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This paper studies the economics of carbon-neutral synthetic fuel production from

renewable electricity in remote areas where high-quality renewable resources are

abundant. To this end, a graph-based optimisation modelling framework directly

applicable to the strategic planning of remote renewable energy supply chains is

proposed. More precisely, a hypergraph abstraction of planning problems is introduced,

wherein nodes can be viewed as optimisation subproblems with their own parameters,

variables, constraints and local objective. Nodes typically represent a subsystem such

as a technology, a plant or a process. Hyperedges, on the other hand, express the

connectivity between subsystems. The framework is leveraged to study the economics of

carbon-neutral synthetic methane production from solar and wind energy in North Africa

and its delivery to Northwestern Europeanmarkets. The full supply chain is modelled in an

integrated fashion, which makes it possible to accurately capture the interaction between

various technologies on an hourly time scale. Results suggest that the cost of synthetic

methane production and delivery would be slightly under 150 e/MWh (higher heating

value) by 2030 for a system supplying 10 TWh annually and relying on a combination

of solar photovoltaic and wind power plants, assuming a uniform weighted average

cost of capital of 7%. A comprehensive sensitivity analysis is also carried out in order

to assess the impact of various techno-economic parameters and assumptions on

synthetic methane cost, including the availability of wind power plants, the investment

costs of electrolysis, methanation and direct air capture plants, their operational flexibility,

the energy consumption of direct air capture plants, and financing costs. The most

expensive configuration (around 200 e/MWh) relies on solar photovoltaic power plants

alone, while the cheapest configuration (around 88 e/MWh) makes use of a combination

of solar PV and wind power plants and is obtained when financing costs are set to zero.

Keywords: optimisation, renewable energy, carbon neutral, synthetic fuels, remote supply chain, linear
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1. INTRODUCTION

Electricity generation from renewable resources combined
with wide-ranging electrification has been a mainstay of
European climate and energy policies, with the primary goal
of decarbonising the power sector as well as other carbon-
intensive sectors.

Major obstacles to such endeavours have nevertheless surfaced
in recent years. Firstly, sectors like aviation, shipping, heating or
industry have proved difficult to fully electrify. Indeed, feedstocks
and energy carriers with specific properties such as a high energy
density are typically required (Eveloy et al., 2021). Hence, the
production of carbon-neutral synthetic fuels and feedstocks from
renewable electricity has been the focus of a growing body of
literature. For example, the synthesis of carbon-neutral hydrogen
(Borgschulte, 2016), methane (Biswas et al., 2020), methanol
(Centi et al., 2020), and ammonia (Ghavam et al., 2021) have all
been considered. A number of demonstration projects have been
carried out as well (Wulf et al., 2020). Secondly, it has become
clear that the technical renewable potential of some European
countries (i.e., the maximum amount of renewable electricity
that may be produced within a country’s borders and exclusive
economic zone, while accounting for a variety of land eligibility
constraints Ryberg et al., 2018) is insufficient to supply current
energy demand levels (e.g., in densely-populated countries like
Belgium Berger et al., 2020; Limpens et al., 2020 or the United
Kingdom MacKay, 2008). It is still unclear whether pooling
renewable resources at the European level would alleviate the
problem. On the other hand, it is well documented that social
acceptance issues tend to compound it (Segreto et al., 2020).

A simple solution consists in harvesting renewable resources
in remote areas where they are abundant, synthesising carbon-
neutral fuels or feedstocks using renewable electricity and
transporting them back to demand centres (Fasihi and Bogdanov,
2015; Chapman et al., 2017; Heuser et al., 2019). However,
two conditions must be satisfied for such an approach to be
worth pursuing. Firstly, transport should be energy-efficient and
cost-effective. This will often depend on the physics of the
commodity considered and thematurity of technologies available
to handle it. Secondly, very-high-quality renewable resources
should be tapped. The quality of such resources is typically
estimated via the annual capacity factor of a given technology
harnessing them, which directly reflects the amount of electricity
that may be produced per unit capacity. Since renewable power
generation technologies usually have very low operating costs, the
higher the capacity factor, the lower the electricity cost. Regions
with outstanding resources and vast technical potential include
Patagonia (wind) (Heuser et al., 2019), North Africa (sun and
wind) (Fasihi and Bogdanov, 2015), and Greenland (wind) (Radu
et al., 2019). Providing an accurate quantitative assessment of the
economics and efficiency of such remote renewable energy supply
chains and pathways is critical to evaluate future sustainable
energy supply options available to policy makers and society at
large as well as to identify where to direct future research and
development efforts.

From a conceptual standpoint, a supply chain can be viewed
as a networked system composed of dynamical subsystems

interacting with each other. In order to tackle the problem
at hand, the collection of processes and technologies forming
a remote renewable energy supply chain must be analysed
in an integrated fashion, which makes it possible to properly
capture the interactions between subsystems in space and time.
In addition, a sufficient level of technical detail and temporal
resolution should be used to properly model their operation
(Poncelet et al., 2016). This paper formalises these considerations
and proposes a graph-based optimisation modelling framework
directly applicable to the strategic planning and analysis of
remote renewable energy supply chains. More precisely, a
hypergraph abstraction of planning problems is introduced,
wherein nodes can be viewed as optimisation subproblems
with their own parameters, variables, constraints and local
objective, and typically represent a subsystem such as a
technology, a plant or a process. Hyperedges, on the other hand,
express the connectivity between subsystems. The framework
is then leveraged to study the economics of carbon-neutral
synthetic methane production from renewable electricity and
atmospheric carbon dioxide in North Africa and its delivery
to Northwestern European markets. Synthetic methane is an
appealing carbon-neutral energy carrier, as some downstream
transport infrastructure is readily available in Northwestern
European countries, and the liquefied methane chain is mature
and cost-effective (Timera Energy, 2018). It would also obviate
the need for replacing or upgrading appliances and processes
presently used for residential heating and in industry that a switch
to other fuels would entail. In this paper, the carbon-neutral
synthetic methane supply chain is modelled end-to-end, from
power generation in North Africa to methane regasification in
Northwestern Europe. A detailed description of each process
and technology is provided, along with comprehensive data
resources. The modelling framework also served as a basis for the
development of an open source optimisation modelling language
(Berger et al., 2021) and tool (Miftari et al., 2021). In the interest
of transparency, the input files and full data enabling others to
reproduce the analyses presented in this paper are also available
in the associated repository (Miftari et al., 2021).

This paper is structured as follows. Section 2 reviews the
relevant literature. Section 3 details the proposed modelling
framework, while Sections 4 and 5 describe the case study and
discuss results, respectively. Finally, Section 6 concludes the
paper and discusses future work directions.

2. LITERATURE REVIEW

To the best of the authors’ knowledge, Hashimoto et al. (1999)
were the first to suggest the production of hydrogen from
renewable electricity in remote areas followed by the synthesis
of hydrocarbons using captured carbon dioxide as a means of
producing carbon-neutral fuels. The paper, however, did not
provide a quantitative techno-economic analysis of the proposed
supply chains. By contrast, Zeman and Keith (2008) performed
one of the first quantitative economic analyses of carbon-neutral
synthetic fuel production using carbon-neutral hydrogen and
atmospheric carbon dioxide. Production cost estimates for this
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route were found to be between 23.5 and 30.0 US$/GJ (which
would roughly correspond to 74.1 and 94.6 e/MWh, using the
2020 average exchange rate of $1.142 for 1.0e). The production
of carbon-neutral synthetic methane and liquid fuels in remote
areas with abundant renewable resources has been considered in
Fasihi and Bogdanov (2015) and Fasihi et al. (2017), respectively.
In the first study, the authors estimate that the cost of producing
synthetic methane from renewable electricity in North Africa
(specifically in central and southern Algeria) and delivering it
to Japan could be around 65–75 e/MWh by 2030 for a hybrid
solar-wind system, assuming a uniform weighted average cost of
capital (WACC) of 7%. It is not specified whether the higher
heating value (HHV) or the lower heating value (LHV) of
methane was used to compute these costs. In the second study,
the cost of producing synthetic methane in the same region
and delivering it to Finland is found to be between 100 and
110 e/MWh (HHV) by 2030 and between 90 and 100 e/MWh
(HHV) by 2040, respectively, using a WACC of 7%. Finally, the
economics of carbon-neutral fuel production is also analysed in
Agora Verkehrswende et al. (2018). Cost estimates close to 140–
150 e/MWh (LHV) by 2030 and 110 e/MWh (LHV) by 2050
(using a WACC of 6% in both cases) are found for synthetic
methane production in North Africa (specifically in central and
southern Algeria) and delivery to Germany based on both solar
energy alone and hybrid systems combining solar and wind
power plants.

