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With the large-scale integration of renewable energy such as wind power and PV, it is
necessary to maintain the voltage stability of power systems while increasing the use of
intermittent renewable energy sources. The rapid development of energy storage
technologies permits the deployment of energy storage systems (ESS) for voltage
regulation support. This paper develops an ESS optimization method to estimate the
optimal capacity and locations of distributed ESS supporting the voltage regulation of a
distribution network. The electrical elements of the network integrated with PV and ESS are
first modelled to simulate the voltage profile of the network. Then an improved multi-
objective particle swarm optimization (PSO) algorithm is employed to minimise a weighted
sum of the overall nodal voltage deviation from the nominal level across the network and
across the time horizon and the energy capacity of ESS reflecting the associated
investment. The improved PSO algorithm adaptively adjusts the inertia weight
associated with each particle based on its distance from the best known particle of
the population and introduces the cross-mutation operation for a small distance to avoid
falling into local optimal solutions. Then the dynamic dense distance arrangement is taken
to update the non-inferior solution set and indicate potential global optimal solutions so as
to keep the scale and uniformity of the optimal Pareto solution set. Tomitigate the impact of
decision makers’ preference, the information entropy based technique for order of
preference by similarity to ideal solution is used to select the optimal combination of
the ESS access scheme and capacity from the Pareto solution set. The proposed ESS
optimization method is tested based on the IEEE 24-bus system with additional imports
from high-voltage power supply. The voltage profile of the network simulated without the
ESS or with the random or optimized ESS placement is compared to illustrate the
effectiveness of the optimized ESS in performing voltage regulation under normal
operation and supporting emergency power supply during high-voltage transmission
failures.
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INTRODUCTION

Due to the continuous consumption of fossil fuels and the
resulting aggravation of environmental pollution, the
utilization of renewable energy sources (RES) has developed
rapidly in recent years. A high proportion of RES integrated
within distribution networks separately features the
superposition of the output randomness and volatility which
may cause violent fluctuations of the node voltage (Jung et al.,
2014; Watson et al., 2016; Hasheminamin et al., 2018) and thus
seriously affect the power quality of networks. Therefore, it is of
great significance to study the problem of voltage limit
exceedance given the large-scale integration of RES.

With the rapid development of electrochemical energy storage
technologies, the technical and economic maturity of battery
energy storage technology have been greatly improved. The
energy storage systems (ESS) installed within electrical grids
can effectively improve the grid’s ability to absorb renewable
energy and deal with integration problems such as the voltage
limit violation caused by the high penetration of renewable
energy. Meanwhile, it can provide emergency power supply
when a short-circuit fault occurs, mitigating the system
impacts caused by serious failures.

The voltage regulation of active distribution networks have
been investigated in considerable research which can be divided
into three main aspects: 1) changing electric power distribution;
2) adjusting transformer taps; and 3) installing reactive power
compensation devices. References (Zhou and Bialek, 2007;
Tonkoski and Lopes, 2011; Yap et al., 2014) have proposed
strategies to reduce the PV power output to improve the
voltage level at the cost of a decreased efficiency of solar
energy conversion. References (Jashfar and Esmaeili, 2014;
Collins and Ward, 2015; Zad et al., 2015) put forward voltage
regulation approaches by using PV system inverters for reactive
power compensation. In addition, references (Esslinger and
Witzmann, 2012; El Moursi et al., 2014) improved voltage
levels based on the on-load regulating transformer. From the
perspective of model predictions, Zhao et al. (Zhao et al., 2016)
developed a method for voltage regulation through installing
reactive power compensation devices and adjusting wind turbine
outputs. In (Yoshida et al., 2000), voltage regulation was
implemented by adjusting generator outputs, transformer taps,
and the capacity of reactive power compensation devices. A
coordinated control method for on-load voltage regulation and
reactive power compensation was proposed in (Salih and Chen,
2016; Kulmala et al., 2014) for distribution systems with RES.
Similarly, reference (Brenna et al., 2013) developed a distributed
voltage control method to automatically regulate the voltage and
reactive power of substations. Reference (Senjyu et al., 2008)
optimized the control of distribution voltage with the
coordination of distributed installations including the load
ratio control transformer, step voltage regulator, shunt
capacitor, shunt reactor, and static var compensator (SVC). In
(Bakir and Kulaksiz, 2019), four proportional-integral controllers
in STATCOM were optimized to reduce the voltage fluctuation
and improve the voltage stability. Dong et al. (Dong et al., 2005)
made full use of the reactive power margin of the generator for

