
The Driving Factors of Carbon
Emissions in China’s Transportation
Sector: A Spatial Analysis
Xingbo Xu1,2* and Haicheng Xu1,2

1School of Economics and Management, Chang’an University, Xi’an Shaanxi, China, 2Traffic Economics Institute, Chang’an
University, Xi’an Shaanxi, China

Studies on the CO2 emissions from the transportation sector in China are increasing, but
their findings are inconclusive. The main reason is that the spatial correlation of CO2

emissions from the regional transportation sector has been ignored in examinations of the
driving factors of CO2 emissions from this sector. In this paper, new emission factors are
adopted to calculate the CO2 emission levels from the transportation sector in Chinese
provinces. By fully considering the spatial correlation of regional CO2 emissions and based
on a two-way Durbin model incorporating both spatial and temporal fixed effects, the
driving factors of CO2 emissions from the transportation sector in China are studied. The
CO2 and spatial regression results for the transportation sector in China suggest the
following: 1) Most of the regions with the highest CO2 emissions from the Chinese
transportation sector are located on the east coast; they have gradually expanded
over time to include the central and western regions. 2) The CO2 emissions from the
transportation sector are higher in South China than in North China, and the regions with
higher CO2 emissions have gradually shifted from north to south. 3) Transportation activity
intensity, urbanization level, technological level, industrial structure and per capita GDP
greatly impact CO2 emissions from the transportation sector in each province of China.
Among these factors, transportation activity intensity, urbanization level, and per capita
GDP exert not only direct effects but also indirect effects, whereas technological level and
industrial structure exert only direct effects.

Keywords: China’s transportation sector, CO2 emissions, driving factors, direct effects, indirect effects

INTRODUCTION

Forty years after the reform and opening up, the economic development of China has achieved
world-renowned achievements. The advancement of the transportation industry has played a
substantial role in promoting economic development. China has the world’s largest
transportation infrastructure, including highway and railway networks, which facilitates
urbanization and industrialization. However, while the demand for transportation services is
strengthening, the CO2 emissions from the transportation sector are increasing, resulting in
increasingly serious environmental pollution. In 2017, China’s transportation sector contributed
4.4% of the country’s GDP, but its energy consumption accounted for 9.8% of its total energy
consumption (Yearbook, 2018). The rapid growth of energy consumption in China’s transportation
sector over the past forty years has exacerbated its CO2 emissions, and the CO2 emissions growth rate
of its transportation sector is much higher than that of other industry sectors (Xie et al., 2019).
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The high CO2 emissions and pollution generated by the
transportation sector have attracted the attention of scholars
in China and abroad. As a major contributor to global CO2

emissions, the CO2 emissions from the global transportation
sector accounted for 24.34% of the total CO2 emissions in
2016, increasing by 4.34% from the level in 2012 (IEA, 2018).
Although the energy consumption and CO2 emissions from the
transportation sector in China are lower than 10%, with the
strong development of China’s economy and the continuous
improvement of its infrastructure, the demand for services in
the transportation sector is growing rapidly, which may
exacerbate the energy consumption of this sector and increase
the overall CO2 emission level.

Many scholars have investigated the increasing CO2 emissions
and energy consumption of the transportation sector both
worldwide and in China. Applied ridge regression to assess the
substitutability of the energy consumption of China’s
transportation industry. Their results revealed that all energy
inputs could be substituted, but they noted that oil and natural gas
had a higher possibility of substitution than the other energy
inputs (Xie and Hawkes, 2015). Performed scenario analysis and
predicted the CO2 emissions from the Indian transportation
sector (Paladugula et al., 2018). Evaluated the impacts of CO2

emissions-reduction policies or legal regulations on the CO2

emissions from small- and medium-sized transportation
companies in France and found that they had little effect
(Touratier-Muller et al., 2019). The above-described studies
were focused on the overall CO2 emissions from the
transportation industry. Furthermore, many researchers have
conducted in-depth research on CO2 emissions from
subsystems of the transportation sector, such as highway
transportation (Yan and Crookes, 2009; Gambhir et al., 2015;
Peng et al., 2018; Zuo et al., 2018; Zhang et al., 2019) and water
transport and shipping systems (Andreoni and Galmarini, 2012;
Chèze et al., 2013; Bo et al., 2019). Furthermore, due to their
different organizational systems, the freight and passenger
transportation subsectors differ in CO2 emissions performance.
Scholars have analyzed the emissions from both subsectors to
identify these differences (He et al., 2013; Hao et al., 2014; Hao
et al., 2015; Luo et al., 2016; Wang et al., 2018; Lv et al., 2019).