It is also informative to review the modelling approaches
followed in these studies. Firstly, Zeman and Keith (2008) do
not specify the technologies used to implement the various
conversion processes, and instead rely on a set of assumptions
about conversion efficiencies and the cost of producing input
commodities (in stoichiometric proportions) to come up with a
cost estimate for the final product. Then, Fasihi and Bogdanov
(2015) resort to a so-called annual-basis model estimating the
annual number of equivalent full load hours of renewable power
production in order to calculate electricity and synthetic methane
costs based on a set of techno-economic assumptions. This
method is equivalent to estimating annual power production
and costs using an average capacity factor value, and the model
is therefore not temporally-resolved. A so-called hourly-basis
model enabling the sizing of solar photovoltaic (PV) and wind
power plants is mentioned in Fasihi and Bogdanov (2015) and
Fasihi et al. (2017), but no mathematical model is explicitly
described and no computer code implementing it is made
available, which makes the approach difficult to interpret and
scrutinise. Somewhat surprisingly, very minor differences in cost
estimates are observed between the annual-basis and hourly-basis
models in Fasihi and Bogdanov (2015). In Agora Verkehrswende
et al. (2018), an annual full load hour model similar to that
of Fasihi and Bogdanov (2015) is used. For systems driven by
variable renewable energy resources, it has been shown that
using a high temporal resolution (e.g., hourly) and adopting a
proper level of technical detail (i.e., representing the flexibility of
technologies, or lack thereof) is key for accurately sizing plants
and estimating both investment and operating costs properly
(Poncelet et al., 2016). It is worth noting that the aforementioned
papers rely on models that have both a very low level of technical

detail and a very low temporal resolution. Furthermore, none
of these models makes it possible to design the supply chain in
an integrated fashion while properly accounting for interactions
between subsystems. Similar shortcomings can be found in
studies focussing on other energy carriers such as hydrogen
(Dagdougui, 2012; Heuser et al., 2019).

The design and analysis of energy systems and supply
chains has often been tackled using mathematical programming
techniques in the literature (Garcia and You, 2015; Conejo et al.,
2016). Different classes of models may be used, ranging from
linear and mixed-integer linear programs (LPs and MILPs) to
non-linear and mixed-integer (possibly non-convex) non-linear
programs (NLPs and MINLPs) (Biegler and Grossmann, 2004).
Parameter uncertainty may also be taken into account (Sahinidis,
2004). The type of model used typically depends on the research
scope, the available computational resources and the data at
hand. For example, the design of a single piece of equipment used
in a process may require NLP or MINLP models to accurately
represent its physics and operating modes (Grossmann, 2002).
On the other hand, supply chains can be viewed as collections
of interconnected plants or processes, which themselves rely on
a variety of complex pieces of equipment. Representing each of
them in their full complexity would require vast amounts of data
and result in intractablemodels. Thus, for the purpose of strategic
or high-level system design analyses, aggregate plant models are
typically employed (Chen and Grossmann, 2017; Montastruc
et al., 2019). In such models, mass and energy conservation laws
are enforced at plant level while accounting for basic operational
constraints. Mass and energy balances are also enforced between
interconnected plants in order to guarantee consistency of flows
at system level. Such approaches, which usually rely on LP or
MILP models, have for instance been applied to the design of
integrated biorefineries (Kokossis et al., 2015), the design of
power-to-syngas processes (Maggi et al., 2020) and power-to-
chemicals networks (Schack et al., 2016; Liesche et al., 2019). Such
an approach is adopted in this paper, as discussed next.

3. METHODOLOGY

This section formally introduces the abstract graph-based
optimisation modelling framework and describes how it can be
applied in the context of strategic energy supply chain planning.

3.1. Graph-Based Optimisation Modelling
Framework
In this paper, supply chain planning problems are formulated
as structured linear programs. These problems typically involve
the optimisation of discrete-time dynamical systems over a finite
time horizon and exhibit a natural block structure that may be
encoded by a sparse graph or hypergraph (Gallo et al., 1993).
A hypergraph abstraction is therefore employed to represent
them, wherein nodes model optimisation subproblems, while
hyperedges express the relationships between nodes. A global
discretised time horizon and associated set of time periods
common to all nodes are also defined. Each node is equipped with
a set of so-called internal and external (or coupling) variables.
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A set of constraints is also defined for each node, along with
a local objective function representing its contribution to a
system-wide objective. Finally, for each hyperedge, constraints
involving the coupling variables of the nodes to which it is
incident are defined. In the following paragraphs, we formally
define variables, constraints, objectives and formulate the abstract
model that encapsulates the class of problems considered.

Let T ∈ N be the time horizon considered, let T =

{0, 1, . . . ,T − 1} be the associated set of time periods, and let
G = (N, E) be a (possibly directed) hypergraph encoding the
block structure of the problem considered, with node set N and
hyperedge set E ⊆ 2N (i.e., each hyperedge corresponds to a
subset of nodes). Let Xn ∈ Xn and Zn ∈ Zn denote the collection
of internal and coupling variables defined at node n ∈ N. Note
that all variables are assumed to take values in continuous sets
(i.e., Xn and Zn are continuous). In addition, for any hyperedge
e ∈ E, let Ze = {Zn|n ∈ e} denote the collection of coupling
variables associated with the nodes to which this hyperedge
is incident.

Let Fn denote the function defining the local objective at node
n ∈ N. In this paper, we consider scalar objectives of the form

Fn(Xn,Zn) = f n0 (X
n,Zn)+

∑

t∈T

f n(Xn,Zn, t), (1)

where f n0 and f n are (scalar) affine functions of Xn and Zn.
Both equality and inequality constraints may be defined at

each node n ∈ N. More precisely, an arbitrary number of
constraints that can each be expanded over a subset of time
periods may be defined. Hence, we consider equality constraints
of the form

hnk(X
n,Zn, t) = 0, ∀t ∈ Tnk , (2)

with (scalar) affine functions hn
k
and index sets Tn

k
⊆ T, k =

1, . . . ,Kn, as well as inequality constraints

gnk (X
n,Zn, t) ≤ 0, ∀t ∈ T̄

n
k , (3)

with (scalar) affine functions gn
k
and index sets T̄

n
k ⊆ T, k =

1, . . . , K̄n.
Likewise, both equality and inequality constraints may be

defined over any hyperedge e ∈ E. These constraints, however,
can only involve the coupling variables of the nodes to which
hyperedge e ∈ E is incident (i.e., nodes such that n ∈ e). More
precisely, let He and Ge be affine functions of Ze used to define
the equality and inequality constraints associated with a given
hyperedge e ∈ E.