voltage regulation. In (Azzouz et al., 2015), the vehicle-to-grid
technology, distributed power supply, and transformer tap were
coordinated to regulate the voltage in real time. Daratha et al.
(Daratha et al., 2014) proposed a two-stage control strategy
comprising transformer tap adjustment and SVC
compensation. In (Alam et al., 2012), a local charge and
discharge controller was designed for distributed ESS to deal
with the over-voltage problem at the point of common coupling
caused by PV generation. Based on the consistency algorithm, a
distributed coordinated control method was developed in
(Mokhtari et al., 2012) which, however, did not consider the
differences of state of charge (SOC) and constraints on charge
and discharge rates between distributed ESS. A mathematical
model of the ESS within power systemwas described in (Bachurin
et al., 2018). In addition, Sugihara et al. (Sugihara et al., 2013)
assessed the feasibility of employing the user-side ESS to suppress
voltage fluctuations from the economic point of view. In
(Mehmood et al., 2017), the ESS location within the system
was optimised to improve the service life and voltage
regulation of ESS. Liu et al. (Liu et al., 2012) proposed a
coordinated control of distributed ESS with traditional voltage
regulators including on-load tap changer transformers and step
voltage regulators to alleviate the voltage rise problem caused by
the high PV penetration in the low-voltage distribution network.
In (Nara et al., 2005), voltage control effects of distributed
generators (DGs) were discussed based on a simplified radial
distribution network. A voltage control method performing the
partial generation rejection of PV systems was proposed in (Lin
et al., 2012), based on which the installed capacity of PV systems
was optimized to maximize the net present value of the systems.
Muttaqi et al. (Muttaqi et al., 2013) proposed a control
coordination technique which exploited the DG ability as a
voltage regulator and minimized the interaction with other
active devices. Li et al. (Yang et al., 2018) proposed a two-
stage optimization method for the optimal distributed
generation planning with the ESS integration. Mehmood et al.
(Mehmood et al., 2017) optimised the location and size of ESS
considering the battery life and the voltage quality of distribution
network. Jannesar et al. (Jannesar et al., 2018) optimised the
location and capacity of a battery ESS as well as day-ahead
schedules based on a cost function including energy arbitrage,
environmental emission, energy losses, transmission access fee, as
well as capital and operating costs of the battery ESS.

To alleviate the voltage limit violation caused by the increased
use of RES, many literatures regulate the node voltage from the
perspective of conventional generator outputs and reactive power
compensation devices but rarely consider the optimization of ESS
locations and sizes for voltage regulation. Therefore, this paper
will propose an ESS optimization method to estimate the best
capacity and locations of distributed ESS that support the voltage
regulation and ensure the voltage stability of a distribution
network. An improved multi-objective particle swarm
optimization algorithm (PSO) is first used to minimize a
weighted sum of the ESS energy capacity and the overall node
voltage deviation from the nominal level simulated across the
network and across the time horizon, producing the Pareto
solution set which comprises potential global optimal

Frontiers in Energy Research | www.frontiersin.org April 2021 | Volume 9 | Article 6415182

Li et al. Energy Storage for Voltage Regulation

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


solutions. Then the information entropy based technique for
order of preference by similarity to ideal solution (TOPSIS) is
used to determine the best combination of ESS capacity and
locations from the Pareto solution set in order to mitigate the
impact of decision-makers’ preference. The effectiveness of the
proposed ESS optimization method is examined based on
the IEEE 24-bus system through a comparison between the
voltage profiles of the network without the ESS deployment or
with the random or optimized ESS placement. In addition to the
voltage regulation under normal operating conditions, the ESS
performance in the emergency power supply is assessed when the
network fails to import from additional high-voltage power
supply.

This paper is structured as follows: describes theModeling of
Distribution Network Integrated With ESS and PV; establishes a
multi-objective Optimization Model of ESS Capacity and
Locations for Voltage Regulation; develops an Improved
Multi-Objective Particle Swarm Optimization Algorithm for
the ESS access scheme optimization based on the TOPSIS;
Case Study implements simulation experiments based on the
IEEE 24-bus system to validate the performance of the
optimized ESS in the voltage regulation and emergency
power supply; and presents Conclusion and Recommendations
for Future Work.

MODELING OF DISTRIBUTION NETWORK
INTEGRATED WITH ESS AND PV

This section presents the modelling of distribution network, ESS
and PV system. The distribution network model includes the
network structure, load component and voltage distribution
across the network without or with the connection of the ESS
which is represented by an equivalent circuit of battery in
combination with associated parameters.

Distribution Network Model
Most of the distribution networks in China have radial chain
structures. The active and reactive power of the load within a
distribution network are changing over time. A constant power
static model is employed here for each instant to facilitate the
simulation of voltage regulation. Supplementary Figure A1
shows a specific distribution network structure where a
particular feeder is adopted for the ESS access.

Without the connection of the ESS, the voltage Um at the mth
node (m � 1, . . . ,N) can be calculated as the difference between
the voltage U0 at the node zero (i.e., a local substation) and the
aggregate of the voltage drop ΔUp along each distribution line
(p � 1, . . . ,m) that transfers electricity from the node zero to the
mth node:

Um � U0 −∑m
p�1

ΔUp � U0 −∑m
p�1

Rp ∑N
n�p

Pn + Xp ∑N
n�p

Qn

Up
(1)

where ΔUp along the pth distirbution line that supports active Pn
and reactive power Qn of the load at the downstream nth node

(n � p, . . . ,N) is determined based on its resistance Rp
and inductance Xp combined with the voltage Up at the pth node.

When the ESS accesses to the ith node, the voltage Um of the
mth node located upstream of the ith node is formulated by:

Um � U0 −∑m
p�1

Rp( ∑N
n�p

Pn − Pess) + Xp( ∑N
n�p

Qn − Qess)
UP

(2)

where Pess and Qess denote active and reactive power outputs of
the ESS. When the mth node is located downstream of the ith
node, the voltage of the mth node can be determined as the
difference between the voltage Ui at the ith node and the voltage
dropΔUi, m along distribution lines connecting the ith node to the
mth node:

Um � Ui − ΔUi,m

� U0 −∑i
p�1

Rp( ∑N
n�p

Pn − Pess) + Xp( ∑N
n�p

Qn − Qess)
UP

−∑m
p�i

Rp ∑N
n�p

Pn + Xp ∑N
n�p

Qn

Up
(3)

Eqs 1–3 show that the load distribution across the network, active
and reactive power outputs of DGs and ESS as well as their
locations within the network all affect the voltage profile of the
network.

