
Data-Driven-Based Forecasting of
Two-Phase Flow Parameters in
Rectangular Channel
Qingyu Huang*, Yang Yu*, Yaoyi Zhang, Bo Pang, Yafeng Wang, Di Chen and Zhixin Pang

Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu, China

In the current nuclear reactor system analysis codes, the interfacial area concentration and
void fraction are mainly obtained through empirical relations based on different flow regime
maps. In the present research, the data-driven method has been proposed, using four
machine learning algorithms (lasso regression, support vector regression, random forest
regression and back propagation neural network) in the field of artificial intelligence to
predict some important two-phase flow parameters in rectangular channels, and evaluate
the performance of different models through multiple metrics. The random forest
regression algorithm was found to have the strongest ability to learn from the
experimental data in this study. Test results show that the prediction errors of the
random forest regression model for interfacial area concentrations and void fractions
are all less than 20%, which means the target parameters have been forecasted with good
accuracy.
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INTRODUCTION

In various industrial equipment of nuclear power systems, gas-liquid two-phase flow phenomenon is
widespreaded. Research on the two-phase flow plays an important role in improving the safety and
operational reliability of evaluation system equipment. At present, in traditional commercial nuclear
reactor system safety analysis softwares such as Reactor Excursion and Leak Analysis Program
(RELAP) 5 (Martin, 1995) and CATHARE (Barre and Bernard, 1990), two-fluid models are widely
used in the two-phase flow and heat transfer processes. In order to improve the calculation accuracy
of the two-fluid model, it is necessary to provide more accurate closure models for the two-fluid
model, and the interface transport term must be accurately simulated (Guo, 2002). The interface
transport term can be expressed as the product of the interfacial area concentration and interfacial
transport driving force where the interfacial area concentration is defined as the interfacial area per
unit mixture volume, which represents the effective area for mass-energy exchange between different
phases. For two-phase flow system, the interfacial area concentration and void fraction are also two
of the most important parameters.

In view of the importance of parameters such as the interfacial area concentration, a variety of
measurement methods have been developed to obtain experimental data, such as probe method,
high-speed camera method, chemical method, etc., and different types of empirical correlations have
been established based on a large amount of data (Ishii, 1975; Kocamustafaogullari and Ishii, 1995;
Su, 2013). However, the scope of application of these empirical correlations is relatively limited.
Moreover, the acquisition of experimental data is costly with typical local features.
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In recent years, with the continuous development of computer
hardware, computing power as well as data collection and storage
technology, artificial intelligence technology has made a
qualitative leap in emerging applications and development in
various fields. However, in the field of engineering, especially
nuclear engineering, the application of data-driven methods,
whether it is fault diagnosis, equipment health management or
other aspects, is still subject to certain restrictions. There are
many prediction and analysis methods based on data-driven
routes, including machine learning, deep learning, information
fusion, statistical analysis methods, signal processing analysis
methods, etc. (Gammerman, 1996).

Machine learning (including deep learning), as known as
the cornerstone of artificial intelligence technology, has
become a popular research field in recent years.
Implementation of machine learning completely starts
from collecting operating parameters, constructing data
analysis models through the learning of historical data,
and then is conducted by using the trained models to give
a predicted output for the actual input parameters. A review
of the research and development status of learning-based
methods used in reactor health and management, radiation
detection and protection, as well as optimization illustrated
that, at present, more and more researchers in various fields
of nuclear science are showing enthusiasm for the data-driven
parameters or states predictions, and these methods have
become more practical with the rising of deep learning and
other techniques in the past decade (Gomez-Fernandez et al.,
2020). The most important application of machine learning
in reactor health management is to use sensor data for
parameter prediction and state classification to perform
tasks such as stateful inspection, fault diagnosis, and life
prediction control. Among them, Tennessee Valley
Authority Sequoyah Nuclear Plant uses the artificial neural
network to determine the variables that affect the heat rate
and thermal performance (Guo and Uhrig, 1992). Advanced
optimization algorithms are used to estimate local power
peaking factor estimation in nuclear fuel (Montes et al.,
2009). Nuclear reactor thermal-hydraulic research area has
also shown interests in the application of machine learning:
for instance, flow regime identification (Tambouratzis and
Pàzsit, 2010), prediction of two-phase mixture density
(Lombardi and Mazzola, 1997) and expert decision support
systems trained by deep neural networks/long short-term
memory which is developed to predict the progression of
LOCA (Radaideh et al., 2020).

