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A fault diagnosis can quickly and accurately diagnose the cause of a fault. Focusing on

the characteristics of nuclear power plants (NPPs), this study proposes a distributed fault

diagnosis method based on a back propagation (BP) neural network and decision tree

reasoning. First, the fault diagnosis was carried out using the BP neural network and

decision tree reasoning, and then a global fusion diagnosis was performed by fusing

the resulting information. Second, the key technologies of the BP neural network and

decision tree sample construction were studied. Finally, the simulation results show

that the proposed distributed fault diagnosis system is highly reliable and has strong

diagnostic ability, enabling efficient and accurate diagnoses to be realized. The distributed

fault diagnosis system for NPPs provides a solid foundation for future research.
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INTRODUCTION

Nuclear power plants (NPPs) produce a large number of monitoring signals. For example, a typical
alarm system has nearly 2,000 alarms (Mo et al., 2007). This complexity increases the difficulty of
judging the current state of the NPP. With the application of digital instrumentation and control
systems, this scenario becomes more obvious. This study focuses on how to improve the NPP
intelligence. The operational support (Wang et al., 2016; Peng et al., 2018), fault prediction and
health management (Li et al., 2018; Fan et al., 2019), and nuclear accident emergency decision-
making (Zhao et al., 2015; Zhao, 2016) are the key parts of NPP intelligence. At the same time, the
fault diagnosis can be used to obtain key signals from a large amount of data, allowing the current
operation state of the NPP to be determined. This is the key technology for improving the NPP
intelligence (see Figure 1) (Elnokity et al., 2012).

Many fault diagnosis methods for the NPPs have been developed, including those based on
neural networks (Seker et al., 2003; Mo et al., 2007; Hadad et al., 2011), Bayesian networks
(Friedman et al., 2017; Gheisari and Meybodi, 2017; Li et al., 2018), dynamic uncertainty
causal graphs (Zhou and Zhang, 2017), and signed directed graphs (Liu et al., 2016). The
fault diagnosis can be divided into data-driven, signal processing, and model-based methods
(see Figure 2) (Ma and Jiang, 2011). The data-driven methods rely on a data model to obtain
the fault state and often use neural networks or principal component analysis (Hines and
Garvey, 2007; Li et al., 2017). The signal-based methods operate in the time domain and
employ techniques such as wavelet analysis, time–frequency analysis, and spectral analysis
(Ma and Jiang, 2011). There are two main approaches for the model-based fault diagnosis.
One approach is based on the use of an expert knowledge, e.g., expert systems (Kramer and
Palowitch, 1987; Vila-Francés et al., 2013). The other approach is based on a graph theory, i.e.,
the model graphically displays relationships between various parameters and faults, such as in
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FIGURE 1 | Application of fault diagnosis in Nuclear power plants (NPPs).

a Bayesian network (Kang and Golay, 1999; Li and Ueno, 2017;
Li et al., 2017; Li and Mahadevan, 2018), first principle model
(Pantelides and Renfro, 2013), signed directed graph (Liu et al.,
2016), and uncertain causality graph (Khakzad et al., 2011).

In the early application of fault diagnosis, the expert
systems were mainly used to identify faults through the
reasoning between specific parameters and the associated faults
(Marseguerra et al., 2003). With the advancement in research, the
data-driven methods have gradually become more popular for
fault diagnosis, such as neural networks and principal component
analysis (Embrechts and Benedek, 2004; Liu et al., 2014).
Although the data-driven approach can quickly and accurately
find the relationship between the data and fault diagnosis, it is
a “black box” tool, meaning that it is difficult to determine the
relationship between the system parameters and the signs of a
fault (Zhu et al., 2006). Due to extensive study in the data-driven
methods, the fault diagnosis has started to adopt the knowledge
map approach (see Figure 3). However, with the application of
knowledge graph, it is difficult to obtain a complex model of
NPPs. Therefore, this study seeks machine learning of threshold
method (less data dependence) to complete the fault diagnosis.