At the Copenhagen Climate Change Conference in 2009, the
Chinese government pledged to reduce its CO2 intensity by
40–45% from its 2005 level by 2020 (Yang et al., 2019). Facing
high pressure to achieve emissions reduction, the Chinese
government has implemented a series of environmental and
low-carbon policies and measures; however, its overall CO2

emission levels remain very high. Therefore, it is necessary to
formulate specific energy conservation and CO2 emissions-
reduction measures for different industries and analyze the
distribution and other characteristics of CO2 emissions from
different industries and the driving factors. Especially in
industries with high CO2 emissions, such as the transportation
industry, emissions-reduction measures targeting the
transportation sector are of great significance for realizing
China’s emissions-reduction goals. Many scholars have
examined the factors driving CO2 emissions from the
transportation sector by considering the characteristics of CO2

emissions and the importance of energy conservation and
emissions-reduction measures. At present, the main methods
used to identify the factors influencing CO2 emissions in the
transportation sector include the following: the logarithmic mean
Divisia index (LMDI) method (Wang et al., 2011; Guo et al., 2014;
Liu et al., 2015; Zheng et al., 2019), the structural decomposition
analysis (SDA) method (Cansino et al., 2016; Dong et al., 2018),
and the generalized Divisia index method (GDIM).

Determining the spatial correlation of CO2 emissions is one
focus of research (Li and Li, 2020), and some studies have
provided preliminary discussions of the spatial correlation of
CO2 emissions in the transportation sector (Guo et al., 2014; Feng
and Wang, 2018). However, analyses of the mechanisms
underlying the spatial correlation of CO2 emissions in the
transportation sector are limited and have not been analyzed
using econometric methods. CO2, as a major component of
greenhouse gases, has a typical transboundary effect; that is,
CO2 emissions from one region can be transferred to
neighboring regions through natural factors such as
atmospheric circulation. With the extensive implementation of
China’s regional integration policy and deepening market
integration, China’s regional economic development shows
strong spatial correlation (Bai et al., 2012). The occurrence of
economic activity in a regional system necessarily depends on
transportation, and activities such as inter-regional merchandise
trade, technology diffusion and factor flow are all realized
through transportation. As a result, CO2 emissions from the
transportation sector in one region are transferred to neighboring
regions along with economic activity. Furthermore, China is a
vast country with widely varying topographic and geographic
conditions. The plains areas have a more developed
transportation infrastructure, which attracts a greater
concentration of transportation activities. Therefore, the spatial
correlation of transportation CO2 emissions is reflected in
geographical factors.

Based on the above analysis, it is apparent that the drivers of
CO2 emissions in a local transportation sector may affect the CO2

emissions of the transportation sector in neighboring regions
through spatial correlation and may feedback to the local sector
through spatial correlation. Therefore, when using regression
methods to analyze the drivers of CO2 emissions in the
transportation sector, ignoring the spatial correlation of the
dependent variable is equivalent to omitting variables and can
lead to biased model results (Elhorst, 2014a). The spatial
econometric model, a new method, has been applied to many
areas (Zhang et al., 2018; Bo et al., 2019; Li andWang, 2019; Yang
et al., 2019). Unlike the traditional regression model, the spatial
econometric model fully considers regional spatial correlation,
which can solve the above problems and thus allows more robust
conclusions. Different from the existing literature, this paper
adopts new emission factors to measure the CO2 emissions of
China’s transportation sector. Based on the full consideration of
the spatial correlation of CO2 emissions in the transportation
sector, a geographic distance weight matrix and an economic
geospatial weight matrix are constructed. Then, a two-way spatial
Durbin model (SDM) is used to explore the CO2 emission level of
China’s transportation sector and identify the influencing factors
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in the regional transportation sector. This approach can allow
scientifically supported and reasonable energy-saving and
emission reduction policies to be formulated for the Chinese
transportation sector.

The next section introduces the methods, including the CO2

emissions calculation methods, spatial weight matrix, basic
regression model construction and spatial correlation detection
methods for the regional transportation sector. Moreover, the
data sources are introduced in this section. Results presents the
results, and Conclusions and Recommendations provides the
conclusions and recommendations.

