al.,

FIGURE 2 | (A) The cross-validation misclassification rate (CVMR) curve and the training misclassification rate (TMR) curve. (B) Classification performance of the
training data under leave-one-out cross-validation using logistic regression. (C) Unsupervised clustering of all Li-containing compounds, seven groups divided by
algorithm. (D) The results of research through the ML method, displaying compound formula and ionic conductivity, respectively. (E) The parameters of energy
formation/Atom (eV) and the energy above the hull/Atom (eV). The red line indicates the formation of energy, and the blue line indicates the energy above the hull.
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2015) used first principles to analyze thermodynamics and found
that solid-state electrolyte materials have a limited
electrochemical window. Thus, when considering candidate
solid-state electrolytes, formation energy, energy above the
hull, and the electrochemical window should also be included.

There are still many factors limiting the process of screening
new solid-state electrolytes. 1) The training data is still not large
enough to satisfy the big structure model, which affects the
accuracy of the screening results. 2) The constructed model is
still too complicated and cannot adapt to the scarcity of material
data, and the model should be as simple as possible. 3) Suitable
descriptors have not yet been precisely selected, and there is still
no quantitative connection between performance and the
parameters of the material. To tackle these challenges, we need
greater effects both from the material and algorithmic scientists.
On the one hand, material scientists should fabricate and verify
the lithium solid-state electrolytes found through ML, which will
increase the dataset and provide better guidance for the further
optimization of the algorithm. On the other hand, more advanced
or updated methodologies could be applied to screen lithium
solid-state electrolytes according to data availability. For example,
neural networks (e.g., Auto Encoders, Generative Adversarial
Networks, etc.) were recently used to predict crystal and
material properties (Ryan et al., 2018; Zheng et al., 2018), even
in a scenario with little training data. Active learning (Gao et al.,
2020) combines data labeling and model training to minimize
labeling costs by prioritizing high-value data and classifying the
materials based on small material data. These new algorithms
have potential applications in screening for lithium solid-state
electrolytes.

CONCLUSION

This review discusses the latest developments in the use of ML
algorithms in screening for solid-state electrolyte materials.

Some potential lithium solid-state electrolytes were predicted
with high ionic conductivity and stability. We focused on
demonstrating various ML algorithms, including clustering,
support vector machine, neural networks, and regression,
used in screening for solid-state electrolytes. In general,
neural networks showed a significant advantage in
screening. The challenge of using ML in screening for
solid-state electrolytes include a lack of data and
complicated algorithms. These could be resolved by
experimentally verifying the predicted candidates and
developing new ML algorithms. As a powerful simulation
method, ML have accelerated the discovery of lithium solid-
state electrolytes and could be developed to screen for other
functional materials.
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TABLE 2 | Comparison of different computational methods, the table shows the mentioned methods in advantages, challenges, applications, and recent typical references.

References Application ML algorithm Advantage Challenge Year

12 Stable composition screening Neural network High precision Model is too complex 2018
26 Structure discovery Crystal graph convolutional neural

network
High accuracy and interpretability Data processing is too

tedious
2018

27 Ionic conductivity prediction Support vector regression Fast computing speed Low accuracy 2013
28 Structure discovery Support vector machine and transfer

learning
Require less data Model is hard to be

explained
2019

31 Polymer material discovery Gradient boosting regression High accuracy Complex interactions
computing

2018

29 Superionic classification Logistic regression Abundant experiment metrics Processing is too complex 2016
40 Solid-state electrolytes

classification
Clustering Candidate compounds have excellent

properties
Need a quantity of XRD
data

2019

48 Prediction of initial capacity and
cycle life

Extremely randomized tree and
adaptive boosting

High accuracy The scarcity of dataset 2018

49 Ionic conductivity prediction Logistic regression Exhibit wider thermodynamic
electrochemical stability

Validation accuracy still
too low

2019
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