The NPPs are complex industrial systems in which each piece
of equipment or subsystem completes the own task. Based on the
function and structure of NPPs, they can be described as typical
distributed systems. The various fault mechanisms of NPPs
mean that the traditional methods struggle to complete fault
diagnosis. The distributed diagnosis method takes into account
the characteristics of the system and decomposes the complex
fault diagnosis task into simple subsystems. Each subsystem uses
an appropriate method and knowledge to solve the task. Finally,
the diagnosis results for the subsystem were calculated by a
process known as information fusion to provide the operator
with a decision (Liu et al., 2016). This diagnosis strategy (as
shown in Figure 4) has been widely used for fault diagnosis

in large-scale complex systems in the aerospace and chemical
industries, among many others (Liu et al., 2014).

The main problems with fault diagnosis in complex systems,
such as NPPs, are as follows:

(1) The problems mainly include the complexity of the
diagnosis, the limitation of the diagnosis method, and
the uncertainties associated with the relevant knowledge.
The existing models cannot accurately and quickly express
the relationship in terms of the parameter coupling and
uncertainties. This directly affects the reliability of the diagnosis
results. It is difficult to construct a complete and accurate
model that effectively expresses the relationships involved in
the system.

In this study, the relationship between parameters is obtained
by a neural network, and the complex NPP system is decomposed
by a distributed neural network. The relationship between
models is simplified by the distributed neural network. The
proposed method then uses information fusion to improve the
accuracy of fault diagnosis.

(2) The parameters involved in the accident initially change
very slowly. Obtaining key information plays a very important
role in fault diagnosis. The parameters of the accident change
slowly in the early stages and do not exceed their thresholds. Since
these weak parameter changes caused by the fault are difficult to
identify, it is difficult to achieve early fault diagnosis. For example,
in the early stages of accidents involving the loss of coolant, the
parameters such as the containment pressure and temperature
slowly rise/fall (without exceeding their thresholds), and it is
difficult to identify the early signals. Thus, this study describes
the generation of samples for machine learning from the trends
of these parameters, which enables the speed of diagnosis to
be enhanced.

Fault diagnosis, as a form of artificial intelligence (i.e., pattern
recognition), is a critical and complex part of technology.
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FIGURE 2 | Classification of common fault diagnosis methods.

FIGURE 3 | Development history of NPP fault diagnosis methods.

This study focuses on the engineering and technical problems
encountered in fault diagnosis with the aim of satisfying the
real-time and accuracy requirements of diagnosis in NPPs.

The method and results reported in this study will be of
great significance in the further improvement of the NPP
fault diagnosis.
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FIGURE 4 | Logic diagram of distributed fault diagnosis.

FIGURE 5 | Basic structure of a single-layer neural network.

ARTIFICIAL NEURAL NETWORK

The basic units of neural networks are called artificial neurons.
The artificial neurons are models of biological nerves and are
generally divided into an input, an output, and an activation
function. The structure of these neurons is shown in Figure 5

(Mo et al., 2007).
The inputs can be considered as data and they are processed

by the neurons to simulate the artificial neurons. The relationship
between the quantities in Figure 5 is as follows:

ui =
∑

j

wijxj + θj (1)

Yi = f (ui), (2)

where xj is the input signal, w is the internal structure of the
neuron, ui is the connection weight (i.e., the binding strength),
θj is the threshold, f (ui) is an activation function, and Yi is the
output signal. The activation function acts as a linear or non-
linear function. The structure of the neural network is explained
in the following subsections.

Back Propagation Neural Network
Back propagation (BP) neural networks use a multi-layer feed
forward structure for machine learning. The standard three-layer
network structure is shown in Figure 6 (Rohde et al., 2011).

The BP learning is divided into two parts: forward propagation
and pre-propagation. The output of forward propagation in each
layer is transmitted only to the neurons in the next layer. If the
output layer cannot attain the desired output, it will transfer data
through backpropagation and then modify the input connection
weights of the neurons until the error reached the required degree
of accuracy.

The principle of the BP neural network is through input and
the hidden layer get output. Then the error between the actual
output and the output is calculated, and the error function is
used to adjust the connection weights between the layers of
the network and the threshold of the neurons. When the error
requirements are met, the relationship between input and output
is established, so this method can be used to solve problems such
as pattern recognition and classification (Liu et al., 2015).