METHODS AND DATA SOURCES

CO2 Emissions of the Transportation Sector
The CO2 emissions from the transportation sector are calculated
based on the combustion of fossil fuels in the sector. Due to
limitations in data sources, the smallest basic unit that can be used
is the province. The CO2 emissions from the transportation sector
in each province are calculated from the energy consumed for its
transportation activities. Equation 1 describes the specific
calculation method (Shan et al., 2018):

CEi � ADi × NCVi × CCi × Oi (1)

where CEi is the CO2 emissions generated by the different types
of fuels in the transportation sector; ADi is the consumption of
the different fuel types in the transportation activities within
the province boundary; NCVi is the net calorific value
generated by the combustion of a unit of the different types
of fossil fuels; CCi (the CO2 content) is the calorific value of a
unit of fossil fuels consumed in the transportation activities; Oi

is the oxidation efficiency; and i is the oxidation rate of fossil
fuels in the combustion process. In addition, because different
oxidation rates are used for different industries (Elhorst,
2014a), we mainly refer to the oxidation rate of the
transportation industry.

By summing the CO2 emissions of the different types of fossil
fuels in the various transportation activities, Eq. 2 can be used to
obtain the CO2 emissions from the provincial transportation
sector:

CE � ∑CEi (2)

The amount of fossil fuel consumed in the provincial
transportation sector is derived from the fossil fuel consumed
in the transportation, storage, and shipping industries based on
the provincial terminal energy consumption in the China Energy
Statistics Yearbook; it includes raw coal, cleaned coal, other
washed coal, briquettes, gangue, coke, coke oven gas, blast
furnace gas, converter gas, other gas, other coking products,
crude oil, gasoline, kerosene, diesel, fuel oil, naphtha,
lubricants, paraffin waxes and white spirit. (Supplementary
Table S1 lists the fossil fuels consumed by the transportation
sector in each province in 2016.)

Although the Intergovernmental Panel on Climate Change
(IPCC) and the National Development and Reform Commission

of China (NDRC) have defined specific values of NCVi and CCi,
most studies currently use default values to study CO2

emissions. However, analyzed measurements of 602 coal
samples from the 100 largest coal-mining areas in China
and found that the emissions factors recommended by the
IPCC and NDRC frequently were higher than the actual
emissions factors in 2012 (Liu et al., 2015; Shan et al.,
2016); furthermore, according to Shan et al., the IPCC
default emissions factors are approximately 40% higher than
Chinese survey values (Shan et al., 2018). It can be seen that the
emission factors defined by the IPCC and NDRC are higher
than the actual values, which can bias the results and affect the
accuracy of the conclusions in this paper. To ensure the
accuracy of the results, this paper uses updated NCVi and
CCi values to estimate the CO2 emissions from the Chinese
transportation sector (Shan et al., 2018). We believe that these
new emission factors are more accurate than previous factors.
(Supplementary Table S2 shows the details of the CO2

emission factors.)

Spatial Weight Matrix
The traditional spatial weight matrix follows the ROOK
adjacency rule (that is, the adjacency relationship between two
adjacent regions is 1, and the adjacency relationship between two
nonadjacent regions is 0), which cannot fully reflect the mutual
influence of transportation activities between regions. In
addition, the spatial interaction between different areas is not
the same. Although the impact of transportation activities in
underdeveloped areas on developed areas is weak, the
transportation activities in developed areas may spread to
neighboring underdeveloped areas. Therefore, based on
comprehensive consideration of the spatial distance between
regions and economic activity factors, the spatial weight
matrix is constructed as follows:

According to the first law of geography, the spatial correlation
between units gradually decreases with increasing distance.
However, the straight-line distance between provinces in terms
of latitude and longitude cannot accurately reflect the traffic
correlation between provinces. Therefore, we construct a
geographic distance weight matrix with the nearest
interprovincial highway mileage using Eq. 3:

W1,ij � { 1/dij i≠ j
0 i � j

(3)

where dij is the nearest highway mileage between the capital city
of province i and the capital city of province j.

In addition, because transportation activities may be spatially
related through the division of labor in the economic activities of
two provinces or may be generated through the internal division
of labor in economic activities, geographical factors are not the
same as the spatial effects of transportation activities. One factor,
such as socioeconomic attributes, can be the cause of the spatial
correlation between transportation activities. Therefore, in this
paper, an economic geospatial weight matrix combining
geographic location and economic connection is constructed
using Eq. 4:
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W2,ij � {(Qi × Qj)/d2
ij i≠ j

0 i � j
(4)

where Qi and Qj are the real GDPs per capita of provinces i and j,
respectively.