The data-driven method is more desired where the prediction
task is more complex due to the enhancement of the data
availability and reduce computational difficulty in some cases.
In the present work, data-driven method is introduced in
predicting two-phase flow parameters in rectangular channels,
namely interfacial area concentration and voidfraction, by using
four machine learning models: lasso regression, support vector
regression, random forest regression and back propagation neural
network. Additionally, the performance of four models for
different parameters prediction will be discussed and
compared in the present work. The remaining sections of this

paper are organized as follows: SectionData Acquisition describes
the experimental equipment and the process of data acquisition.
The algorithms adopted in this paper are presented in Section
Algorithm. The methods and test results of this paper are
presented in Section Methodology. The result is further
analyzed and discussed in Section Discussion. The conclusions
drawn from this study are given in Section Conclusion.

DATA ACQUISITION

Introduction to the Experimental System
This experimental platform is shown in Figure 1, which can carry
out the research of the vertical air-water two-phase flow in the
channels with various cross-sectional area under normal
temperature and pressure conditions. Figure 1 is a schematic
diagram of the experimental system, and Figure 2 is the scene
photo of the experimental system.

The experimental platform is mainly composed of water
supply system, air supply system, air-water mixer,
experimental section, instrumentation, and data acquisition
system. The main part of experimental device is a rectangular
channel with the total length of the experimental section about
1,500 mm and the channel size of 66 × 6 mm. The experimental
section is all processed and bonded with transparent acrylic
material for experimental observation. Four pressure
measuring setpoints are distributed in the axial position,
namely the entrance and three positions of the impedance
void meters. The experiment uses three sets of electrodes as
the void meters, and the measurement data can also be used for
flow pattern identification and calibration. Conductivity probes
are arranged at the position of the void meters to obtain local
physical parameters such as the interfacial area concentration,
void fraction, and bubble velocity. In order to provide a clear and
intuitive explanation for the measurement data of the void meters
and the conductivity probe, a high-speed camera is placed near
the void meters and the conductivity probes. The probe
measuring setpoints are arranged in the radial position with
30 ∼ 31 measuring setpoints, and the measuring setpoint
arrangement positions are shown in Figure 3, where X
represents the radial distance of the probes.

The specific experimental parameter ranges are shown in
Table 1 and the range of experimental conditions is shown in
Figure 4. The experimental conditions are obtained by different
flow regime. Black dots represent bubbly flow, red dots represent
slug flow, green dots represent churn-turbulent flow, and blue
dots represent annular flow. As far as the maximum uncertainty
of the experiment is concerned, the values of liquid flow
measurements, gas flow measurements, probe voltage
acquisition, probe tip size measurements, and void meters are
3.2, 2.45, 1.23, 2 and 2.01%, respectively.

ALGORITHM

This chapter introduces the machine learning algorithms and
principles used in this research, including lasso regression
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(LR), support vector regression (SVR), random forest
regression (RFR) and back propagation neural network
(BPNN).

Lasso Regression
Multiple linear regression refers to the study of the influence of
changes in independent variables x1, x2, . . . , xm on dependent
variable y. The model can be expressed as:

y � β0 + β1x1 + β2x2 +/ + βmxm + ε, (1)

where β0, β1, β2, . . . , βm are unknown coefficients and ε is the
independent identically distributed normal error.