ESS Model
The widely employed lithium battery ESS is modelled in this
study. The lithium battery is an electrochemical energy storage
device which realizes the conversion between chemical and
electric energy through its charging and discharging
processes. In addition, it has high storage energy density and
does not produce harmful heavy metal elements and substances,
showing the characteristics of lightweight and green
environmental protection. The terminal voltage of the battery
generally changes with its current, i.e., the higher the battery
current, the smaller the terminal voltage. Given a particular
current level, the terminal voltage remains the same when the
SOC is between 20 and 80% where a battery ESS mostly operates
in practice. The SOC is an important basis for charging and
discharging control and requires to be updated in real time (Fan
et al., 2021). Given the battery ESS with energy capacity of
Ahnom starting to operate from a full SOC, its SOC at a particular
time t is calculated from the integral of its discharge and charge
currents I over time:

SOC(t) � Ahnom − ∫t

0
I(τ)dτ

Ahnom
(4)

Figure 1 shows a commonly used battery model consisting of an
ideal voltage source E0 and an equivalent internal resistance r
(Rosewater et al., 2019). According to the full circuit Ohm’s law,
the terminal voltage V is formulated by:
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V � E0 − Ir (5)

A more detailed equivalent circuit of the battery (Rosewater et al.,
2019) is shown in Figure 2. The open-circuit voltage VOCV is a
function of the SOC and the internal resistance R0 of the battery
in combination with additional impedance parameters (R1, C1,
R2, and C2) that are used to describe dynamic characteristics of
the battery. The terminal voltage V of the battery can be
formulated by Eq. 6 where only VOCV is related to I and SOC.
Supplementary Table S1 lists typical values of model parameters
in Eq. 6 based on A123-M1 LiFePO4 battery (Cheng et al., 2016).

V � VOCV(SoC) − (R0 + R1

1 + sR1C1
+ R2

1 + sR2C2
)I

� VOCV(SoC) − R0I − ( K(1 + sK1)
(1 + sK2)(1 + sK3))I (6)

PV System Model
A PV system is composed of several PV panels that are combined
according to certain rules. The aggregate power output of a PV
system fluctuates with the change of light intensity which also has
uncertainties. A particular model of the grid-connected PV
system co-located with a battery ESS is shown in
Supplementary Figure A2.

According to (Atwa et al., 2010; Teng et al., 2013), power
outputs of a PV system could be modelled by the beta probability
density function based on PV module parameters. Part of the
electricity produced by the PV system during peak sunshine
hours can be absorbed by the ESS through “peak shaving and
valley filling”; when the PV system output is small or at night,

then the ESS will put the electric energy onto the network for
power supply, helping match the PV-ESS system output curve
with the load profile in daily operation.

OPTIMIZATION MODEL OF ESS CAPACITY
AND LOCATIONS FOR VOLTAGE
REGULATION
When a distribution network connects large-scale RES via ultra-
high-voltage (UHV) transmission channels, its node voltage
fluctuations will increase due to the randomness and volatility of
renewable generation. In general, the ESS can be introduced to
regulate the voltage profile of the main network and suppress the
voltage fluctuations caused by groups of Distributed Generation
Integration. Therefore, the selection of ESS locations is important
for an optimal ESS configuration. It determines the efficiency of
voltage regulation support from ESS to the greatest extent and helps
the main network to maintain stable and reliable operation. This
sectionwill establish amulti-objective optimizationmodel including
the ESS capacity and locations for an efficient voltage regulation.
The effective control of charging and discharging of the ESS placed
at more suitable access points can better reduce the node power
fluctuation and improve the voltage stability of the network.

Objective Function
The access locations of ESS within the distribution network are
optimized here taking into account a trade-off between the
voltage regulation performance and the total energy capacity
of ESS which are described by the normalised functions f1* and
f2*, respectively. The weight coefficients α and β are introduced to
transform the functions f1* and f2* into a single objective function
f in Eq. 7. The voltage regulation performance f1 of ESS is
inversely quantified based on the overall deviation between the
node voltage Ui (i � 1, . . . ,N) and the nominal level U0 across the
network and across the time horizon (t � 1, . . . ,T) in Eq. 8.
The total ESS energy capacity ETC representing f2 in Eq. 9 and f1 are
normalised by Eq. 10 based on their respective minimum fi min and
maximum fi max values such that f1* and f2* range from 0 to 1.

f � min(αf *1 + βf *2 ) (7)

f1 � ⎛⎝∑N
i�1

∑T
t�1

(Ui(t) − U0)2⎞⎠ (8)

f2 � ETC (9)

f *i � fi − fimin

fimax − fimin
(10)

Constraints
Operation Constraints of Distribution Network

(1) Power balance constraints of distribution network:

{PGi(t) + PRESi(t) − PLi(t) + ΔPi(t) + PEi(t) � 0
QGi(t) − QLi(t) + ΔQi(t) + QEi(t) � 0

(11)

FIGURE 1 | Simplified equivalent circuit diagram of the energy storage
battery.

FIGURE 2 | Detailed equivalent circuit diagram of the energy storage
battery.
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ΔPi(t) � Ui(t)∑N

j�1
Uj(t)(Gij cosθij + Bij sinθij)

ΔQi(t) � Ui(t)∑N
j�1

Uj(t)(Gij sinθij + Bij cosθij) (12)

where subscripts Gi, RESi, Li, and Ei in Eq. 11 represent the
conventional generating unit, RES, load and ESS connected to the
ith node; terms ΔPi(t) and ΔQi(t) are the active and reactive
power flowing into the ith node; termsGij and Bij in Eq. 12 denote
the real and imaginary parts of the element in the bus admittance
matrix corresponding to the ith and jth nodes and θij is the
difference in voltage angle between the ith and jth nodes.