Spatial Correlation
In this paper, to accurately identify the spatial correlation
between transportation activities, spatial data are analyzed
based on the global Moran’s I index via exploratory sequential
data analysis (ESDA) with two spatial weight matrices,
namely, a geographic distance weight matrix and an
economic geospatial weight matrix. The calculation
equation is as follows:

I �
∑n
i�1

∑n
j�1

wij(xi − x)(xj − x)
∑n
i�1

(xi − x)2
(5)

where I is the global Moran’s I index; wij is the spatial matrix; and
x and x are the provincial CO2 emissions and average provincial
CO2 emissions, respectively. The value range of I is [−1, 1]. An I
higher than 0 would imply a positive correlation between the CO2

emissions of transportation sectors of different provinces, and an
I lower than 0 would indicate that the CO2 emissions from the
transportation sectors of the different provinces are negatively
spatially correlated. A global Moran’s I index near 0 would means
that the CO2 emissions from the transportation sectors of the
different provinces are randomly distributed in space, with no
spatial correlation.

Spatial Econometric Model
The IPATmodel proposed by American economists Holdren and
Ehrlich in the 1970s is considered the main model used to explain
the impacts of human activities on the ecological environment
(Holdren and Ehrlich, 1974). They proposed that population size,
per capita wealth and technological level are the main factors
influencing the ecological environment. The standard IPAT
model Eq. 6 is as follows:

I � aPb
i A

c
iT

d
i ei (6)

where I is the impact on the ecological environment; a is a
constant; P is population size; A is per capita wealth; T is
technical level; and e is a random error term. In this article, to
reveal the relationships between transportation activities
and CO2 emissions, Eq. 6 is expanded according to
previous scholars (Zhang and Nian, 2013; Li and Wang,
2019; Lv et al., 2019). Specifically, the left side of Eq. 6 is used
to represent the CO2 emissions from the transportation
sector, and the right side represents the selected
influencing factors and expansion indexes according to
the existing literature.

In existing research, the indicators used to explore the
driving factors of CO2 emissions include regional population,
regional economic development level, urbanization level,
industrial structure changes, transportation activity and the

number of patents in specific regions, etc. (Lakshmanan and
Han, 1997; Dong et al., 2018; Li et al., 2019; Ma et al., 2020).
However, the number of regionally held patents varies by
industry, and it is not clear how they relate to CO2 emissions
from transportation (Albino et al., 2014). Therefore, in this
article, the CO2 emissions stemming from fossil fuel
combustion per unit GDP is used to characterize the level
of technological progress in the transportation industry (Li
et al., 2011). In addition, because CO2 emissions from road
transportation account for the highest proportion of the
transportation industry, representing more than 70% (Zhu
and Du, 2019), and considering the availability of data, we use
road transport turnover to reflect the intensity of
transportation activity in each region.

By adding the indicators in Eq. 6, which are selected based on
existing research and the above analysis, and taking the natural
logarithm of the variables in Eqs. 6, 7 is obtained:

InCEit � η + α1 lnTRit + α2 ln Popit + α3 lnUrbanit

+ α4 lnCEIit + α5 ln ISit + α6 ln PGDPit + εit
(7)

where:

CE is the CO2 emissions from each province;
TR is the intensity of transportation activity in each province,
expressed as road transport turnover, where road transport
turnover is equal to the sum of road freight turnover and
passenger turnover converted by a conversion factor (Song
et al., 2015);
Pop is the population size of the province;
Urban is the urbanization level of the province, that is, the ratio
of the urban population to the total population;
CEI is the CO2 emissions stemming from fossil fuel
combustion per unit GDP, which measures the level of
technological progress, assuming that technological progress
reduces the CO2 emissions per unit of GDP output;
IS is the industrial structure, namely, the share of the tertiary
industry output in the total GDP;
PGDP is the GDP divided by population size, which represents
the level of regional development and prosperity;
i,t represent time and province respectively; and
ε is an error term.