In order to solve Eq. 1, methods such as least squares are
usually used to estimate the parameters of the regression model
from the perspective of error fitting, and the optimization goal
can be expressed in matrix form as:

FIGURE 1 | Schematic diagram of the experimental loop system.

FIGURE 2 | A photograph of experimental system.

FIGURE 3 | The schematic of probe measuring setpoints in the radial
position.
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β* � argminβ

1
m

����y − Xβ
����2 (2)

However, the least squares method still has some
shortcomings when facing multiple input features, for instance
its unbiased estimation characteristics will lead to large variance.
Lasso regression (least absolute shrinkage and selection operator)
was proposed by Robert Tibshirani in 1996 based on Leo
Breiman’s non-negative garrote (Breiman, 1995; Tibshirani,
1996). It is a shrinkage estimation algorithm and its basic idea
is to minimize the residual sum of squares under the constraint
that the sum of the absolute values of the regression coefficients is
less than a constant, and to reduce the non-zero components in
the regression coefficients, thereby improving the accuracy of the
prediction and the interpretability of the regression model. The
objective equation of the lasso algorithm is:

β* � argminβ

1
m

����y − Xβ
����2 + λ

����β���� (3)

where y is target variable, β is regression coefficient vector, X is
the data matrix corresponding to explanatory variables and λ is
the penalty parameter. Lasso regression is a quadratic
programming problem that the solving algorithms include
shooting algorithm, homotopy algorithm, etc.

Support Vector Regression
Support vector machine was originally used to deal with pattern
recognition problems (Vapnik, 1998), but its sparse solution and
good generalization make it suitable for regression problems. The
generalization from SVM to SVR is accomplished by introducing
an ε-tube, which reformulates the optimization problem to find
the best approximation of the continuous-valued function, while
balancing complexity and prediction error of prediction model.
For nonlinear support vector machine regression, the basic idea is
to map the data x to the high-dimensional Hilbert space ϕ(x)
through a nonlinear mapping ϕ, and seek the regression linear
hyperplane in this space, thereby solving the highly non-linear
problems in the low-dimensional space. The linear model in the
high-dimensional feature space is constructed as follows:

f (x) � 〈w · ϕ(x)〉 + b, (4)

where w is the weight vector, b is the bias constant and 〈w · ϕ(x)〉
is the inner product of the feature space. The optimal hyperplane
regression estimation function is converted as follows:

f (x) � ∑n

i�1(ai − a*i )k(xi, xj) + b, (5)

where ai and a*i are lagrange multipliers, k(xi, xj) � ϕ(xi) · ϕ(xj)
is kernel function. The types of kernels include polynomial kernel,
Gauss radial basis function kernel, and sigmoid kernel, etc. while
radial basis function kernel (RBF kernel) is selected as the kernel
function in the present study because in some researches RBF
kernel has been pointed out be appropriate for nonlinear systems,
which is expressed as (Zhang and Li, 2006):

k(xi, xj) � e−(‖xi−xj‖2÷σ2) (6)

Random Forest Regression
Random forest is an ensemble algorithm proposed by Breiman in
2001 (Breiman, 2001a; Breiman, 2001b). In general, the random
forest shown in Figure 5 is composed of multiple CART decision
trees, which conducts classification or regression through bagging
(bootstrap aggregating). The main idea of random forest
regression method (RFR) is to extract multiple samples from
the original sample, build a decision tree for each sample, and
then use the average of all decision tree predictions as the final
prediction result. RFR was pointed out that it has the advantages

FIGURE 4 | Schematic diagram of experimental conditions.

FIGURE 5 | The structure of Ramdom Forest.

TABLE 1 | Experimental parameters of the rectangular channel.

Experimental section Rectangle

Pipe size w × s/mm 6 × 66
Length L1/mm 1,500
Measuring point location L2/mm 266, 926, 1,482
Superficial gas velocity (jg) m/s 0–10
Superficial liquid velocity (jf ) m/s 0–3
Temperature Ambient temperature
Pressure Ordinary pressure
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of fast training speed, strong adaptability to high-dimensional
data sets, and strong robustness in the face of noise (Segal, 2004).