(2) Node voltage constraints where Ui and Ui denote lower
and upper limits of node voltage:

Ui ≤Ui(t)≤Ui (13)

(3) Constraints on distribution network branch power where
Pi,j is the power transfer limit on the line connecting the
ith node to the jth node:⎧⎪⎨⎪⎩ 0≤
∣∣∣∣Pi,j(t)

∣∣∣∣≤ Pi,j∣∣∣∣Pi,j(t)
∣∣∣∣ � ∣∣∣∣∣Ui(t)Uj(t)(Gij cosθij + Bij sinθij) − Ui(t)2Gij

∣∣∣∣∣ (14)

(4) Ramp rate constraints of conventional generating units
where RDi or RUi is the limit on ramping down or up:

−RDi ≤ PGi(t) − PGi(t − 1)≤RUi (15)

(5) Export limits of conventional generating units where subscript
Gimin or Gimax denotes the minimum or maximum limit:

{PGimin ≤ PGi(t)≤ PGimax

QGimin ≤QGi(t)≤QGimax
(16)

ESS Configuration Constraints
(1) The constraints of ESS access points:

EBCNmax ≤ ETC (17)

0≤ ∑N
i�1

NESS(i)≤Nmax (18)

where EBC denotes the energy capacity of a single ESS, and given
the limit of the total energy capacity ETC, Nmax is the maximum
number of ESS that could be installed within the network which
in turn limits the number NESS(i) of ESS connected to each node.

(2) ESS capacity and power constraints:

Esto(i) � EBCNESS(i) (19)

{ PEi(t) � PD
Ei(t) − PC

Ei(t)
PD
Ei(t) × PC

Ei(t)� 0
(20)⎧⎪⎨⎪⎩ 0≤ PC

Ei(t)≤ PC
Ei

0≤ PD
Ei(t)≤ PD

Ei

(21)

{ �����������������
(PEi(t))2 + (QEi(t))2

√
≤ Smax i

−QEimax ≤QEi(t)≤QEimax

(22)

where Esto is the total ESS energy capacity at a particular node and
superscripts D and C denote discharging and charging phases of ESS,
respectively, which must not violate the maximum allowable discharge
ratePD

Ei and charge rateP
C
Ei. The total reactive powerQEiof ESS at the ith

node shouldmeet the reactive power limitQEimax aswell as the apparent
power limit Smax i given their aggregate active power output PEi.

(3) The constraints of ESS operation:

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Ei ≤ Ei(t)≤ Ei

Ei � 0.2Esto(i) , Ei � Esto(i) (23)

Ei(t) � Ei0 +∑t
τ�1

(PC
Ei(τ)ηc − PD

Ei(τ)/ηd) (24)

where Ei(t) is the total energy stored in ESS at the ith node at time
step t which is determined based on their charge and discharge
rates over previous time steps in combination with charging and
discharging efficiencies denoted by ηc and ηd, respectively, and is
maintained between 20 and 100% of Esto(i).

IMPROVED MULTI-OBJECTIVE PARTICLE
SWARM OPTIMIZATION ALGORITHM

Particle Swarm Optimization
The particle swarm optimization (PSO) is a stochastic
optimization algorithm that minimizes an objective function
starting from a group of randomly produced particles which
travel in the problem space until convergence is reached
(Kennedy and Eberhart, 1995). The particles jointly adjust
speeds and directions of their motion based on their own
and group information and search for the optimal solution
through iteration. In the kth iteration, each particle updates its
speed v(k+1)id and position x(k+1)id by tracking the best known
positions of the particle itself and the group denoted by p(k)id and
g(k)id , respectively:

v(k+1)id � ωv(k)id + c1r1(p(k)id − x(k)id ) + c2r2(g(k)d − x(k)id ) (25)

x(k+1)id � x(k)id + v(k+1)id (26)

where ω is an inertia weight associated with the present particle
speed v(k)id and parameters c1, c2, r1, and r2 are, respectively, two
positive constants and two random parameters between 0 and 1
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associated with the deviations from the present particle position
x(k)id to p(k)id and g(k)id .

The conventional PSO-based method dealing with a multi-
objective problem combines the Pareto sorting mechanism with
the basic PSO algorithm to determine the best known solution of
the particle and update the non-inferior solution set based on the
dominating relationship between particles. The conventional
multi-objective PSO algorithm has the following problems in
the solution process: 1) lack of guidance on the value of ω; 2) poor
diversity and distribution of the Pareto solution set due to the
improper update and maintenance strategy of the non-inferior
solution set; 3) lack of guidance on the selection of the global
optimal solution; and that 4) the loss of population diversity is fast
and the PSO is likely to fall into local optima. Therefore, the paper
makes the following improvements on the basis of the Pareto
sorting based multi-objective PSO algorithm.

Improved Multi-Objective Particle Swarm
Optimization
Adaptive Inertia Weight
The inertia weight ω has a significant impact on the convergence
performance of the PSO algorithm. Most of the commonly used
methods linearly or non-linearly reduce the ω value with the
increasing number of iterations without considering the particle
characteristics in the iterative process, and thus lack guidance on
the adjustment of ω. The difference between the particle position
vector and the best known solution of the population can reflect
the distance from a particular particle to the best known particle
of the population. When there is a larger gap between the current
particle and the best known particle of the population, a greater ω
should be used to permit the particle having better global
searchability. When the distance from the best known particle
of the population is reduced, a smaller ωwill be adopted for better
local searchability. In this study, the gap X(k)

i between a particular
particle and the best known particle of the population estimated
by Eq. 27 is used to determine the value of ω as formulated by Eq.
28. Supplementary Figure A3 shows the non-linear adjustment
of ω(k)

i between ωstart � 0.9 and ωend � 0.4 based on X(k)
i .