Neural Network for Fault Diagnosis
To realize fault diagnosis in NPPs, first it is necessary to obtain
data to process the samples and then apply machine learning to
the samples to obtain a neural network diagnosis model. After
the training model has been obtained, when the data undergo
processing for input to the neural network, output is the type of
fault. A diagnosis flowchart is shown in Figure 7.

Sample Construction Using Thresholds
and Trends
The training samples are constructed according to the trend
of the parameters. The trend is specified as either “rising,”
“declining,” or “normal.” This method can identify abnormalities
before the parameters reach their thresholds. However, some
parameters also exhibit upward or downward trends when the
NPP is in normal operation. Therefore, we must consider the
normal fluctuation range of the parameters.

Combined with the operation data from an NPP simulator,
the changes in parameters can be analyzed. For different
operating conditions, we can modify the normal values and
the upper and lower bounds of the parameter fluctuations.
This method not only reduces the difficulty of neural network
training but also solves the problem of BP network diagnosis in
different conditions.

As shown in Figure 8, a value of 0.75 represents the situation
when a parameter rises and exceeds the upper limit of normal
fluctuation, or when the parameter exceeds the upper threshold.
This threshold reduces the size of the BP sample. A parameter
that is decreasing and falls below the lower limit of normal
fluctuation is represented by a value of 0.25. The scenario in
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FIGURE 6 | Back propagation (BP) network model.

FIGURE 7 | Framework of neural network for fault diagnosis.

FIGURE 8 | Parameter status division and representation.
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which a parameter is falling, but still exceeds the upper limit of
normal fluctuation, is expressed by a value of 0.5 as shown in
Figure 8. This can be understood as the parameter approaching
the normal range. Similarly, a parameter that is below the lower
limit of fluctuation but is increasing is represented by a value of
0.5, as shown in Table 1.

TABLE 1 | Parameter thresholds combined with trends for sample construction.

Sample input (parameters) Sample output (fault type)

WFWA WFWB LSGA LSGB LOFWP FIVA FIVB

0.5 0.5 0.5 0.5 0 0 0

0 0 0.25 0.25 1 0 0

0 0.75 0.25 0.5 0 1 0

0.75 0 0.5 0.25 0 0 1

WFWA, No. 1 steam generator feed water flow; WFWB, No. 2 steam generator feed

water flow; LSGA, wide range water level of steam generator No. 1; LSGB, wide range

water level of steam generator No. 2; LOFWP, loss of main feed pump, FIVA, No. 1 steam

generator feed valve is wrongly closed; and FIVB, No. 2 steam generator feed valve is

wrongly closed.

DECISION TREE FOR FAULT DIAGNOSIS

Theory
A decision tree is a tree structure that is used to classify data
records. A leaf node of this tree represents a record set. The tree
is established according to the different values of the available
data. By establishing nodes and branches, a decision tree can
be generated (Han and Kambr, 2001). Recently, the inductive
learning of decision trees is widely used in risk assessment and
fault diagnosis. The basic idea of decision trees is shown in
Figure 9.

This classification in a tree structure is simple and easy to
understand. Each path from the root node to the leaf node
corresponds to an IF-THEN rule. The relationships between
parameters and the outputs were clearly expressed.

Distributed Framework of Decision Tree
Model
When the decision tree method is used to solve diagnosis tasks,
it is necessary to establish a decision tree model. The diagnosis
results of each sub-diagnosis system are comprehensively solved
to obtain the final diagnosis results. This is similar to the

FIGURE 9 | Flowchart of decision trees.

FIGURE 10 | Decision tree model of containment monitoring and the main coolant system (RM1, radioactivity level in the containment; PRB, pressure in the

containment; WLR, the main coolant leakage flow rate; WUP, pressurizer safety valve flow; and WLD, lower leakage pipeline flow).
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construction of BP neural network samples. The decision tree
model makes up for the poor interpretability of “black box”
BP neural networks. Additionally, the algorithm selects the
characteristic parameters that can distinguish all kinds of faults
as the root node and intermediate node of the decision tree.
This greatly simplifies the rules and reduces the complexity
of reasoning. The accuracy of the results can be improved by
combining the decision tree method with a BP neural network.
Figure 10 shows the decision tree model for “containment
monitoring” and the “main coolant system.”