In principle, the random forest regression (RFR) is composed
of a set of sub-decision trees {h(x, θt), t � 1, 2, 3, . . .T}, where θt
is a random variable subject to independent and identical
distribution, x represents the independent variable, and T
represents the number of decision trees.

RFR uses the results of integrating multiple decision trees to
take the mean value of {h(x, θt)} as the regression prediction
result to eliminate the problems of overfitting and low precision
of the decision tree model. The result is expressed as

h(x) � 1
T
∑T

t�1{h(x, θt)} (7)

The RFR algorithm implementation process is as follows:

(1) Bagging is used to randomly generate sample subsets.
(2) Use the idea of random subspace by randomly extracting

features, splitting nodes and building a regression sub-
decision tree.

(3) Repeat the above steps to construct T regression decision
subtrees to form a random forest (Pruning and other human
intervention is not allowed in the process).

(4) Take the predicted values of T sub-decision trees and take the
mean as the final prediction result.

Back Propagation Neural Network
Artificial neural network is a widely parallel interconnected
network composed of adaptable simple units; its organization
can simulate the interactive response of the biological neural
system to real world objects (Kohonen, 1988). In the development
of artificial neural networks, the error back-propagation
algorithm occupies an important place (McClelland et al.,
1986). The network based on this algorithm is referred to as
BP network, which consists of one input layer, at least one hidden
layer, and one output layer. The usually constructed BP neural
network is a three-layer network. For regression prediction, the
output layer usually has only one neuron.

Given the training set D � {(x1, y1), (x2, y2), . . . , (xm, ym)},
where xi ∈ Rd , yi ∈ R. Figure 6 shows a BP neural network
with d input neurons, one output neuron, and q hidden layer
neurons. The threshold of the output layer neuron is represented
by θ, and the threshold of the h-th neuron in the hidden layer is
represented by ch. The connection weight between the i-th
neuron in the input layer and the h-th neuron in the hidden
layer is vih, and the connection weight between the h-th neuron in
the hidden layer and the output layer neuron is ωh. The input
received by the h-th neuron in the hidden layer is αh � ∑d

i�1vihxi,
and the input received by the output layer neuron is
β � ∑q

h�1ωhbh, where bh is the output of the h-th neuron in
the hidden layer.

For training example (xk, yk), assuming that the output of the
neural network is ŷk ∈ R, that is

ŷk � f2(β + θ) (8)

Then the mean-square error of the network on (xk, yk) is

Ek � 1
2
(ŷk − yk)2 (9)

For the hidden layer, we have

bh � f1(αh + ch) (10)

where f1(·) and f2(·) are both activation functions. In
consideration of regression prediction, f1(·) in ourstudy is
ReLU function, i.e.

f1(x) � max(0, x) (11)

The function f2(·) is preferable to the purelin function, i.e.

f2(x) � x (12)

The BP algorithm is based on a gradient descent strategy and
adjusts the parameters in the direction of the negative gradient of
the target. For the error Ek, given the learning rate η, we have

Δωh � −η zEk

zωh
� η(yk − ŷk)f1(αh + ch) (13)

Δθ � −η zEk

zθ
� η(yk − ŷk) (14)

Δvih � −η zEk

zvih
� η(yk − ŷk)ωhf ′1(αh + ch)xi (15)

Δch � −η zEk

zch
� η(yk − ŷk)ωhf ′1(αh + ch) (16)

The flow of BP algorithm is as follows:

(1) Set the network structure, input layer, hidden layer, output
layer and learning rate η, where the output layer node
number is set to 1;

(2) Randomly initialize the connection weight vih, ωh and the
threshold ch, θ in the network within the range of (0, 1);

(3) Randomly select a training sample (xk, yk), and calculate the
output ŷk of the current sample according to the current
parameters and Eq. 8;

FIGURE 6 | Basic structure of BP neural network.
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(4) Calculate the weight correction Δωh, Δvih and the threshold
correction Δθ, Δch according to Eqs 13–16;

(5) Update connection weights and thresholds:

ωh ←ωh + Δωh,

vih ← vih + Δvih,
θ← θ + Δθ,

ch ← ch + Δch.