X(k)
i � 1

xmax − xmin

1
D

∑D
d�1

∣∣∣∣g(k)d − x(k)id

∣∣∣∣ (27)

ω(k)
i � ωstart − (ωstart − ωend)(X(k)

i −1)2 (28)

Cross-Mutations
The PSO algorithm suffering from a premature convergence
problem in iterative optimization may produce a local optimal
solution. In order to increase the diversity of the population, the
paper incorporates the cross-mutation operation of the genetic
algorithm (Senjyu et al., 2006) into the PSO to cross-mutate the
position vector of particles based on the difference X between the
position vector of the particle and the best known position of the
population. The specific steps are as follows:

(1) specify the threshold Xmin � 0.1 for X, mutation rate pm �
0.05, and crossover rate pc � 0.1;

(2) determine Xi for the particle i, and for Xi <Xmin, carry out
crossover mutation on the particle; otherwise, go to
step 5;

(3) select a random number rid within [0,1] for the position
component of the particle i along each dimension, and for
rid < pm, initialize the d-dimensional position component
by Eq. 29;

(4) after the mutation, for rid < pc, cross the d-dimensional
position component with the best known position of the
population (i.e., the crossover object gd), as shown in
Supplementary Figure A4;

(5) the cross-mutation is completed.

xid � xmin + (xmax − xmin) · r (29)

Non-Inferior Solution Set Update Based on Dynamic
Dense Distance
When solving a multi-objective problem, the non-inferior
solution set is updated in each iteration. To keep the scale of
the Pareto solution set and the uniformity of solution
distribution, it is necessary to select the best Pareto solution.
The dense distance is used here to describe the density between
particles and their surrounding particles as well as the uniformity
of solutions. For a multi-objective optimization problem
consisting of three objective functions f1, f2, and f3 as shown
in Supplementary Figure A5, the dense distance I(xi) of the
particle i is calculated by:

I(xi) �
∣∣∣∣∣[f1(xj) − f1(xk)]∣∣∣∣∣

f1max
+
∣∣∣∣∣[f2(xj) − f2(xk)]∣∣∣∣∣

f2max

+
∣∣∣∣∣[f3(xj) − f3(xk)]∣∣∣∣∣

f3max
(30)

If the number of objective functions is n, then the dense distance
of the particle i can be written as:

I(xi) �
∑n
m�1

∣∣∣∣∣[fm(xj) − fm(xk)]∣∣∣∣∣
fmmax

(31)

Once the dense distance of each Pareto solution is solved, it is
sorted in a descending order and then screened. The common
method is to select N solutions with large dense distances in
sequence. Although this method is fast and only needs to calculate
the dense distance of Pareto solution once in each iteration, it may
result in the poor diversity and uniformity of Pareto solutions.
The “one by one removal”method is used here to update the non-
inferior solution, that is, the solution with the smallest dense
distance is removed after sorting by cluster density, followed by
calculating the dense distance of the remaining Pareto solutions
until there are N Pareto solutions left.

Selection of Global Optimal Solution of Population
The PSO algorithm needs to track the best known positions of
the particles and the population when updating the
population. In a single-objective PSO process, the best
known positions can be obtained directly by comparing the
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size of the particle fitness function. When the PSO deals with a
multi-objective optimization problem, the result of each
iteration is a group of independent Pareto solutions. This
requires determining the global optimal solution from the
Pareto solution set. To ensure the diversity and uniformity
of Pareto solutions, the potential global optimal solution of the
population could be randomly selected from the first 20% of
Pareto solutions with larger dense distances based on their
dense distance ranking.

Multi-Attribute Decision Making Based on
TOPSIS
The final optimization result of the improved multi-object PSO
algorithm is a set of Pareto solutions from which decision-makers
need to select the optimal solution according to the preference
information, which is essentially a multi-attribute decision-
making problem. Instead of randomly selecting the potential
global optimal solution from the Pareto solution set, the paper
uses the technique for order of preference by similarity to ideal
solution (TOPSIS) to choose the optimal solution based on
information entropy. The TOPSIS assists in decision-making
by calculating distances between alternative schemes and
positive or negative ideal schemes and then determining the
alternative that minimizes the distances from positive ideal
schemes and maximizes the distances from negative ideal
schemes. Given N schemes x1, x2, . . . , xN composed of non-
inferior solutions in the Pareto solution set, each scheme xi (i � 1,
. . . , N) comprises n attributes (i.e., the number of objective
functions) with the mth attribute value denoted by fm(xi) (m � 1,
. . . , n). Considering the dimensional errors among the attributes,
the attributes under different types require to be transformed into
dimensionless attributes by normalizing their fm(xi) based on the
attribute values of the same type in all schemes. This is formulated
by Eq. 32 where the normalized attribute value is denoted
by f ’m(xi).

f ’m(xi) �
fm(xi)�������∑N
i�1

f 2m(xi)
√ m� 1, 2,/, n (32)

Then the relative distance d (xi) of the scheme xi is calculated
based on the differences in normalized attribute values between xi
and positive and negative ideal schemes by Eqs 33–35:

d(xi) � d+(xi)
d+(xi) + d−(xi) (33)

d+(xi) �

�������������������∑n
m�1

[λmf ’m(xi) − λmf ’m+]2
√√

(34)

d−(xi) �

�������������������∑n
m�1

[λmf ’m(xi) − λmf ’m−]2
√√

(35)

The TOPSIS method will assign weight to each objective in the
calculation process where the selection of the weight has higher
requirements on the experience and knowledge of decision-
makers. To mitigate the influence of the decision-maker on the
final decisions, the paper uses the information entropy method to
determine the weight assigned to each objective by judging the
value deviation of each objective within a Pareto solution set. Given
a particular objective having a smaller value deviation within the
solution set, the influence of the objective value on the final
decision-making or the associated weight should be small.