In Figure 10, each rectangle represents a monitoring
parameter and each ellipse represents an accident type. Each
path from root node to leaf node can be transformed into
corresponding IF-THEN rules. For example:

IF (PRB = “high” and RM1 = “normal”), THEN fault type =
“main stream line break (containment)”

IF (PRB= “high” and RM1= “high”), THEN fault type= “loss
of coolant accident”

IF (PRB = “normal” and RM1 = “high”), THEN fault type =
“fuel handling accident (containment).”

The fault diagnosis system is divided into multiple sub-
diagnosis systems, each incorporating the corresponding
monitoring parameters. When a fault occurs, it may affect the
parameters of multiple subsystems. Therefore, the decision tree
model established for each subsystem is only preliminarily solved
in the sub-task space, and rules may not be sufficient for the
diagnosis. Through the reasoning between various systems, the
diagnosis can be accurately completed, which is a characteristic
of the distributed diagnosis method.

EVIDENCE THEORY

Based on the diagnosis results for each NPP subsystem, it is
necessary to adopt an appropriate method to achieve an overall
decision. An evidence theory is a kind of uncertain reasoning and
decision-making method that can handle inaccurate, uncertain,
and fuzzy problems. As a good decision model, the evidence
theory has been widely used in multi-sensor information fusion,
target recognition, and uncertain information decision-making
(Uren et al., 2016).

Basic Principles of Evidence Theory
Multi-source information fusion, known as data fusion, was
proposed in the 1970’s (Dempster, 1967). The data fusion
improves the decision-making process when the available
information is uncertain, but it can give rise to ambiguous
and contradictory problems. The Dempster–Shafer theory (DST)
fusion model requires mutual exclusion between the elements
using evidence rules. For 2 = {θ1, θ2, . . . , θn}, evidence A and
B, the basic corresponding functions m1 and m2, and the DST
evidence combination rules are (Smarandache and Dezert, 2006):

m(C) =





∑
Ai∩Bj=C

m1(Ai)m2(Bj)

1−K ,∀C ⊂ 2,C 6= ∅

0, ∀C = ∅

, (3)

K =
∑

Ai∩Bj=∅

m1(Ai)m2(Bj) < 1, (4)

where K is the degree of conflict between evidence A and B.
A larger value of K implies that there is more conflict between
evidence A and B. For multiple pieces of evidence mi, the fusion
of results given by Equation (3) can be regarded as new evidence,
which is then integrated into the next piece of evidencemi.

The DST fusion theory is based on two fusion models: the
classic model (DSmC) and the hybridmodel (DSmH). The fusion
rule of DSmC is defined as

∀A 6= ϕ ∈ D2,mMf (2)(A)
1
= [m1 ⊕m2 ⊕ . . .mk](A)

=
∑

X1 ,...,Xk∈D
2

(X1∩...∩Xk)=A

k∏

i=1

mi(Xi) (5)

The fusion rule of DSmH is defined as

mM(2)(A) = ϕ(A)[S1 + S2 + S3], (6)

TABLE 2 | Basic trust distribution table.

Evidence source Basic belief assignment θ1 θ2 θ1

⋃
θ2

E1 m1 0.2 0.7 0.1

E2 m2 0.6 0.2 0.2

TABLE 3 | Fusion examples.

Diagnostic system Identification framework

(diagnosable fault set)

θ1 θ2 θ3 θ4 θ5 θ6 θ7

System 1 0.02 0.04 0.02 0.98 – – –

System 2 – – – – 0.03 0.04 0.98

System 3 – – – – 0.02 0.01 –

“–” indicates that the diagnostic system cannot diagnose the fault.

TABLE 4 | Identification framework after refinement and coarsening.

Diagnostic subsystem New identification framework

θ4 θ7 2̃

Subsystem 1 0.9245 0 0.0755

Subsystem 2 0 0.9333 0.0667

Subsystem 3 0 0.9412 0.0588

TABLE 5 | Final fusion results.