(1) Go back to step 3) until all the training data are input;
(2) Go back to steps 2)–6) until the stop condition is reached.

METHODOLOGY

Data Preprocessing
In two-phase flow, considering the difference between the
bubbles of different shapes and sizes, the bubbles were usually
categorized into two bubble groups: group-I represents small-
dispersed and distorted bubbles, whereas group-II represents cap/
slug/churn-turbulent bubbles. (Ishii et al., 2002). Therefore, the
interfacial area concentrations and void fractions are described by
different bubbles characteristics of group-I and group-II
respectively. The present research is based on real
experimental measurement data that selects the axial distance
Z, the radial distance X, superficial gas velocity Jg and superficial
liquid velocity Jf as input features, and takes group-I interfacial
area concentration, group-II interfacial area concentration,
group-I void fraction, and group-II void fraction as outputs.

Since the units and dimensions of each input parameter are
not the same, the data needs to be standardized before modeling.
In this study, the mean variance normalization method was used
to make the processed data set conform to the standard normal
distribution, with a standard deviation of 1 and a mean of 0. The
specific formula is as follows:

dnorm � (d − μ)/σ, (17)

where dnorm is the standardized data set, d is the original data set,
μ is the average value, and σ is the standard deviation.

Model Performance Metrics
In this study, the coefficient of determination (R2), the root-
mean-square error (RMSE) and the coefficient of variation (CV)
were selected as evaluation indicators of model performances.
Supposing a series of data sets y1, . . . , yn includes n data points,
and their corresponding model prediction values are p1, . . . , pn.

The expression of the coefficient of determination R2 is

R2 ≡ 1 − ∑i(yi − pi)2∑i(yi − y)2 , (18)

where the closer the value of R2 is to 1, the better the effect of
model fitting.

The expression of RMSE is

RMSE �
������������
1
m

∑m
i�1

(yi − pi)2√
, (19)

where m represents the number of samples, and the smaller the
value, the smaller the error between the model prediction result
and the true value.

In order to introduce the concept of percentage error rate to
further explore the performance of the model, this paper selects
the coefficient of variation (CV) to describe the model. The
expression of the CV is

CV �
����������������
(1/m)∑m

i�1(yi − pi)2√
y

× 100% (20)

When describing the model, the CV for a model aims to
describe the model fit in terms of the relative sizes of the squared
residuals and outcome value. The range of CV is between 0 and
100%. The smaller CV is, the more accurate the prediction of the
model is.

Hyperparameters Tuning
In this study, the hyperparameter tuning process of four
different models is implemented from using grid search

TABLE 2 | The selected hyperparameters for each output.

Model Hyperparameters Group-I interfacial
area concentration

Group-II interfacial
area concentration

Group-I void
fraction

Group-II void
fraction

LR Regularization parameter λ 0.1 0.0001 0.0001 0.0001
RFR Number of trees 50 100 50 150
RFR The maximum depth of the tree 11 11 11 11
RFR Random state 9 7 5 9
SVR Kernel function Rbf Rbf Rbf Rbf
SVR Kernel coefficient 0.1 0.1 0.0556 0.1
SVR Regularization parameter 100 100 100 94.74
SVR Size of the kernel cache (MB) 50,000 50,000 50,000 50,000
BPNN Batch size 256 512 512 512
BPNN Epochs 200 300 150 200
BPNN Processing units 128 128 128 128
BPNN Learning rate 0.05 0.05 0.001 0.001
BPNN Activiation function ReLU ReLU ReLU ReLU
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method. The basic principle is to divide the interval of each
parameter variable value into a series of small areas, and
calculate the corresponding the target value (error in usual)
determined by the combination of each hyperparameter
variable values, and select the best one by one to obtain the
minimum target value in the interval and its corresponding
optimal hyperparameter. This method ensures that the search
solution obtained is globally optimal or close to optimal. The
hyperparameters optimization process in this study also
considers the limits of the accuracy of the running results
and the computational efficiency. However, the calculation
time is not included in the model metric in this study.