Optimization of ESS Locations and
Operation
When the number and capacity of distributed ESS are
determined, their locations and import/export require to be
optimized. Given N ’ ESS being placed on the network, the
vector of optimization variables x comprises the ESS access
nodes denoted by x1,. . ., xN ’ and their active power at each
time step (t � 1, . . . , T) denoted by y(t−1)×N ’+1,. . ., yt·N ’ :

x � [x1, x2,/, xN ’ , y1,/, yN ’ ,/, yt·N ’+i,/, yT ·N ’] (36)

To restore the SOC of each ESS back to its initial SOC level at the
end of the time horizon, the active power of a particular ESS at the
final time step T is corrected by:

y(T−1)·N ’+i � −∑T−1
t−1

y(t−1)·N ’+i (37)

A flowchart describing the process of the improved multi-
objective PSO algorithm for the combined estimation of
location and capacity of distributed ESS is shown in
Supplementary Figure A6.

CASE STUDY

Simulation Case
The proposed improved multi-objective PSO based approach to
optimizing ESS capacity and locations within a 12.66 kV
distribution network is tested here based on the IEEE 24-bus
system (see Supplementary Figure A7) with associated network
parameters tabulated in Table 1. For detailed network topology
parameters (e.g., line parameters and node load), the reader is
referred to the standard calculation example in (Chang, 2012).

TABLE 1 | IEEE 24-bus based network parameters.

Parameter Bus/Branch Maximum
total network load

Maximum capacity of
generating units

Renewable energy
penetration rate (%)

Value 24/38 2.85 GW, 0.58 GVar 3.075 GVA 40
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Supplementary Figure A8 shows a typical daily curve of 15 min
average total network demand with a maximum of 2.85 GW and
0.58 GVar. In addition to the local generating units supplying a
maximum of 3.075 GW, the distribution network can import
from the 200 MW UHV AC supply and the 400 MW UHV DC
supply through nodes 17 and 6, respectively, as shown in
Supplementary Figure A7. The daily profile of the
normalized 15 min average power transfer across UHV
transmission lines is shown in Figure 3 where UHV
transmission line failures are presumed to occur around the
middle of the day. The total energy capacity of ESS connected to
each node is limited to 100 MWh, permitting an installation of
up to five 20 MWh ESS. The proposed optimization method
requires around 9.26 s to compute the optimal combination of
ESS capacity and locations within the network.

Impacts of PV Access on Voltage Stability
To investigate the impacts of distributed generation on the
voltage profile of the distribution network, four particular
nodes, e.g., nodes 2, 9, 17, and 21 in Supplementary Figure
A7, are selected here as the potential access points for distributed
PV plants with a total installed capacity of 1 GW. Presuming that
distributed PV plants export at their rated power, Figures 4, 5
compare the node voltage levels simulated without or with the PV
access at two particular network load levels (i.e., the demand
trough at time step 22 and the peak demand at time step 72),
respectively, showing that the integration of PV plants aggravates
the voltage deviation between nodes and reduces the overall
voltage stability of the distribution network.

The impact of the PV access on voltage stability is additionally
investigated based on the modelled PV power outputs on a typical
sunny day. The resulting daily voltage profiles of the four PV
access nodes are shown in Figure 6. Without the use of any
voltage control method, the voltage levels at the PV access nodes
17 and 21 would experience larger variations within a day and

exceed the upper and lower limits at some particular time steps.
The significant exceedance over the upper voltage limit at the
relevant PV access points is mainly caused by the reverse power
flow of the PV system which results in a voltage rise. Therefore,
when the voltage regulation is not performed, the DG access point
is prone to the voltage limit violation which threatens the safe and
reliable system operation.

Simulation Scenarios Design
To verify the effectiveness of the proposed ESS optimization
method, the following four scenarios are simulated to compare
the voltage profile of the network without the ESS support or
under the voltage regulation performed by distributed ESS

FIGURE 3 | A particular daily profile of the normalized power transfer
(p.u.) across UHV transmission lines.

FIGURE 4 | Node voltage levels (p.u.) simulated without or with the PV
access at off-peak time (t � 22).

FIGURE 5 | Node voltage levels (p.u.) simulated without or with the PV
access at peak time (t � 72).
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which are randomly configurated or optimised by the
proposed method:

Scenario 1: The distribution network with the PV integration
but without the ESS deployment;
Scenario 2: The ESS capacity is optimized but with randomly
selected locations within the network;
Scenario 3: The ESS capacity and locations within the network
are optimized by the proposed method;
Scenario 4: The operation of the optimized ESS given short-
circuit faults on UHV transmission lines.