Using this notation, the class of problems that can be
represented in this framework reads

min
∑

n∈N Fn(Xn,Zn)

s.t. hn
k
(Xn,Zn, t) = 0, ∀t ∈ Tn

k
, k = 1, . . .Kn, ∀n ∈ N

gn
k
(Xn,Zn, t) ≤ 0, ∀t ∈ T̄

n
k , k = 1, . . . K̄n, ∀n ∈ N

He(Ze) = 0, ∀e ∈ E

Ge(Ze) ≤ 0, ∀e ∈ E

Xn ∈ Xn,Zn ∈ Zn, ∀n ∈ N.

(4)

Figure 1 schematically illustrates the class of problems that can
be modelled in this framework.

3.2. Application to Energy Supply Chains
The framework presented in Section 3.1 can be readily leveraged
to model energy systems and supply chains. In this case,
nodes typically represent a technology, a plant or a process,
while hyperedges may be used to enforce some coupling
between plants. Introducing a few generic (parametrised) nodes
and hyperedges often suffices to model a broad range of
system configurations. In the following, some key modelling
assumptions are introduced, along with two generic nodes and
one generic hyperedge, namely conversion and storage nodes, as
well as conservation hyperedges.

3.2.1. Modelling Assumptions
Central Planning and Operation. Investment decisions are
made by a single entity that also operates the system, and whose
goal is to minimise total system costs.

Perfect Foresight and Knowledge. The entity planning and
operating the system has perfect foresight and knowledge, that
is, future weather events and demand patterns, as well as all
technical and economic parameters are assumed to be known
with certainty.

Investment and Operational Decisions. A static investment
model is used, whereby investment decisions are made at the
beginning of the time horizon and assets are immediately
available. Operational decisions are made at hourly time
steps. The investment and operational problems are
solved simultaneously.

Technology and Process Models. The sizing and operation
of technologies are modelled via a set of affine input-output
relations that typically express mass and energy balances at plant
or process level. Input or output dynamics are considered for
some technologies, but only storage technologies have a simple
state space representation.

3.2.2. Nodes
Preliminaries. In the following developments, Latin letters
denote optimisation variables and indices, while Greek letters
indicate parameters.

Conversion. Let n ∈ N be a node representing a so-
called conversion technology that processes a set of commodities
(e.g., an electrolysis plant that splits water into hydrogen
and oxygen using an electric current and therefore processes
four commodities). Commodity flows are modelled as external
variables, and an index i ∈ In is assigned to each commodity
(i.e., each i ∈ In corresponds to a time-indexed external variable).
The processing of commodities by technology n is modelled via a
set of linear equations linking the flow of a reference commodity
r ∈ In (e.g., hydrogen may be taken as the reference commodity
for electrolysis plants) to the flow of all other commodities i ∈
In \ {r}, which read

qnrt − φn
i q

n
i(t+τni )

= 0, ∀i ∈ In \ {r}, ∀t ∈ Tn, (5)

where qnit ∈ R+ represents the flow of commodity i at time t,
φn
i ∈ R+ is the so-called conversion factor between commodity r
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FIGURE 1 | Hypergraph abstraction of a hypothetical problem whose block structure is represented by four nodes (i.e., N = {n1, n2, n3, n4}) and two hyperedges (i.e.,

E = {e1, e2}, with e1 = {n1, n2} and e2 = {n2, n3, n4}). Note that e1 only has equality constraints while e2 only has inequality constraints.

and i (whichmay be derived, e.g., from stoichiometric coefficients
or the enthalpy of the underlying reaction), while τni ∈ N is
the amount of time that may be required for the conversion
process to take place and Tn ⊆ T is a suitable subset of time
periods. The capacity of a technology is typically modelled as an
internal variable and defined as the maximum flow of a reference
commodity r′ ∈ In according to which the technology is sized.
Note that r′ may be different from r (e.g., the size of electrolysis
plants is typically expressed in terms of their electrical capacity,
although hydrogen may be the reference commodity used in
Equation (5)). Since a static investment model is considered,
capacity deployments occur at the beginning of the time horizon
and remain constant throughout, i.e.,

Kn
0 − Kn

t = 0, ∀t ∈ T \ {0}, (6)

where Kn
t ∈ R+ denotes the new capacity of technology n. In the

following, Kn will be used as shorthand for Kn
0 . Thus, the total

capacity of technology n is defined via

qnr′t − πn
t (κ

n + Kn) ≤ 0, ∀t ∈ T, (7)

where πn
t ∈ [0, 1] indicates the availability of technology n at

time t and κn ∈ R+ represents the existing capacity. The so-
called availability parameter πn

t may for instance represent the
instantaneous capacity factor of a renewable power plant. The
maximum capacity of a technology may be bounded, which leads
to the introduction of an additional constraint,

(κn + Kn)− κ̄n ≤ 0, (8)

with κ̄n ∈ R+ the maximum capacity of technology n that
may be installed. A variety of operational constraints may also

be considered. For instance, some conversion technologies may
have a limited operating range, and may only work if a minimum
flow of commodity i ∈ In is maintained, which can be
expressed as

µn(κn + Kn)−
φn
i

φn
r′
qnit ≤ 0, ∀t ∈ T, (9)

where µn ∈ [0, 1] represents the minimum operating level (as
a fraction of the installed capacity). Since the technology is sized
with respect to the flow of commodity r′, the flow of a commodity
i 6= r′ must be scaled by the ratio of conversion factors in
Equation (9). The rate at which the flow of commodity i ∈ In can
vary may also be limited, leading to the introduction of so-called
ramping constraints,

φn
i

φn
r′
(qnit − qni(t−1))− 1n

i,+(κ
n + Kn) ≤ 0, ∀t ∈ T \ {0}, (10)

and

φn
i

φn
r′
(qni(t−1) − qnit)− 1n

i,−(κ
n + Kn) ≤ 0, ∀t ∈ T \ {0}, (11)

with 1n
i,+ ∈ [0, 1] and 1n

i,− ∈ [0, 1] the maximum rates at which
flows can be ramped up and down (as a fraction of the installed
capacity per unit time), respectively. Finally, the local objective
function associated with this node reads

Fn = ν(ζ n + θnf )K
n +

∑

t∈T

θnt,vq
n
r′tδt, (12)
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where ν ∈ N is the number of years spanned by the optimisation
horizon, ζ n ∈ R+ represents the (annualised) investment cost
(also known as capital expenditure, CAPEX), θn

f
∈ R+ models

fixed operation and maintenance (FOM) costs, θnt,v ∈ R+

represents variable operation and maintenance (VOM) costs,
which may be time-dependent, and δt ∈ R+ is the duration of
each time period.

Storage. Let n ∈ N be a node representing a storage
technology. A storage technology is assumed to hold one
commodity, although its operation may involve other
commodities (e.g., a compressed hydrogen storage system
stores hydrogen but requires electricity to drive compressors).
The inventory level of the storage system is defined as an internal
variable, while the charge and discharge flows are defined as
external variables, respectively. Let i ∈ In and j ∈ In be the
indices of the in/outflows of the commodity stored in technology
n, respectively. Then, the basic equation governing the operation
of storage systems describes the inventory level dynamics
and reads

ent+1 − (1− ηnS )e
n
t − ηn+q

n
it +

1

ηn−
qnjt = 0, ∀t ∈ T \ {T − 1}, (13)

where ent ∈ R+ is the inventory level at time t, qnit ∈ R+

and qnjt ∈ R+ represent commodity in- and outflows at time t,

respectively, ηnS ∈ [0, 1] is the self-discharge rate, ηn+ ∈ [0, 1] is
the charge efficiency and ηn− ∈ [0, 1] is the discharge efficiency.
Charging a storage system may also require the consumption of
another commodity l ∈ In, l 6= i, j (e.g., electricity consumed
by compressors), which is typically modelled via an additional
external variable qn

lt
∈ R+ and equations

qnlt − φn
i q

n
it = 0, ∀t ∈ T. (14)