θ4 θ7 θ4 ∩ θ7 2̃ θ4 ∩ 2̃ θ7 ∩ 2̃ θ4 ∩ θ7 ∩ 2̃

Fusion results 0 0 0.8121 0.0002961 0.003579 0.07524 0.1088
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where S1 =
∑

X1 ,X2 ,...,Xk∈D
2

(X1∩X2∩...∩Xk)=A

k∏

i=1

mi(Xi)

S2 =
∑

X1 ,X2 ,...,Xk∈∅

[u(X1)∪u(X2)∪...∪u(Xk)=A]
∨[u(X1)∪u(X2)∪...∪u(Xk)∈∅∧(A=Ii)]

k∏

i=1

mi(Xi)

S3 =
∑

X1 ,X2 ,...,Xk∈D
2

(X1∪X2∪...∪Xk)=A
(X1∩X2∩...∩Xk)∈∅

k∏

i=1

mi(Xi)

Suppose that the identification framework consists of two
elements, i.e., 2 = {θ1, θ2}, and there are two independent and
reliable sources of evidence, E1 and E2. The reliability assignment
of the corresponding elements is presented in Table 2.

Therefore, for multiple pieces of evidence, obtaining the final
consistent fusion decision results requires the support of evidence
theory. The fusion results under different fusion rules are given
as follows:

According to the DS fusion rules in Equations (3) and (4), the
fusion results are

m(θ1) = 0.40741,m(θ2) = 0.55556,m(θ1
⋃

θ2) = 0.032037

According to the DST classical model fusion rules in Equation
(5), the fusion results are

m(θ1) = 0.22,m(θ2) = 0.3,m(θ1
⋃

θ2) = 0.02,

m(θ1
⋂

θ2) = 0.46

Under the distributed diagnosis strategy, the task of the system
is divided into various subtask spaces. The information fusion

FIGURE 11 | Structure of distributed fault diagnosis system for NPPs.
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is then carried out using evidence theory. Finally, the single or
concurrent fault is identified.

Distributed Integration Method
Assume that the diagnostic results for a subsystem at a given time
are as listed in Table 3, where θ1 − θ7 represent seven different
fault types. The faults can be diagnosed by the following different
diagnostic subsystems.

1. The union set of elements in the identification framework
of diagnostic subsystems is the basic element of the identification

framework. The refined unified identification framework is 2 =

{θ1, θ2, θ3, θ4, θ5, θ6, θ7}.
2. The rule based on the evidence theory produces an

“explosion” when the number of elements is too large. The aim
of this identification framework is to extract useful information
from the evidence by setting a threshold. When the reliability
value of a fault in the diagnostic subsystem exceeds the
threshold, as for θ4 and θ7 in Table 3, the remaining elements
θ1, θ2, θ3, θ5, and θ6 are merged into one element 2, which
represents the set of elements other than θ4 and θ7. The reliability
value of 2̃ is the sum of the reliability values of its elements.

FIGURE 12 | Real-time diagnosis result of steam generator (BP neural network method).

FIGURE 13 | Real-time diagnosis results of the main water supply system (BP neural network).
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Finally, the reliability values of each piece of evidence under
the new identification framework are normalized to obtain the
results listed in Table 4.

The DST fusion rule can then be used with the DST rule
applied for the fusion of evidence with small conflict rates. The
final fusion results are presented in Table 5.

Framework of Distributed Fault Diagnosis
The NPP fault diagnosis system adopts a distributed frame
structure. The structure is shown in Figure 11, and it mainly

includes a knowledge base, fault diagnosis, and global-level
fusion diagnosis. The knowledge base integrates the BP neural
network fault-diagnosis knowledge with the decision tree model-
reasoning knowledge.

CASE STUDIES

To verify the diagnostic ability of the distributed fault diagnosis
system for a single fault, random faults were inserted into a

FIGURE 14 | Global-level fusion diagnosis results (BP neural network method).

FIGURE 15 | Real-time diagnosis result of steam generator (decision tree method).
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simulator. The distributed fault diagnosis system provided real-
time operation data for the NPP through the operation database
and then identified the fault types.