For LR regression, the regularization parameter λ from Eq.
3 is considered to be the most important indicator that affects
the accuracy of the model. In theory, the larger the
regularization parameter, the stronger the model’s
robustness against collinearity. However, if the
regularization parameter is selected too big, all parameters
β will be minimized, resulting in under-fitting. If the
regularization parameter is selected too small, it will lead
to improper solution to the over-fitting problem. When
predicting the four sets of two-phase flow parameters, in
order to expand the search for the appropriate range of λ,
50 sets of λ were selected for model optimization: an

arithmetic sequence between 0.0001 and 0.1 (including 25
numbers) and an arithmetic sequence between 0.1 and 100
(including 25 numbers).

For the RFR model, the number of trees in the forest, the
maximum depth of the tree and random state are commonly
considered to be the key parameters that affect the performance
of the model. Due to the few dimensions of input variables in this
study, another hyperparameter that is often considered, namely
the number of features to consider when looking for the best split,
defaults to the maximum value 4 in this study. The three
hyperparameters mentioned above are optimized using grid
searchwith bounds selected as:

• the number of trees with bound: 50–250
• the maximum depth of the tree: 7–12
• random state: 1–12

For the SVRmodel, the kernel function is the RBF kernel which
is better for nonlinear problems. Three major hyperparameters are
also optimized using grid search with bounds selected as follows:

• Kernel coefficient with bound: 0.001–0.1
• Regularization parameter with bound: 0.1–100
• Size of the kernel cache (MB): 10,000–50,000

FIGURE 7 | Prediction of the group-I interfacial area concentration using four models and comparison with target values. (A) LASSO. (B) RFR. (C) SVR (D) BPNN.
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Last but not least, for BPNNmodel, five major hyperparameters
are optimized using grid search with bounds selected as follows:

• Batch size with bound: 512–1,024
• Epochs with bound:150–500
• Processing units: 64–128
• Learning rate: 0.001–0.05
• Activiation function: ReLU

The results of the optimum architecture of four models are
listed in Table 2. It is worth mentioning that we directly selected
ReLU, a piecewise linear function which is proven to be most
effective for BP-NN (Nair and Hinton, 2010).

Model Training, Validation and Testing
The calculations of models were performed using an Apple laptop
with Mac OS system (version 10.15), core Intel i5 5257U, 8 GB of
RAM, and Intel Iris Graphics 6100 card with 1536 MB of the
RAM. The utilization and implementation of the models in this
study are done in the Python environment (Van Rossum and
Drake, 1995).

For common machine learning problems, the data should be
divided into training set, validation set and test set. The training
set is used for model fitting, the validation set is used to adjust the

hyperparameters of the model to prevent the model from
overfitting and to make an initial assessment of the model’s
ability, and the test set is used to evaluate the generalization
ability of the final model. In this study, all data were first divided
into training set and test set at a ratio of 9:1. Cross-validation is
selected as the method of model validation in the present work.
Compared with the ordinary way with fixed validation set, cross-
validation (Kohavi, 1995) contributes to obtain as much effective
information as possible from the limited learning data. In general,
the principle of cross-validation is to learn training samples from
multiple directions, which can effectively avoid falling into local
minimums and to a certain extent avoid over-fitting problems. In
this study, the K-fold cross-validation method is used to achieve
cross-validation whose idea is to divide the training set into k sub-
samples, where a single sub-sample is retained as the data for the
validation model, and the other k-1 samples are used for training.
Cross-validation is conducted by repeating k times and each sub-
sample is validated once. Hence, mean value of k-times’
validation, or other combination methods are used to obtain a
single final estimate. In this study, the most used cross validation
method, namely 10-fold cross-validation was selected
(McLachlan et al., 2005). In this study, assuming that a group
of corresponding inputs and outputs are regarded as a data set,
the number of data sets is 3,146 in total.