Simulation Results
Impacts of ESS Deployment on Voltage Stability
The node voltage levels simulated in Scenarios 1 and 3 are
compared here to investigate the impacts of the ESS
deployment on voltage stability. Table 2 lists the optimal ESS
locations and sizes determined by the improved multi-objective
PSO algorithm. The distributed ESS with a total capacity of
around 95 MW, 220 MWh are located at three access nodes 4,
6, and 10. The ESS connected to node 4 has a capacity of
8.62 MW, 20 MWh while the ESS connected to nodes 6 and
19 both have a total capacity of 43.08 MW, 100 MWh. As shown
in Supplementary Figure A7, these ESS access nodes are
concentrated around the distribution area of the UHV DC
supply point.

The maximum and minimum node voltage levels across the
network without or with the ESS placement at each time step are
plotted in Figure 7. Without the ESS support in Scenario 1, the
upper and lower node voltage limits are violated for the majority of
the time. When the optimized ESS is placed on the network in
Scenario 3, the difference between the maximum and minimum
node voltage levels at each time step as well as the voltage
fluctuations within the day are reduced. In addition, the node
voltage levels across the network are well maintained within the
upper and lower limits. Figure 8 compares histograms of node
voltage levels across the network and across 96 15min time steps
between Scenarios 1 and 3. The node voltage levels in Scenario 3 are
shown to be more concentrated around the nominal value than
those in Scenario 1. The overall characteristics of node voltage
levels in the two Scenarios are summarized in Table 3. The
deployment of the optimised ESS is shown to not only reduce

TABLE 2 | Optimization results of ESS capacity and locations in Scenario 3.

Serial
number

Access
node

Power
capacity/MW

Energy
capacity/MWh

ESS1 4 8.62 20
ESS2 6 43.08 100
ESS3 10 43.08 100

FIGURE 7 | The maximum and minimum voltage levels (p.u.) across the
network without or with the ESS deployment in a day.FIGURE 6 | Daily voltage profiles of the four PV access nodes on a

typical sunny day.

FIGURE 8 | Histograms of node voltage (p.u.) across the network
without or with the ESS deployment in a day.
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the overall voltage deviation from the nominal level by about 30.3%
but also help to keep the node voltage within the limits, avoiding
the voltage limit violation in around 17.4% of the voltage samples.
The improvement of voltage stability in Scenario 3 illustrates the
effective voltage regulation performed by the optimized ESS.

The voltage profiles of the network simulated in Scenarios 1
and 3 during off-peak and peak periods (e.g., time steps 22 and
72) are compared in Figures 9, 10, respectively. Though
conventional generators can support voltage regulation, their
regulation capability is constrained by the ramp rate and
export limits. In addition, the conventional generators
distributed at some particular nodes cannot effectively deal
with the fluctuations of the network load and the UHV power
supply. When the network load is at a low level at time step 22,
nodes 1–4, 6, 14–16, 19, and 24 suffer from large voltage
deviations (see Figure 9) which cannot meet the network
voltage requirements. Though the lower voltage limit violation
is alleviated at peak time, the rise above the upper voltage limit at
node 6 increases (see Figure 10). The operation of the optimized
ESS can provide active support to the network and alleviate the
power fluctuations at UHV transmission access nodes, improving
the voltage stability of the network as shown in Figures 9, 10.

Impacts of ESS Optimization on Voltage Stability
The node voltage levels simulated in Scenarios 2 and 3 are
compared here to analyze the advantages of the proposed ESS
optimization method in voltage regulation over the unoptimized

ESS placement. Though considering the same number of ESS
access nodes and the same ESS capacity as those obtained by the
ESS optimization method in Table 2, the unoptimized method
randomly determines the ESS access nodes within the network,
e.g., nodes 3, 20, and 21 in Supplementary Figure A7, rather than
the optimized access nodes 4, 6, and 10. Table 4 summarizes the
overall characteristics of node voltage levels in Scenarios 2 and 3.
Though the ESS placed at randomly selected access nodes in
Scenario 2 slightly reduce the overall voltage deviation compared
to Scenario 1, the maximum/minimum node voltage level still
exceeds the upper/lower limit. (In total, 357 out of 2,304 voltage
samples violate the voltage limits in Scenario 2). When the ESS
are connected to the optimal access nodes in Scenario 3, the
overall voltage deviation is further reduced without any voltage
limit violation, showingmore effective voltage regulation than the
random ESS placement.

The daily variations of the maximum and minimum node
voltage levels across the network with the optimized or
random placement of ESS are plotted in Figure 11 where
the random placement results in the voltage limit violation
for most of the time while the optimized placement
maintains the node voltage within the upper and lower
limits. Figure 12 compares histograms of the node voltage
simulated based on the unoptimized or optimized ESS
placement. The node voltage based on the unoptimized
ESS placement shows a more spread distribution than

TABLE 3 | Overall characteristics of node voltage in Scenarios 1 and 3.

Items Voltage deviation∑N
i = 1

∑T
t = 1

∣∣∣∣Ui,t −U0
∣∣∣∣ Maximum voltage/p.u. Minimum voltage/p.u. Limit violation /Total

samples

Scenario 1 58.5084 1.0821 0.9231 401/2304
Scenario 3 40.7696 1.0500 0.9500 0/2304
Change −30.32% −0.0321 0.0269 −17.40%

FIGURE 9 | The voltage profile (p.u.) of the network without or with the
ESS deployment at off-peak time (time step 22).

FIGURE 10 | The voltage profile (p.u.) of the network without or with the
ESS deployment at peak time (time step 72).
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those based on the optimized placement. Therefore, the
voltage stability of the network cannot be effectively
improved when the ESS are randomly connected to the
network without the location optimization.