In order to avoid spurious transient effects in storage operation,
inventory levels are typically required to be equal at the beginning
and at the end of the optimisation horizon,

en0 − enT−1 = 0. (15)

The stock capacity of the storage technology is modelled as an
internal variable and it is defined by the maximum inventory
level. Since a static investment model is used, the stock capacity
is constant throughout the entire time horizon, i.e.,

En0 − Ent = 0, ∀t ∈ T \ {0}, (16)

where Ent ∈ R+ is the new capacity. In the following, En will be
used as shorthand for En0 . The total storage capacity is therefore
defined via

ent − (ǫn + En) ≤ 0, ∀t ∈ T, (17)

where ǫn ∈ R+ denotes the existing stock capacity. Note that the
total stock capacity itself may be constrained,

(ǫn + En)− ǭn ≤ 0, (18)

with ǭn ∈ R+ the maximum stock capacity that may be deployed.
In addition, some storage technologies may require a minimum
inventory level to be maintained, which can be expressed as

σ n(ǫn + En)− ent ≤ 0, ∀t ∈ T, (19)

where σ n ∈ [0, 1] represents the minimum inventory level (as
a fraction of the stock capacity). The maximum inflow capacity
is sized independently of the stock capacity. For example, in the
case of battery storage systems, this implies that the energy-to-
power ratio is not fixed a priori. Themaximum inflow ismodelled
using an internal variable that is also constant throughout
the time horizon considered, as in Equation (6). It is defined
as follows

qnit − (κn + Kn) ≤ 0, ∀t ∈ T, (20)

where κn ∈ R+ denotes the existing flow capacity and Kn ∈ R+

is used as shorthand for the new capacity. The maximum in- and
outflows may be asymmetric, depending on the properties of the
underlying technology, which is modelled via

qnjt − ρn(κn + Kn) ≤ 0, ∀t ∈ T, (21)

where ρn ∈ R+ represents the maximum discharge-to-charge
ratio. Finally, the local objective function associated with this
node reads

Fn =
[

ν(ςn + ϑn
f )E

n +
∑

t∈T

ϑn
t,ve

n
t δt

]

+

[

ν(ζ n + θnf )K
n+

∑

t∈T

θnt,vq
n
itδt

]

. (22)

where ςn ∈ R+ and ζ n ∈ R+ represent the stock and flow
components of CAPEX, ϑn

f
∈ R+ and θn

f
∈ R+ model the

stock and flow components of FOM costs, while ϑn
t,v ∈ R+ and

θnt,v ∈ R+ represent the stock and flow components of VOM
costs, which may be time-dependent.

3.2.3. Hyperedges
Conservation. Let e ∈ E be a so-called conservation hyperedge
that enforces local flow conservation of some commodity. More
precisely, one commodity is associated with a given conservation
hyperedge. Let i ∈ ∩n∈eI

n denote this commodity (i.e., each node
n ∈ e has an external variable representing a flow of commodity
i). In addition, let us assume that hyperedge e is directed (i.e., it
can be partitioned into two disjoint subsets eT and eH that are
called its tail and head, respectively). Roughly speaking, e can be
interpreted as “going from nodes in eT to nodes in eH”. Then,
flow conservation of commodity i over hyperedge e can simply
be expressed as

∑

n∈eT

qnit −
∑

n∈eH

qnit − λet = 0, ∀t ∈ T, (23)

where the first two sums on the left-hand side represent the
aggregate flows from the nodes in eT and eH (whose signs depend
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on the orientation of e), while λet ∈ R represents exogenous
withdrawals or injections that may take place over e at each time
period t. Note that Equation (23) may sometimes be relaxed to
a greater-than-or-equal-to inequality constraint (in which case
the net flow must exceed the injections/withdrawals at each
time period).

3.3. Implementation
The graph-based modelling framework discussed in Section
3.1 has been used as a basis for developing an optimisation
modelling language for structured linear and mixed-integer
linear programs called the graph-based optimisation modelling
language (GBOML) (Berger et al., 2021). The language blends
elements of both algebraic (Kallrath, 2012) and object-oriented
(Schichl, 2004) modelling languages in order to facilitate problem
encoding and post-processing, promote model re-use and
improve portability. The full description of GBOML, which is
beyond the scope of this paper, is detailed in a separate tutorial
paper (Berger et al., 2021). A parser for GBOML, called the
GBOML compiler, has also been implemented in Python 3.8
(using the PLY library), and is released as open source software
(Miftari et al., 2021). The GBOML compiler directly interfaces
with both commercial and open source LP and MILP solvers
(namely Gurobi, CPLEX, and Clp/Cbc), enabling users to model
problems, interact with solver APIs, query solutions and retrieve
post-processed results in an integrated fashion. For the sake of
transparency and reproducibility, the input file that encodes the
model and full data allowing one to reproduce the case study
and results discussed in Sections 4 and 5 are also provided in
the GBOML repository (Miftari et al., 2021). One instance of
the resulting linear programming model can be solved in about
ten minutes with the homogeneous barrier algorithm (cross-over
disabled) of Gurobi 9.1.1 on a laptop with 16 GB of RAM and a
Quad-Core Intel i7 processor clocking at 2.6GHz.

4. CASE STUDY

This case study aims to analyse the economics of producing
carbon-neutral methane from renewable electricity in areas
of North Africa where abundant and high-quality renewable
resources are readily available, and exporting it to Northwestern
European markets. More specifically, the entire supply chain
is modelled and optimised in an integrated fashion over a
time horizon of five years with hourly resolution (i.e., T =

43, 824, since 2016 is a leap year), from the remote generation
of electricity to the synthesis and liquefaction of carbon-
neutral methane in North Africa, to its eventual delivery and
regasification at a Northwestern European gas terminal. Figure 2
shows a schematic representation of the supply chain considered.

4.1. System Configuration
A more detailed representation of the system configuration
considered in this study is shown in Figure 3, where icons
correspond to conversion or storage nodes, while bullets and
arrows schematically represent conservation hyperedges. For
the sake of readability, the set of nodes is split into three
clusters, which also correspond to the different geographical areas

FIGURE 2 | Remote carbon-neutral methane supply chain: electricity is

produced in a remote inland cluster in central Algeria and transported to a

coastal cluster where carbon-neutral methane is synthesised and liquefied for

export to Northwestern European markets.

displayed in Figure 2. The nodes and hyperedges used to model
this system are described in the following subsections.

4.1.1. Conversion Nodes
Conversion nodes are discussed in this subsection. Tables 1,
2 gather the techno-economic data (2030 estimates) used to
model conversion nodes along with the original data sources and
complement the descriptions below. In the model, power flows
aremeasured in GW (GWh/h), energy is measured in GWh,mass
flows are measured in kt/h, mass is measured in kt, and money is
measured in Me.

Solar PV. Solar photovoltaic panels are used for power
generation. The plants are modelled with one external variable
representing the output power and one internal variable
representing the plant capacity, respectively. Constraints (7) and
(8) are used along with the local objective function (12). In order
to construct the capacity factor time series πn

t , five years (2015–
2019) of hourly-sampled irradiance data are retrieved from the
ERA5 database (European Center for Medium Range Weather
Forecasts (ECMWF), 2020) for each grey point in Figure 2 and
converted into capacity factors using a generic transfer function
(HOMER, 2020) and TrinaSolar Tallmax M tilted module data
(TrinaSolar, 2017). Sites with a five-year average capacity factor
value exceeding 24.5% are retained (eleven in total, shown by
red crosses in Figure 2) and the associated time series are then
aggregated (spatially averaged) into a single time series πn

t , which
is illustrated in Figure 4 for a set of weekly periods in 2016.