Considering the possible spatial correlation of CO2 emissions
from the transportation sector, it is necessary to compile a spatial
econometric model reflecting spatial factors. The spatial Durbin
model (SDM) is a general model that addresses spatial correlation
and can be transformed into a spatial autoregressive model (SAR)
and a spatial error model (SEM) under different coefficient
settings. Therefore, in this paper, a two-way Durbin model
with both fixed space and time effects is chosen to fit the data.
The equation is as follows:

{ lnCEit � ηlN + δWij lnCEit + βXit +∑ βXit + θW(βXit +∑ βXit) + ai + ct + vit
vit � λWijvit + uit

(8)

where:
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Wij is a nonnegative spatial weight matrix;
ai and ct are the spatial and temporal effects, respectively, in
the spatial model;
δ is the spatial autoregressive coefficient;
λ is the lag term coefficient of the explanatory variable;
θ is the spatial autocorrelation coefficient; and
Xit is the set of explanatory variables in Eq. 6.

In addition, the results of (Lesage, 2008) revealed that the
use of the point estimation method to evaluate whether a
spatial spillover effect existed in the spatial regression model
would lead to deviations and possibly wrong conclusions. They
believed that the direct and indirect effects of variables should
be decomposed via partial differentiation. A change in an
explanatory variable in a province will affect not only the
CO2 emissions from the transportation sector in that province
but also those from nearby provinces, and the effect will be
transmitted back to the province via the feedback effect
between provinces. Therefore, in this paper, partial
differential decomposition of the regression results,
including the control variables, is conducted based on the
benchmark regression results, and the direct and indirect
effects of each explanatory variable are obtained to measure
the influence of each influencing factor on each region and its
surrounding regions.

All the data on the above explanatory variables are retrieved
from the China Statistical Yearbook 1997–2016. Due to the lack
of data on Hong Kong, Macao, Taiwan and Tibet in the
aforementioned statistical yearbook, the above model does not
include any data on these four provinces, leaving only 30
provinces in China.

RESULTS

CO2 Emissions Calculation
To reveal the CO2 emissions from the Chinese transportation
sector in a more intuitive manner, Figures 1, 2 were constructed,
which depict the spatial changes in the CO2 emissions from the
transportation sector of China from 1997 to 2016 and those from
the various provincial transportation sectors, respectively.
Figure 2 shows that the CO2 emissions from the provincial
transportation sectors in China have generally increased from
1997 to 2016. The transportation sector has high CO2 emissions,
especially in the more economically developed coastal areas, such
as Shanghai, Guangdong, and Jiangsu. The high emissions in
these coastal areas may be related to the economic development
there and the improvement of transportation infrastructure.
Internal and external economic activities are more frequent in
these regions. Since regional economic exchanges and

FIGURE 1 | Spatial change in the CO2 emissions from the Chinese transportation sector from 1997 to 2016.
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interactions are intensive in these regions and demand for the
transportation sector is higher in these regions than others, their
CO2 emissions are high. Figure 3 reveals that with the rapid
economic and social development, the demand for
transportation, the energy consumption of the transportation
sector and its CO2 emissions are all increasing.

Figure 1 shows the spatial changes in the CO2 emissions from
the Chinese transportation sector from 1997 to 2016. The CO2

emissions from the transportation sector in the provinces of
China are generally increasing. Therefore, to more clearly
characterize the spatial CO2 emissions changes, the CO2

emissions data of each province are normalized and mapped
using ArcGIS software. Figure 1 reveals that among the
provinces, those in the coastal areas have the highest CO2

emissions from the transportation sector; these levels have
remained largely stable over time, with high emissions tending
to spread inland. Figure 1 also shows that the overall CO2

emissions from the transportation sector in China are low.
High-emission areas are gradually moving south; i.e., the
number of southern areas with high CO2 emissions from the
transportation sector is gradually increasing. Forty years after the
reform and opening up, the economic development of the
southern provinces has gradually surpassed that of the
northern provinces. This rapid economic development has also
driven the rapid development of the transportation sector, and its
CO2 emissions have increased. In particular, within the central
provinces, Wuhan has consistently had high CO2 emissions,
which may be related to its advantageous geographical
location. The CO2 emissions from the Sichuan transportation
sector in the western transport hub province are also high, which
may be associated with national major strategies, such as the
development of the western region and the implementation of
major strategies such as the Belt and Road Initiative. Hence, the
demand of the transportation sector has also increased.

Spatial Correlation Test
As shown in Table 1, the global Moran’s I index is significantly
higher than 0 (with values of 0.3149 and 0.3528) at a significance
level of 1% (both p values � 0) regardless of whether the
geographic distance weight matrix w1 or economic geospatial
weight matrixw2 is considered. This result indicates that the CO2

emissions from the Chinese transportation sector are spatially
correlated. The impact of the regional CO2 emissions exhibits a
clear positive spatial dependence. Therefore, there is significant

FIGURE 2 | CO2 emissions from the transportation sector of Chinese provinces in 1997, 2003, 2009, and 2016.