The voltage profiles of the network simulated in Scenarios 2
and 3 at two particular time steps 22 and 72 with different load

levels are compared in Figures 13, 14, respectively. The ESS
connected to different nodes have various regulation effects on
the power flow within the network. When the site selection is not
optimized, though imports/exports of access nodes can be
adjusted by the ESS, the regulation effect of the ESS is not
consistent with the direction of improving the voltage

TABLE 4 | Overall characteristics of node voltage in Scenarios 2 and 3.

Item Voltage deviation∑N
i =1

∑T
t =1

∣∣∣∣Ui,t −U0
∣∣∣∣ Maximum voltage/p.u Minimum voltage/p.u. Limit violation/Total samples

Scenario 2 55.7215 1.0818 0.9293 357/2,304
Scenario 3 40.7696 1.0500 0.9500 0/2,304

FIGURE 11 | Themaximum andminimum voltage levels (p.u.) across the
network with the random or optimized ESS placement in a particular day.

FIGURE 12 | Histograms of node voltage (p.u.) across the network with
the random or optimized ESS placement in a particular day.

FIGURE 13 | The voltage profile (p.u.) of the network with the random or
optimized ESS placement at off-peak time (time step 22).

FIGURE 14 | The voltage profile (p.u.) of the network with the random or
optimized ESS placement at peak time (time step 72).
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regulation of the network due to the influence of their locations
within the network. Therefore, the proposed ESS optimization
method with its advantages of access location optimization plays
a significant role in voltage regulation.

Emergency Power Supply by ESS Under Fault
Conditions
To examine the ESS role in voltage regulation and power support
under fault conditions, the ESS operation and the resulting
voltage profile of the network are simulated when short-circuit
faults are assumed to occur on the UHV transmission at time step
52 in Scenario 4. The fault occurrence forces the total UHV
transmission power which would otherwise supply 240.6 MW to
zero (see Figure 3). The power outputs of generating units on the
network before UHV transmission failures and the ESS operation
during fault occurrences are shown in Figure 15. To maintain the
normal system operation before fault occurrences, the generating
unit export is kept at such a high level that the generating unit sets
at nodes 1, 2, 15, 16, and 18 reach their respective maximum
allowable export limits and have no spare regulation capacity to
deal with a power shortage. When the UHV transmission failures
happen, the significant drops in the power injections of nodes 6
and 17 have certain impacts on power transfers across the lines
connected to them. Since the generating unit sets with certain
headroom in the regulation capacity are located at specific
nodes, they cannot completely support the voltage regulation
while the voltage profile of the network without the ESS
operation would suffer from large variations as shown in
Figure 16. To assist in the emergency power supply and the
stable network operation during the fault period, Figure 15
shows that the ESS at nodes 6 and 10 export at their rated power
to mitigate the impacts of UHV transmission failures on the
power flow distribution within the network while the ESS at
node 4 imports at its rated power to reduce the power

fluctuation of the associated line, both helping to improve
the voltage stability of the network (see Figure 16).

CONCLUSION AND FUTURE WORK

This paper has proposed an improved multi-objective particle
swarm optimization (PSO) based method to estimate the best
combination of sizes and locations of distributed energy storage
systems (ESS) that effectively support the voltage regulation of a
distribution network with PV access. The improved multi-
objective PSO algorithm produces an optimal Pareto solution
set by minimising a weighted sum of the overall deviation
between the voltage profile of the network and the nominal
level across the time horizon and the energy capacity of ESS
reflecting their investment. The adaptive adjustment of inertia
weight and the cross-mutation operation have been introduced
into the improved PSO algorithm to avoid falling into local
optimal solutions while the dynamic dense distance of the
particle has been employed to update the Pareto solution set
in each iteration. Compared with the traditional PSO algorithm,
the improvements have shown superiority in computation speed
and permitted considering the voltage offset. Then the
information entropy based technique for order of preference
by similarity to ideal solution is used to determine the optimal
access scheme of distributed ESS from the Pareto solution set,
reducing the impact of decision-makers’ preference.

The effectiveness of the proposed ESS optimization method
has been assessed by comparing voltage profiles of the modified
IEEE 24-bus network without the ESS deployment or with the
random or optimized ESS placement. Though the randomly
placed ESS can slightly reduce the overall node voltage
deviation from the nominal level, the upper and lower limits
on the node voltage are still violated. When the ESS are connected

FIGURE 15 | Power outputs (MW) of generating units before UHV
transmission failures and discharge (+ve) and charge (−ve) rates (MW) of ESS
during fault occurrences.

FIGURE 16 | The voltage profile (p.u.) of the network without or with the
ESS operation during UHV transmission failures (time step 52).
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to the optimized nodes around the access point of the ultra-high-
voltage DC power supply, the overall node voltage deviation is
largely reduced while the voltage limit violation is completely
avoided in this work. The optimized deployment of distributed
ESS has effectively coped with nodal power fluctuations caused by
variations of local demand and PV generation and also supported
the voltage regulation of the network to the maximum extent and
the emergency power supply during ultra-high-voltage
transmission failures.

Building on the present work, the proposed ESS optimization
method will be applied to an expanded power system with more
nodes and lines, finding the most suitable capacity and
installation locations of distributed ESS for the system.
Furthermore, the proposed method will be further examined
based on the practical network operation of cities or provinces
with high renewable energy penetration rates (e.g., “Three North
regions” in China). Moreover, the follow-on research will address
the location and capacity determination for grid-side ESS with
high proportion of wind power connected to the distribution
network.
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