Wind Turbines.Wind turbines are used for generating power
as well. Wind power plants are modelled in a fashion similar to
solar PV plants, that is, with one external variable representing
the power output and one internal variable representing the plant
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FIGURE 3 | Remote hub system configuration. Icons represent conversion or storage nodes, while bullets and arrows schematically represent conservation

hyperedges.

capacity, respectively. Constraints (7) and (8) are used along
with the local objective function (12). In order to construct
the capacity factor time series πn

t , five years (2015–2019)
of hourly-sampled wind speed data are retrieved from the
ERA5 database (European Center for Medium Range Weather
Forecasts (ECMWF), 2020) for each grey point in Figure 2 and
converted into capacity factors using the transfer function of the
Vestas V90 turbine available in the windpowerlib library (Haas
et al., 2019). Sites with a five-year average capacity factor value
exceeding 50% are retained (five in total, shown by blue crosses
in Figure 2) and the associated time series are then aggregated
(spatially averaged) into a single time series πn

t , which is also
displayed in Figure 4.

HVDC Interconnection. Ultra-high-voltage direct current
(HVDC) overhead lines (800 or 1, 100 kV) are assumed to
be used for bulk power transmission from the first cluster
(inland) to the second one (coastal hub) (CIGRE C1.35 Working
Group, 2019). Note that the yellow area containing the solar and
wind sites in Figure 2 is assumed to be a copper plate for the
purpose of this study, which implies that solar PV and wind
power plants feed directly into the electricity interconnection
and the cost of the infrastructure connecting power plants
to the HVDC interconnection is neglected. Voltage source

converters (VSC) are well-suited for remote applications, as
they are self-commutated and are much more controllable than
typical line-commutated (LC) alternatives, although they are
more expensive and have higher conversion losses (Xiang et al.,
2016). In this case, two VSC stations are placed on each side
of an overhead HVDC cable whose length is assumed to be
1, 000 km. Losses in each converter station roughly amount
to 1.8% of the power flowing through it, while approximately
1.5% of the power transiting through the HVDC cable is lost.
Combining these figures yields the overall efficiency reported in
Table 1. Economic data shown in Table 2 include the costs of
both converter stations and the cable. The interconnection is
modelled using two external variables and one internal variable.
The external variables represent the power flows into (i.e., leaving
the first cluster) and out of (i.e., reaching the second cluster) the
HVDC interconnection, respectively. The internal variable is the
capacity of the converter-line pair. Investment costs in lines and
converter stations are accounted for in the local objective (12),
along with operating costs.

Electrolysis Plants. Proton exchange membrane (also called
polymer electrolyte membrane, PEM) electrolysis plants (Carmo
et al., 2013) are used for producing hydrogen. This technology
makes it possible to split water into hydrogen and oxygen by the

Frontiers in Energy Research | www.frontiersin.org 8 June 2021 | Volume 9 | Article 671279

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Berger et al. Renewable Hubs for Fuel Production

TABLE 1 | Technical parameters used to model conversion nodes.

φ1 φ2 φ3 µ 1+,−

HVDC Interconnection 0.9499

IEA ETSAP, 2014; Xiang et al., 2016 -

Electrolysis 50.6 9.0 8.0 0.05 1.0

Gotz et al., 2016 GWhel/ktH2
ktH2O

/ktH2
ktO2

/ktH2
- -/h

Methanation 0.5 2.75 2.25 1.0 0.0

Gotz et al., 2016; Roensch et al., 2016 ktH2
/ktCH4

ktCO2
/ktCH4

ktH2O
/ktCH4

- -/h

Desalination 0.004 1.0 0.0

International Renewable Energy Agency (IRENA), 2012 GWhel/ktH2O
- -/h

Direct Air Capture 0.1091 0.0438 5.0 1.0 0.0

Keith et al., 2018 GWhel/ktCO2
ktH2

/ktCO2
ktH2O

/ktCO2
- -/h

CH4 Liquefaction 0.616 0.0 1.0

Pospisil et al., 2019 GWhel/ktLCH4
- -/h

LCH4 Carriers 0.994

Howard Rogers, 2018 -

LCH4 Regasification 0.98

Pospisil et al., 2019 -

passage of an electric current. Hence, the plants are modelled
with four external and one internal variables. The external
variables represent the power and water inflows as well as the
hydrogen and oxygen outflows, while the internal variable is the
plant capacity. The reference commodity r used in Equation (5)
is hydrogen, while the commodity r′ according to which the
technology is sized in Equation (7) is the power input. Electrolysis
plants are also assumed to operate at 20 bar and 40◦C. This
technology is flexible and can ramp up and down very quickly
(usually within seconds). Hence, no ramping constraints are
used. However, a minimum hydrogen production level around
5 − 10% of the nominal capacity must be maintained when the
plant is switched on. Constraints (9) are therefore used to model
plant operation. The usual objective function (12) is also used.

Methanation Plants. The carbon dioxide methanation
(Sabatier) reaction enables the conversion of carbon dioxide
and hydrogen into methane and water (steam) and is highly
exothermic (i.e., the production of 1 kg of methane releases
approximately 2.867 kWh of high-temperature heat Roensch
et al., 2016). In this paper, cooled fixed-bed (catalytic) reactors
operating at 300◦C and 20 bar are assumed to be used to produce
synthetic methane via the Sabatier reaction. Furthermore, carbon
dioxide and hydrogen are assumed to be fed in stoichiometric
proportions, and the conversion of reactants is assumed to
be complete (which is facilitated by the use of, e.g., alumina-
supported nickel catalysts Mills and Steffgen, 1974 that offer
good selectivity and are relatively cheap). Plants are modelled
using four external variables and one internal variable. The
external variables represent the hydrogen and carbon dioxide
inflows as well as the methane and water (steam) outflows, while

the internal variable is the plant capacity. Methane is taken
as the reference commodity r used to describe the process in
Equation (5) as well as the reference commodity r′ used for
sizing the plant in Equation (7). Owing to the exothermicity
of the reaction, cooled fixed-bed reactors are very sensitive to
changes in operating parameters such as the feed and coolant
temperatures (Schlereth and Hinrichsen, 2014) or the feed flow
rate (Theurich, 2019), and can suffer from pronounced hot-spots
or thermal runaway (Schlereth and Hinrichsen, 2014), which
can in turn lead to catalyst sintering and deactivation. Hence,
reactors usually have a (very) narrow operating range, although
promising ways of improving this have been proposed (Bremer
and Sundmacher, 2019). Dynamic operation may also involve
shutting down the reactor, keeping it in hot standby and starting
it up again (Gorre et al., 2020), which nevertheless leads to
inefficiencies (e.g., the reactor must be flushed with hydrogen
Gorre et al., 2020). Finally, note that maintaining product quality
is typically more difficult in unsteady operation. In the light of
these observations, in this paper, it is assumed that methanation
reactors operate in steady state. Constraints (9), (10), (11) are
therefore used to model plant operation, while investment and
operating costs are modelled via (12).

Water Desalination Plants. Reverse osmosis (RO) plants
are employed to desalinate seawater and produce freshwater
(Caldera et al., 2016). This technology essentially pumps seawater
into a chamber featuring a porous membrane and produces
a pressure differential across the membrane, enabling dead-
end filtration and the recovery of freshwater on the other side
of the membrane. The plants are modelled with two external
variables and one internal variable. The external variables are
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TABLE 2 | Economic parameters used to model conversion nodes (2030 estimates).