FIGURE 8 | Prediction of the group-II interfacial area concentration using four models and comparison with target values. (A) LASSO. (B) RFR. (C) SVR (D) BPNN.
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DISCUSSION

In the previous section, the route that four two-phase flow
parameters obtained from rectangular channel experiments are
modeled and predicted by LR, RFR, SVR, and BPNN is
introduced in detail. Figures 7–10 respectively show the
comparison between a part of the test set data and its
corresponding real data. The blue line is the target data, that
is, the true value while the orange-red line is the predicted value
generated by the model. Each figure shows the comparison of the
predictive capabilities of the four models for a single output. The
unit of interfacial area concentration is 1/m, and void fraction is a
dimensionless parameter.

A phenomenon that can be clearly judged from the results
shows that although each picture only takes 50 test set points
(about 1/6 of the total number of test sets) and the corresponding
real values for visual display, a strong nonlinear characteristic is
still showed by the real data set. It can be seen from Figures 7–10
that the predictive ability of LR is far inferior to the other three
models. As a type of linear regression shipped with L1
regularization, one of the most crucial advantages of LR over
non-linear models is LR usually performs great if the independent
variables are linearly correlated with the dependent variable.
However, non-linearity and scattered data features are
obviously very disadvantageous and difficult for the LR

algorithm because of its difficulty to capture the nonlinearity
of dataset.

The performance of four models was measured by three
metrics: R2, RMSE and CV which are listed in Table 3. From
the general distribution of the data, all models have significantly
better predictive ability for group-I interfacial area concentration
than group-II interfacial area concentration. Similarly, the
predictive ability of all models for group-I void Fraction is
significantly better than group-II void fraction. This
phenomenon is consistent with the basic mechanism of two-
phase flow, that is, the shape and size of the bubbles at the first
interface are usually more regular and easier to predict than the
bubbles at the second interface.

From the comparison of R2 in Table 3, SVR and BPNN are
significantly weaker than RFR in explaining experimental data
in the present work. For the support vector regression, the
prediction error CV of the model for the four outputs is in the
range of 26–48%, reflecting that there is still a certain gap
between its prediction performance and actual experimental
data. It is undeniable that the main advantages of SVR are that
its computing power and complexity which do not depend on
the dimensionality of the input space, its flexibility in dealing
with nonlinear data, and its stability in dealing with slight
changes in data (Awad and Khanna, 2015). However, one of the
most prominent drawbacks of SVR is, for samples with

FIGURE 9 | Prediction of the group-I void fraction using four models and comparison with target values. (A) LASSO. (B) RFR. (C) SVR (D) BPNN.
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discordant distributing complexities, the selection of
reasonable parameters is very challenging (Liu et al., 2014),
which is considered as the reason that SVR is not very
satisfactory in terms of the data set fitting ability in the
present research.

Finally, the twomodels RFR and BPNN are compared by using
three metrics mentioned above. Although the interpretation of
the data set by the two models is within an acceptable range, the
prediction of the four outputs by RFR shows obviously higher
accuracy rate. Although the neural network has a strong function
approximation ability by preferentially fitting samples with
higher discreteness in the data fitting process to achieve
reduction in shavedness, but the learning ability of a single

learner is always limited. By contrast, random forest, which
belongs to ensemble learning, uses voting to solve the weak
learning ability of a single learner and greatly improves the
robustness of the model. For the prediction of the two sets of
interfacial area concentrations, the errors of the RFR model are
15.47% and 19.49% while for the two sets of void fractions, the
prediction errors of the RFR model are 9.62% and 17.26%.
Moreover, it is worth mentioning that in the process of data
preprocessing, the RFR requires simpler process, and the data
required by its model does not need to be scaled. Because the
numerical scaling does not affect the split point positions of the
tree structure as well as the structure of the tree model. Moreover,
the tree model cannot perform gradient descent because the tree

FIGURE 10 | Prediction of the group-II void fraction using four models and comparison with target values. (A) LASSO. (B) RFR. (C) SVR (D) BPNN.