The division of systems in the distributed fault diagnosis of
NPPs is based on the distributed principles. The diagnosis tasks
are decomposed and assigned to each diagnosis module. The
subsystem division methods are based on (1) system structure,
(2) system function, and (3) time series. After considering
the importance of each system of safe operation, monitoring
parameters, and other factors, this study uses a method based on

the combination of system structure and function to divide the
subsystems. The main monitoring parameters of each subsystem
are listed, and the resultants are divided into reactor core system,
containment monitoring system, radiation dose monitoring
system, main water supply system, steam generator, main line
steam system, main coolant system, equipment-valve system,
equipment-pump system.

The sample is achieved by a software PCTRAN simulator.
It was taken as the data source for the present study and it is
a reactor transient and accident simulation software developed

FIGURE 16 | Real-time diagnosis results of the main water supply system (decision tree method).

FIGURE 17 | Global-level fusion diagnosis result (decision tree method).
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by the Micro-Simulation Technology Company (United States).
As PCTRAN can be operated on a personal computer, it is
convenient for nuclear power operation staff and researchers
to study. Since its first release in 1985, the Micro-Simulation
Technology Company has developed many versions of PCTRAN
to suit different types of NPP (Po, 2004).

Steam Generator Tube Rupture Accident
After running the simulator under normal working conditions
for 40 s, a tube rupture accident in the No. 1 steam generator,
covering 100% of the cross-sectional area of the tube, was

generated. The steam generator and the main water supply
system successively diagnosed the tube rupture fault. The
probability of the fault occurrence in the other seven diagnostic
modules remained close to zero. This indicates the normal
operation of the subsystem. The fusion diagnosis obtains the final
fusion decision results. The diagnostic results of the BP neural
network method are shown in Figures 12–14. The diagnostic
results of the decision tree model are shown in Figures 15–17.

Both the BP neural network method and the decision tree
model obtained the correct diagnosis results in a short time,
with the steam generator module diagnosing the fault earlier

FIGURE 18 | Global-level fusion diagnosis result (BP neural network method).

FIGURE 19 | Global-level fusion diagnosis result (decision tree method).
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than the main water supply system. This is because the steam
generator module can quickly diagnose such faults bymonitoring
the leakage flow and other parameters. When the fault occurs,
the flow increases rapidly. As the main water supply system is
monitoring the steam generator water level and other parameters,
the symptoms are relatively slow to appear, so the fault diagnosis
takes a longer time. In addition, the probability of fault-
occurring results is improved by the mutual verification of both
the methods.

Loss of Coolant Accident
The nuclear power simulator was operated under normal
conditions for 40 s, and then a loss of coolant accident from a
hole measuring 3 cm2 was inserted. After 10 s, the probability
of the coolant loss accident exceeded 90% in the main coolant
system, containment monitoring, and radiation dose monitoring
modules of the distributed fault diagnosis system. Three sets
of evidence pointed to the coolant loss accident, while the
probability of the failure in the remaining six sub-modules
remained close to zero. The diagnosis results of the BP neural
network method and decision tree model method are shown in
Figures 18, 19.

The time difference between the two methods for fault
diagnosis is not obvious, because the thresholdmethod combined
with the trend of the parameters is used to monitor the
operation state of each parameter, which improves the diagnosis
speed. However, the decision tree reasoning method selects the
characteristic parameters that have the greatest effect on fault
classification as nodes, and it does not require all signs to appear.
Therefore, for some faults, the decision tree method has a faster
diagnosis speed.

CONCLUSION

According to the proposed distributed diagnosis method, the
identification of faults in NPPs was decomposed into several

subsystems. The steam generator tube rupture accident and
loss of coolant accident, respectively, use BP neural network
and decision tree, for fault diagnosis. Through the distributed
diagnosis, the diagnosis results of different subsystems were
merged. This method not only reduces the number of samples in
machine learning but also increases the speed of sample learning.
The threshold value of parameters was obtained to construct
sample, and the speed of diagnosis was improved by obtaining
the trend of parameters. Information fusion was used for the
diagnosis results, thus reducing the complexity of the fusion
process and improving the accuracy of the diagnosis results. The
simulation results show the superiority of the method proposed
in this study.

The diagnosis ability of the distributed fault diagnosis system
for NPPs can be extended to different power conditions. The fault
diagnosis of NPPs after the protection intervention will be the
topic of future research.
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