CAPEX FOM (θf ) VOM (θv) Lifetime

Solar Photovoltaic Panels 380.0 7.25 0.0 25.0

Danish Energy Agency, 2020b Me/GWel Me/GWel-yr Me/GWhel yr

Wind Turbines 1040.0 12.6 0.00135 30.0

Danish Energy Agency, 2020b Me/GWel Me/GWel-yr Me/GWhel yr

HVDC Interconnection 480.0 7.1 0.0 40.0

EIA, 2018; CIGRE C1.35 Working Group, 2019 Me/GWel Me/GWel-yr Me/GWhel yr

Electrolysis 600.0 30.0 0.0 15.0

Danish Energy Agency, 2020c Me/GWel Me/GWel-yr Me/GWhel yr

Methanation 735.0 29.4 0.0 20.0

International Energy Agency (IEA), 2019 Me/GWCH4
(HHV) Me/GWCH4

-yr (HHV) Me/GWhCH4
(HHV) yr

Desalination 28.08 0.0 0.000315 20.0

CMI Marseille, 2016 Me/(ktH2O
/h) Me/(ktH2O

/h)-yr Me/ktH2O
yr

Direct Air Capture 4801.4 0.0 0.0207 30.0

Keith et al., 2018 Me/(ktCO2
/h) Me/(ktCO2

/h)-yr Me/ktCO2
yr

CH4 Liquefaction 5913.0 147.825 0.0 30.0

Brian Songhurst, 2018 Me/(ktLCH4
/h) Me/(ktLCH4

/h)-yr Me/ktLCH4
yr

LCH4 Carriers 2.537 0.12685 0.0 30.0

Economic Research Institute for ASEAN and East Asia (ERIA), 2018 Me/ktLCH4
Me/ktLCH4

-yr Me/ktLCH4
yr

LCH4 Regasification 1248.3 24.97 0.0 30.0

Dongsha et al., 2017 Me/(ktCH4
/h) Me/(ktCH4

/h)-yr Me/ktCH4
yr

FIGURE 4 | Capacity factor time series πn
t used for solar PV and wind power plants in 2016. For all other nodes except liquefied methane carriers, πn

t = 1 over the

entire time horizon.

the power required to drive pumps and the freshwater outflow,
whereas the internal variable represents the plant capacity. The
reference commodity r′ according to which the plant is sized is
the freshwater flow out of the system. For mechanical reasons,
membranes are usually designed to operate under constant
pressure and plants therefore operate more or less continuously.
Hence, constraints (5), (7), (9), (10), (11) are used to model
plant sizing and operation, while investment and operating

costs are modelled via (12). Note that the seawater inflow and
brine discharge are not modelled. The implicit assumptions
are that seawater is freely available and that the brine by-
product can be disposed of at no cost, without any restriction on
pumped volumes.

Direct Air Capture Units. Direct air capture units extract
carbon dioxide from the atmosphere (Kiani et al., 2020). The
process used in this paper is the one proposed by Keith
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et al. (2018). Roughly speaking, this process relies on four
main chemical reactions, which are combined to form two
chemical loops. In the first loop, aqueous sorbents are used in
an air contactor to chemically bind carbon dioxide and form
dissolved compounds. These compounds then react with pellets
in a fluidised-bed reactor, making it possible to recover the
aforementioned sorbents and trap carbon in solid compounds.
The second loop essentially recovers carbon dioxide by calcining
the solid compounds and replenishes the pellet stock by
hydrating (slaking) the solid product of the calcination reaction.
The process requires electricity to power fans driving air through
the contactors, pumps maintaining the flow of aqueous solutions
as well as compressors compressing the output carbon dioxide
stream from atmospheric pressure to 20 bar (the associated
energy expense is approximated via the polytropic compression
work, assuming a polytropic efficiency of 80%). The net power
consumption is obtained as the difference between the total
consumption of these subsystems and the power produced by a
steam turbine recovering slaking heat. A sustained water supply
is also necessary to form aqueous solutions, counter natural
evaporation in the air contactors and produce steam used in the
slaker. Furthermore, a source of heat at around 900◦C is required
for the calcination reaction. In the original design, natural gas
is burnt via an oxy-fuel combustion process at the bottom of
the calciner to provide this heat, and the off-gases fluidise the
reactor. In this paper, it is assumed that the high temperature
heat (approximately 1.46 MWh per ton of carbon dioxide) is
provided by burning hydrogen (assuming a lower heating value
of 33.3 MWh per ton of hydrogen burnt). Hence, the process is
modelled using four external variables and one internal variable.
The external variables represent the power, water and hydrogen
inflows as well as the carbon dioxide outflow, while the internal
variable is the plant capacity. The reference flow according to
which the plant is sized is the carbon dioxide outflow. None of
the technologies implementing the various reactions really lend
themselves to highly variable operation. Constraints (5), (7), (9),
(10), (11) are therefore used to model plant sizing and operation,
while investment and operating costs are modelled via (12).

Methane Liquefaction Units. Liquefaction units turn gaseous
methane into liquefied methane (Pospisil et al., 2019). This
technology typically relies on compressors and pumps in order
to progressively compress and cool the methane inflow, which
is eventually throttled and liquefied via the Joule-Thomson
effect. In this case, three external variables and one internal
variable are used. The external variables represent the methane
inflow, the power consumption of compressors and pumps as
well as the liquefied methane outflow (which is the reference
commodity), while the internal variable represents the plant
capacity. Constraints (5), (7), (9), (10), (11) are used to model
plant sizing and operation, while investment and operating costs
are modelled via (12).

Liquefied Methane Carrier Vessels. Liquefied methane is
transported to market with large ocean-going vessels powered
by dual fuel diesel electric (DFDE) engines (Howard Rogers,
2018). These engines are particularly efficient and can run solely
on natural boil-off gas (i.e., gaseous methane resulting from the
natural evaporation of liquefied methane stored on board in

insulated cargo tanks). This allows vessels to sail at a speed of
19 knots, with approximately 0.1% of their cargo evaporating
due to natural boil-off per day spent at sea, which is used for
propulsion (i.e., no other fuel is needed). The liquefied methane
heel that must usually be maintained for the return journey to
guarantee that the onboard tanks remain cool (roughly 4–5% of
the total cargo) is neglected in this paper. Two external variables
and one internal variable are used to describe a stylised carrier
vessel. The external variables represent the flow of liquefied
methane loaded at the coastal hub and the flow of liquefied
methane unloaded at the destination, respectively. The internal
variable is the vessel capacity. Equation (5) is used to model the
transport of liquefied methane, with τ = 116 h, as the berthing
and travel time between the coastal hub and the destination is
assumed to take slightly less than 5 days. The conversion factor
φ ≈ 0.994 represents the transport efficiency, computed from
the boil-off consumption (0.125% of cargo per day) and trip
duration (116 h). In addition, loading and unloading may only
be possible when the vessel is moored at the coastal hub and
destination, respectively. This is enforced via Equation (7) and
time series πn

t (with values equal to 0 or 1), which defines a
berthing, mooring, loading and unloading schedule (loading or
unloading take place when πn

t = 1). For the sake of simplicity,
πn
t represents an aggregate schedule constructed from 7 different,

non-overlapping schedules corresponding to individual carrier
vessels. Some of these schedules are shown in Figure 5 (loading
and unloading is assumed to take 24 h). The standard local
objective (12) is used for the stylised carrier.

LiquefiedMethane Regasification Units. Regasification units
are used to transform liquefied methane into gaseous methane
at the destination (Dongsha et al., 2017). The heat required
to do so can come from a variety of sources. In this case, it
is assumed to come from the combustion of a fraction of the
methane (around 2%). Thus, two external variables and one
internal variable are used. The external variables represent the
liquefied methane inflow as well as the gaseous methane outflow,
and the internal variable is the plant capacity. Constraints (5), (7)
are used to model plant sizing and operation, while investment
and operating costs are modelled via (12).

4.1.2. Storage Nodes
Storage nodes are discussed in this subsection. Tables 3–5 gather
the techno-economic data (2030 estimates) used tomodel storage
nodes along with the original data sources and complement the
descriptions below. In the model, power flows are measured
in GW (GWh/h), energy is measured in GWh, mass flows are
measured in kt/h, mass is measured in kt, andmoney is measured
in Me.