TABLE 3 | The learning ability of the four models derived from the test set in terms of four two-phase flow parameter changes.

Metrics Group-I interfacial area
concentration

Group-II interfacial area
concentration

Group-I void fraction Group-II void fraction

R2 RMSE CV R2 RMSE CV R2 RMSE CV R2 RMSE CV

LR 0.0625 94.35 56.48% 0.2533 19.83 75.50% 0.7767 0.046 38.17% 0.5273 0.078 87.60%
RFR 0.9296 25.85 15.47% 0.9464 5.31 19.29% 0.9858 0.012 9.62% 0.9817 0.015 17.26%
SVR 0.7932 44.31 26.53% 0.7016 12.54 47.85% 0.8168 0.041 34.57% 0.8645 0.042 46.90%
BPNN 0.8536 37.29 22.32% 0.8201 9.73 37.16% 0.9271 0.026 21.81% 0.9308 0.030 33.53%
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model is constructed to find the best points by finding the optimal
split points. Therefore, the tree model is stepped with non-
differentiable step points, that means, the tree-structure model
does not need to be normalized. In general, it is the distribution of
the variables and the conditional probability between the
variables instead of the values of the variables matter in tree-
structure model. But for neural networks, the different feature
ranges of the data will lead to catastrophic consequences such as
gradient explosions. Consequently, the random forest regression
algorithm shows robustness and effectiveness by taking
advantage of the ‘wisdom of the crowds’ compared to other
models in the present study. However, according to the
mechanism of random forest regression in Section Random
Forest Regression, the random forest regression model can only
predict the data between the highest and lowest labels in the
training data. For situations where the training and prediction
inputs differ in their distributions, which named covariate shift
(Tsuchiya et al., 2015), the characteristics of random forests that
its disability to extrapolate will cause the attribute weights of its
prediction outputs to be questionable. Therefore, it can be
concluded that the explanatory and predictive capabilities of
the random forest regression model for interfacial area
concentration and void fraction in this study are better than
those of the other three models, but whether the generalization
ability of this model can be adapted to other working conditions
still requires further exploration to verify. In addition, it is worth
mentioning that, since the data used in this experiment is
obtained from a rectangular channel of one size, this means
that the size of the rectangular channel is not an input variable in
this article. Therefore, it is unclear whether the generalization
ability of the model obtained in this study can be applicable in
rectangular channels of other sizes, which will be further explored
in future research.

CONCLUSION

As an important cornerstone of artificial intelligence technology,
machine learning has been widely used in many industries and
various fields. The goal of this research is to explore the
calculation of two-phase flow parameters based on data-driven
methods in rectangular channels. In the paper, the four models,

namely lasso regression, support vector machine regression,
random forest regression and back propagation neural
network regression were compared to mine and analyze the
data collected through experiments, and the interfacial area
concentration and void fraction were analyzed and predicted
through the four models. It is found that the random forest
regression is the most prominent algorithm among the four
algorithms in terms of prediction accuracy, and meanwhile
has strong anti-noise ability and good adaptability to
nonlinear data. The prediction errors of four parameters
including group-I interfacial area concentration, group-II
interfacial area concentration, group-I void fraction and
group-II void fraction predicted by the random forest
regression are: 15.47, 19.29, 9.62 and 17.26%, respectively. In
the future, data-drivenmethods are expected to be further applied
in the prediction of other parameters of different flow conditions
in rectangular channels, and the computational accuracy and
efficiency of data-driven models could be improved further which
shows the possibility of reducing the cost of experiment and
replacing mechanical models in the nuclear reactor system safety
analysis codes.
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