FIGURE 3 | Relationship between the energy consumption and
economic development of the Chinese transportation sector.
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spatial correlation between the CO2 emissions from the
transportation sectors of the different Chinese provinces. To
accurately reveal the influencing factors of transportation-
sector CO2 emissions, this spatial correlation must be
accounted for.

Spatial Econometric Model
Here, we test the applicability of the spatial panel model.
According to (Elhorst, 2014b), two dimensions, from specific
to general and from general to specific, are adopted to determine
the adaptability of the data to the spatial econometric model. We
take the forms of Lagrangian multipliers (LM-lag and LM-error)
and robust Lagrangian multiplier variants (R-LM-lag and R-LM-
error) to test for spatial autocorrelation using the base model that
assumes no spatial dependence. The results are listed in Table 2.

As shown in Table 2, the Hausman test results of the geographic
distance and economic geospatial weightmatrices are both significant
at the 1% level, indicating that random effects can be rejected. Thus, a
fixed effects model is appropriate. Furthermore, the joint significance
test of the time and spatial effects reveals significant likelihood ratio
(LR) statistics at the 1% significance level, indicating two-way fixed
time and spatial effects.

In the test applying the specific-to-general concept, the model
reveals both time and spatial effects. Both the LM and robust LM
test results reject the null hypothesis of no spatial lag effect or
spatial error effect, which indicates the existence of both spatial
lag effect and spatial error characteristics. The LR and Wald tests
of the general-to-specific concept yield p values less than 0.05,

indicating that the SDM cannot be simplified into the spatial lag
model or the SEM and that the SDM best fits the data.

Based on Eq. 9, the panel data of 30 provinces in China from
1997 to 2016 were analyzed to estimate the maximum likelihood
function, and the regression results are summarized in Table 3.
The regression results were subjected to partial differential
decomposition to obtain the explanatory variables. The direct
and indirect effects are listed in Table 4.

As shown in Table 3, the coefficient estimates of the endogenous
interaction effect W* InCO2 of both the geographic distance weight
matrix and the economic geospatial weight matrix are positive at a
significance level of 1%, which indicates that the CO2 emissions from
the provincial transportation sector have a significant positive spatial
spillover effect. This is consistent with the conclusions from Table 1.
The transmission and diffusion effects of the CO2 emissions of the
regional transportation sector are clear. The robustness of the regression
results is evidenced by lack of significant differences in the magnitude,
negative sign and significance level of the coefficients of the explanatory
variables under the w1 and w2 spatial weight matrices. Since the w2

spatial weight matrix contains both geographic and economic factors,
the analysis of the empirical results that follows is based on w2.

From the results in Table 4, we can draw the following
conclusions:

(1) The direct and indirect effects of transportation activity
intensity on the CO2 emissions of the transportation
sector are both significantly positive. Specifically, in the
model, a 1% increase in the intensity of transport

TABLE 1 | Spatial correlation test of the transportation sector carbon emissions.

Geographic distance weight
matrix w1

Economic geospatial weight
matrix w2

Moran’s I index value 0.2837 0.3369
Expected value E(I) −0.0013 −0.0010
SD(I) 0.0041 0.0072
Z value 36.1287 42.9514
p value 0.0000 0.0000

TABLE 2 | Applicability test of the spatial panel model.

Geographic distance weight matrix w1 Economic geospatial weight matrix w2

χ2 p value χ2 p value

From specific to general
LM-lag 43.667 0.000 56.271 0.000
R-LM-lag 20.172 0.005 49.605 0.008
LM-err 17.601 0.000 17.690 0.000
R-LM-err 18.047 0.000 19.368 0.000

From general to specific
LR test for SAR 22.071 0.001 95.736 0.000
Wald test for SAR 15.712 0.003 78.450 0.000
LR test for SEM 25.881 0.000 36.263 0.000
Wald test for SEM 19.301 0.000 55.635 0.000
Hausman test 40.572 0.000 51.016 0.000

Joint significance test LR statistics p value
Temporal effect 30.074 0.003
Spatial effect 35.763 0.005
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activities corresponds to increases in CO2 emissions from
the transportation sector in the local region and
neighboring regions of 0.137 and 0.031%, respectively.
This finding indicates that an increase in the intensity of
transportation activities will not only increase the level of
CO2 emissions from transportation in the region but also
affect the level in neighboring regions through spatial
correlation. As inter-regional economic interactions
strengthen, inter-regional transportation becomes more
frequent. Furthermore, when transportation activities in
one region reach a certain level of concentration, they
spread out, affecting the CO2 emissions of neighboring
regions.