Stationary Battery Storage. Nickel manganese cobalt (NMC)
oxide lithium-ion batteries are used for short-term electricity
storage (Danish Energy Agency, 2020a). Power in- and outflows
are modelled using external variables. The state of charge,
power capacity and energy capacity, on the other hand, are
modelled as internal variables. Constraints (13), (15), (17),
(18), (20), (21) are used, while the local objective function is
given in (22).
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FIGURE 5 | Subset of non-overlapping schedules used to construct the aggregate schedule πn
t of stylised liquefied methane carriers. These time series are summed

to obtain the aggregate schedule πn
t . For all other nodes except wind and solar PV power plants, πn

t = 1 over the entire time horizon.

TABLE 3 | Technical parameters used to model storage nodes.

ηS η+ η− σ ρ φ

Battery Storage 0.00004 0.959 0.959 0.0 1.0

Danish Energy Agency, 2020a - - - - -

Compressed H2 Storage 1.0 1.0 1.0 0.05 1.0 1.3

Danish Energy Agency, 2020a GWhel/ktH2

Liquefied CO2 Storage 1.0 1.0 1.0 0.0 1.0 0.105

Mitsubishi Heavy Industries, 2004 GWhel/ktCO2

Liquefied CH4 Storage 1.0 1.0 1.0 0.0 1.0

Assumed - - - - -

H2O Storage 1.0 1.0 1.0 0.0 1.0 0.00036

Caldera et al., 2016 GWhel/ktH2O

TABLE 4 | Economic parameters used to model storage nodes (stock component, 2030 estimates).

CAPEX FOM (ϑf ) VOM (ϑv) Lifetime

Battery Storage 142.0 0.0 0.0018 10.0

Danish Energy Agency, 2020a Me/GWh Me/GWh-yr Me/GWh yr

Compressed H2 Storage 45.0 2.25 0.0 30.0

Danish Energy Agency, 2020a Me/kt Me/kt-yr Me/kt yr

Liquefied CO2 Storage 1.35 0.0675 0.0 30.0

Mitsubishi Heavy Industries, 2004 Me/kt Me/kt-yr Me/kt yr

Liquefied CH4 Storage 2.641 0.05282 0.0 30.0

Interior Gas Utility, 2013 Me/kt Me/kt-yr Me/kt yr

H2O Storage 0.065 0.0013 0.0 30.0

Caldera et al., 2016 Me/kt Me/kt-yr Me/kt yr

Hydrogen Storage Tanks. Compressed hydrogen storage
tanks are considered in this paper. More precisely, overground,
man-made steel storage vessels (type I) withstanding pressure

levels around 200 bar and suitable for stationary applications
are used (Danish Energy Agency, 2020a). A minimum inventory
level of 5% is assumed to represent the cushion gas (effectively
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TABLE 5 | Economic parameters used to model storage nodes (flow component, 2030 estimates).

CAPEX FOM (θf ) VOM (θv) Lifetime

Battery Storage 160.0 0.5 0.0 10.0

Danish Energy Agency, 2020a Me/GW Me/GW-yr Me/GWh yr

Liquefied CO2 Storage 48.6 2.43 0.0 30.0

Mitsubishi Heavy Industries, 2004 Me/(kt/h) Me/(kt/h)-yr Me/kt yr

H2O Storage 1.55923 0.0312 0.0 30.0

Caldera et al., 2016 Me/(kt/h) Me/(kt/h)-yr Me/kt yr

reducing the working volume). Since hydrogen at 20 bar and
40◦C is produced by electrolysis plants, the hydrogen inflowmust
be compressed to 200 bar using electric compressors for storage
purposes. The associated energy expense is approximated via the
polytropic compression work (assuming a polytropic efficiency
of 80%) (JRC, 2003). Thus, three external variables and three
internal variables are used. The external variables represent the
hydrogen inflow, the electricity consumption and the hydrogen
outflow, while the state of charge, the power capacity and the
energy capacity are modelled as internal variables. Constraints
(13), (14), (15), (17), (18), (20), (21) are used, while the local
objective function is (22).

Liquefied Carbon Dioxide Storage Tanks. Liquefied carbon
storage tanks are used to store carbon dioxide. Liquefaction
and regasification units are also required (Mitsubishi Heavy
Industries, 2004). Liquefaction units consume electricity, while
regasification units are assumed to use ambient heat to recover
gaseous carbon dioxide. Hence, in this case, three external
variables and five internal variables are used. The external
variables are the gaseous carbon dioxide inflow, the power
consumption of the liquefaction units and the gaseous carbon
dioxide outflow, while the internal variables represent the state
of charge, the tank capacity, capacities of liquefaction and
regasification units, and the flows of liquefied carbon dioxide
in and out of the tanks. Constraints (13), (14), (15), (17),
(18), (20), (21) are used, while the local objective function
is (22).

Liquefied Methane Storage Tanks. Liquefied methane is
stored in full containment tanks (i.e., tanks with both inner
and outer containment walls and such that the annular gap
between both walls is sealed to prevent any gaseous leaks
Interior Gas Utility, 2013). It is assumed that the boil-off gas
keeping the content of the storage tanks cold is re-liquefied and
pumped back into the tanks but the electricity consumption
required to do so is neglected. Two external variables and two
internal variables are used. The external variables are the liquefied
methane in- and outflow, while internal variables represent the
state of charge and the storage capacity. Constraints (13), (15),
(17), (18), (20), (21) are used, while the local objective function
is (22).

Water Storage Tanks.Water is stored in tanks equipped with
electric pumps (Caldera et al., 2016). Three external variables
and three internal variables are used. The external variables
correspond to the water inflow, the power consumed by pumps

and the water outflow. The internal variables represent the state
of charge, the tank capacity and the flow capacity of pipes feeding
into the tank. Constraints (13), (15), (17), (18), (20), (21) are used,
while the local objective function is (22).

4.1.3. Conservation Hyperedges
Inland Power Balance. This hyperedge enforces active power
flow conservation (which derives from Kirchhoff’s current law)
in the inland cluster. It therefore guarantees that the sum of
power flows from the solar PV plant, the wind power plant
and the battery is equal to the sum of power flows to the
HVDC interconnection and the battery. Note that both in and
outflows are used for the battery, which correspond to charge and
discharge flows, respectively. No exogenous power injections and
withdrawals take place over this hyperedge, hence λet = 0,∀t ∈ T.
This is assumed to be the case for all other hyperedges as well,
unless otherwise stated.

Coastal Power Balance. This hyperedge enforces active power
flow conservation in the coastal cluster. It therefore guarantees
that the power flow from the HVDC interconnection is equal
to the sum of power flows to the direct air capture plant, the
electrolysis plant, the hydrogen storage system, the methane
liquefaction units, the desalination plant, the water storage
system and the liquefied carbon dioxide storage system.

Coastal Hydrogen Balance. This hyperedge enforces
conservation of hydrogen mass flows in the coastal cluster.
Hence, it guarantees that the sum of flows from the electrolysis
plants and the storage system is equal to the sum of flows to
the direct air capture plants, the methanation plants and the
storage system.

Coastal Carbon Dioxide Balance. This hyperedge enforces
conservation of (gaseous) carbon dioxide mass flows in the
coastal cluster. Thus, it guarantees that the sum of flows from the
direct air capture units and the storage system is equal to the sum
of flows to methanation plants and the storage system.

Coastal Water Balance. This hyperedge guarantees that the
aggregate flow of freshwater generated by desalination and
methanation plants in the coastal cluster exceeds the aggregate
flow consumed by electrolysis and direct air capture plants.
Hence, it is assumed that any freshwater surplus may be released
into the environment without harm or used in other applications
(e.g., cooling), and the equality constraint in Equation (23) is
relaxed to a greater-than-or-equal-to inequality.
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Coastal Methane Balance. This hyperedge enforces
conservation of (gaseous) methane mass flows in the coastal
cluster, and guarantees that flows from the methanation plants
and to the liquefaction units are equal.