(2) A direct effect of population on the CO2 emissions from
the provincial transportation sector is not clear. Neither
the geographic distance weight matrix nor the economic
geospatial weight matrix provides significant population
coefficient estimates. However, the indirect effect of
population size is significantly positive at the 10%
level, wherein a population increase in a given region
is expected to cause the CO2 emissions from the
transportation sector in the adjacent regions to
increase by 0.03%. An increase in population increases
the demand in the transportation sector, such as demands
for travel and energy. Regional travel and energy
demands disperse the impact of CO2 emissions from
the transportation sector to neighboring regions.

(3) The impact of urbanization level on CO2 emissions from
the transportation sector in both local regions and
neighboring regions is significantly positive and is
stronger in neighboring regions (with coefficients of
0.254 and 0.930%, respectively). A higher urbanization
level results in higher car ownership, higher
transportation needs, and a more specialized
transportation market, which significantly increase
transportation-related CO2 emissions. Furthermore,
since regions with high urbanization levels have
greater economic development, the spillover effect on
neighboring regions is stronger, and traffic-related CO2

emissions in neighboring regions increase more
significantly.

(4) The impact of changes in technological level on regional
transportation sector CO2 emissions is measured by the
composite environmental index (CEI). Clearly, reducing
the CO2 emissions per unit of GDP output and
improving the technological level of the transportation
sector would significantly reduce the CO2 emissions from
this sector. More precisely, a 1% increase in CEI decreases
CO2 emissions from transportation sector in the local
region. Therefore, encouraging technological progress,
promoting the technological level of the transportation
sector and accelerating the use of new energy in this
sector would be effective emissions-reduction measures
for the transportation sector in any given region. The

TABLE 3 | Spatial econometric regression results.

Explanatory variable Geographic distance weight
matrix w1

Economic geospatial weight
matrix w2

W * InCO2 0.403*** (2.98) 0.496*** (3.16)
lnTR 0.371*** (3.68) 0.183** (2.01)
InPop 0.003 (0.64) 0.006 (1.33)
InUrban 0.084*** (2.98) 0.070** (2.45)
InCEI 0.321*** (3.03) 0.208** (2.13)
InIs −0.069 (−1.13) −0.0523*** (−2.88)
InPGDP 0.763*** (8.56) 0.639*** (5.17)
Time effect including including
Space effect including including
R2 0.698 0.457
Log-likelihood value 608.654 431.012

Note: The values in parentheses are t statistics; *, **, and *** represent the 10, 5, and 1% significance levels, respectively.

TABLE 4 | Direct and indirect effects obtained via partial differential regression.

Explanatory variable Geographic distance weight matrix w1 Economic geospatial weight matrix w2

Direct effect Indirect effect Direct effect Indirect effect

lnTR 0.188** (2.43) 0.036*** (2.87) 0.137* (1.83) 0.031** (2.12)
InPop 0.002 (0.82) 0.001* (1.79) −0.623 (−1.11) 0.003* (1.98)
InUrban 0.133* (1.70) 0.986** (2.31) 0.254** (2.22) 0.930*** (2.89)
InCEI 0.583*** (3.03) −0.102 (−0.99) 0.207*** (3.65) −0.091 (−0.09)
InIs −0.071** (−2.31) 0.006 (1.39) −0.318* (−1.76) 0.096 (1.59)
InPGDP 0.987*** (8.67) 0.0698*** (11.22) 0.490*** (7.04) 0.008*** (5.59)

Note: The values in parentheses are t statistics; *, **, and *** represent the 10, 5, and 1% significance levels, respectively.
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indirect effects of technological level are not significant,
indicating that the technological level of a local
transportation sector has a limited impact on the CO2

emissions of this sector in neighboring areas.
(5) The change in industrial structure is measured by the

proportion of the tertiary industry, which has a notable
impact on the reduction in CO2 emissions from the
regional transportation sector. The higher the
proportion of the tertiary industry is, the lower the
CO2 emissions from the regional transportation sector
are. Additionally, among the coefficients of the direct
and indirect effects, only the coefficient of the direct
effects is significant at the 10% level; according to the
model, a 1% increase in the share of the tertiary sector
would reduce CO2 emissions from the transportation
sector by 0.318%, which indicates that the industrial
structure has a significant impact on the CO2 emissions
from the transportation sector. However, this impact
does not include any indirect effects, indicating that
changes in the industrial structure will reduce the level
of CO2 emissions from the local transportation sector
but have little impact on that of the surrounding areas.
A possible reason for this finding is that changes in the
regional industrial structure affect CO2 emissions from
the regional transportation sector through industrial
agglomeration and industrial spillover effects, but
there is no certain way of affecting the
surrounding areas.

(6) The impact of the level of regional development and
affluence, represented by the GDP per capita, on the
level of CO2 emissions from the regional
transportation sector is significantly positive for
both the direct and indirect effects. Specifically, a
1% increase in GDP per capita can be expected to
increase CO2 emissions from the transportation sector
in the local region and neighboring regions by 0.490
and 0.008%, respectively. In economically developed
areas, regional economic and population
transportation activities are more frequent,
transportation needs are higher, and CO2 emissions
from the transportation section are higher.
Furthermore, due to the economic exchanges
between regions, the transportation activities in
developed areas spread to and thus affect less
developed areas; i.e., the CO2 emissions generated
by the transportation activities in a specific area will
affect the surrounding areas.

In summary, the above results reveal that the spatial effect is
of great significance for understanding the level of CO2

emissions of the transportation sector at the regional level
and the influencing factors. The similarity of the spatial
regression results between the geographic distance weight
matrix w1 and the economic geospatial weight matrix w2

indicates that the estimated coefficients of the factors
influencing the CO2 emissions from the regional
transportation sector are robust.

CONCLUSIONS AND
RECOMMENDATIONS

In this paper, we implement new CO2 emission factors to
calculate CO2 emissions from the transportation sector in each
province of China and explore the factors influencing CO2

emissions from this sector based on a two-way Durbin model.
The conclusions are as follows:

(1) The CO2 emissions of China’s transportation sector exhibit
strong positive spatial correlation. Most of the regions with
the highest CO2 emissions from the transportation sector are
located on the eastern coast of China; these regions have
gradually spread to include central and western regions. The
CO2 emissions of transportation sector in the south have
gradually exceeded those in the north, and the regions with
high CO2 emissions are spreading from the north into
the south.

(2) The intensity of transportation activities, urbanization
level, technology level, industrial structure, and GDP per
capita have strong influences on the CO2 emissions from
the transportation sector in each province of China. The
intensity of transportation activities, urbanization level,
and GDP per capita have not only direct effects but also
indirect effects. Technological level and industrial
structure only have direct effects.

Based on the above findings, we can formulate some policies to
reduce the level of CO2 emissions from the Chinese transportation
sector. First, while the level of urbanization continues to increase, we
should continue to improve the policies related to transportation and
maintain a governmental role in energy conservation and emission
reduction in the transportation sector, engaging in measures such as
accelerating the development of rail transit and integrating road use.
Formulating corresponding policies and measures can achieve a
win-win scenario for transportation and environmental protection
by optimizing the transportation structure.

Second, we should fully utilize the role of the government in
promoting new technologies, formulating policies related to active
taxation and other new technologies and improving the New Energy
Vehicle Subsidy Policy to promote and apply new energy technologies
in the automotive industry.When new technologies arewidely applied
in a province, they must also be actively promoted and implemented
in the surrounding provinces where conditions permit, and the scale
and spillover effects resulting from the improvement of the
technological level should be fully taken advantage of to promote
the coordinated development of the economy and society.

Third, we should take advantage of regional comparative
advantages, vigorously develop the tertiary industry, promote the
transformation of regional industrial structures, and reduce the level
of the CO2 emissions from the regional transportation sector. Finally,
considering the spatial correlation of CO2 emissions from
transportation, regional governments should strengthen the joint
management of CO2 emissions from the transportation sector and
form a regional emission-reduction linkagemechanism by formulating
collaborative standards and policies. Furthermore, within urban
regions, residents should be encouraged to choose public transport,
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such as public buses and subways, to reduce travel by private cars as
much as possible. Outside urban regions, the transformation of long-
distance transportation from highways to railways as well as regional
traffic and transportation structures should be actively promoted to
reduce the overall level of CO2 emissions.
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