Coastal LiquefiedMethane Balance. This hyperedge enforces
conservation of liquefied methane mass flows in the coastal
cluster. Thus, it guarantees that the sum of flows from the
liquefaction units and the storage system is equal to the sum of
flows to the storage system and the liquefied methane carriers.

Destination Liquefied Methane Balance. This hyperedge
enforces conservation of liquefied methane mass flows at the
destination. Hence, it guarantees that the sum of flows from the
liquefied methane carriers and the storage system is equal to the
sum of flows to the regasification units and storage system.

Destination Methane Balance. This hyperedge guarantees
that the exogenous demand for methane at the destination is
satisfied by the flows from the regasification units. The gas
demand is set to 10 TWh (HHV) per annum, but no specific
assumptions about the end-uses or sectors relying on synthetic
methane are made. Furthermore, the liquefied methane terminal
located in Northwestern Europe is assumed to be connected to
some existing gas network infrastructure. Although the latter
is not explicitly modelled, it is assumed to be able to absorb
both short-term and seasonal demand variability (e.g., via its line
pack and seasonal storage facilities Correa-Posada and Sanchez-
Martin, 2015, as is the case in most systems). The demand profile,
which essentially represents injections from the terminal into the
gas network, is therefore assumed to be flat. Hence, assuming that
synthetic methane has a HHV of 15.441 kWh/kg, the demand
profile is obtained as λet = (10 × 103/8, 760) × (1/15.441) ≈

0.07393 kt/h, ∀t ∈ T. Note that using the LHV would have
resulted in a higher mass flow rate.

4.2. Scenarios
One reference scenario and a comprehensive sensitivity
analysis are presented. The reference scenario studies a system
configuration that relies on a combination of solar PV and wind
power plants for electricity generation. A uniform weighted
average cost of capital (WACC) of 7% is assumed for all
technologies, which represents the case where the funds required
to finance the system are borrowed on capital markets. Under
these assumptions, for a conversion or storage technology n, the
CAPEX values in Tables 2, 4, 5 are used to compute

ζ n = CAPEXn ×
w

(1− (1+ w)−Ln )
, (24)

with Ln the lifetime of technology n and w theWACC. Hence, ζ n

represents the annualised cost of investing in technology n.
The sensitivity analysis investigates the impact of a number

of techno-economic parameters and assumptions on synthetic
methane cost, which include the availability of wind power
plants, the investment costs of electrolysis, direct air capture
and methanation plants, the operational flexibility of the latter
two technologies as well as the energy consumption of direct
air capture plants and the financing costs. More specifically, a
hypothetical situation where the cost of financing the system

is zero is studied, such that the cost of synthetic methane
production and delivery solely reflects the cost and efficiency
of technologies in the supply chain. In this set-up, Equation
(24) cannot be used and annualised investment costs are instead
computed via

ζ n =
CAPEXn

Ln
. (25)

5. RESULTS

5.1. Reference Scenario
In the reference scenario, a system configuration relying on solar
and wind power plants is studied assuming a WACC of 7%. In
this set-up, synthetic methane is delivered to market in gaseous
form at 149.7 e/MWh (HHV), which is computed as the ratio of
total (annualised) system cost to methane volume delivered (10
TWhHHVper year). It is worth noting that using the LHVwould
have increased the cost per MWh, as this would have effectively
reduced the amount of energy that could have been retrieved per
unit mass of methane delivered.

The synthetic methane cost breakdown is provided in
Figure 6, where each bar represents the contribution (in
e/MWh) of the corresponding technology to synthetic methane
cost. Each bar can also be interpreted as representing the
contribution of the corresponding technology to total system
cost. Wind turbines account for the lion’s share of synthetic
methane cost (roughly 28.9%). Electrolysis (19.6%) and solar PV
plants (11.3%) come in second and third, respectively, although
they each represent a much smaller proportion of costs than
wind turbines (taken together, they contribute slightly more than
wind turbines to total system cost). Overall, the technologies
used to generate, transport and store electricity (shown in
gold in Figure 6) represent the largest share of costs (around
56.6%). Hydrogen storage plants, which are used as a buffer
between flexible electrolysis and inflexible methanation plants,
make up approximately 5% of total cost. Hence, the technologies
producing and storing hydrogen (shown in light blue in Figure 6)
account for roughly 25% of total system cost. It is worth
noting that the plants upstream of the inflexible plants (i.e.,
methanation, direct air capture, and desalination plants) make up
almost 80% of total system cost. On the other hand, methanation
plants make up a minor share of total cost (approximately 7.7%),
and the full methane chain (i.e., production, liquefaction, storage,
transport, and regasification, shown in light orange in Figure 6)
accounts for roughly 12.5% of final product cost. Direct air
capture plants also represent a minor fraction of system cost
(around 7.9%, shown in green in Figure 6). Water desalination
and storage technologies are deployed in moderate quantities,
resulting in a very small share of total cost (well under 1%), while
carbon dioxide storage is not deployed.

Analysing mass and energy balances provides some insight
into system design and operation. Figure 7 displays mass
and energy balances (flow values are integrated over the full
optimisation horizon of five years and divided by the number
of years) along with technology capacities. Firstly, as can be
seen in Figure 7, the average annual electricity production
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FIGURE 6 | Breakdown of synthetic methane cost at destination for reference scenario. All contributions roughly sum to 149.7 e/MWh (HHV).

of solar PV and wind power plants is equal to 8.90 and
13.87 TWh, respectively, which suggests that the full supply
chain has a conversion efficiency of roughly 43.9%. However,
the amount of curtailment is substantial and stands at 5.26
TWh, which represents slightly less than one quarter of the
useful power production. This effectively decreases the capacity
factors of the photovoltaic and wind power plants from their
theoretical maximum of 24.6 and 50.0% over 2015–2019 (i.e.,
corresponding to the case where all electricity produced is used)
to 23.8 and 36.8% (taking only useful power production into
account). However, the high share of curtailment attributed
to wind power plants must be taken with caution. Indeed,
since curtailment is not penalised in the objective, some
natural symmetry exists in the model when solar PV and
wind power plants jointly produce more than the system can
absorb (which typically occurs during hours of peak solar PV
production). More specifically, in such situations, solutions
curtailing a given share of solar PV output would yield the
same objective values as that of other solutions curtailing
the same given share of wind power output, and curtailment
could therefore be attributed to one technology or the other
without any impact on the objective. The high overall rate of
curtailment can nevertheless be explained by the difficulty of
effectively absorbing the highly variable aggregate power input
from renewable power plants. This is a direct consequence of
the fact that the operating regimes of several key conversion
technologies are inflexible, which has two further implications.
Firstly, battery and hydrogen storage systems are deployed at
great cost in order to smooth the variability of the power
supply as much as possible. Secondly, plants located upstream
of the inflexible ones are typically oversized, as the level of

smoothing required to guarantee steady power and hydrogen
flows cannot be economically provided by storage plants alone.
Additional evidence supporting this analysis is provided in the
following section.

5.2. Sensitivity Analysis
The sensitivity analysis investigates the impact of a number
of techno-economic parameters and assumptions on synthetic
methane cost. More precisely, the impacts of (i) being unable
to deploy wind power plants, (ii) the operational flexibility
of direct air capture, methanation, and desalination plants,
(iii) the investment costs of electrolysis, direct air capture,
and methanation plants, (iv) the energy consumption of direct
air capture plants, (v) financing costs are assessed. The cost
share, capacities and capacity factors of the technologies that
were found to contribute the most to total system cost in
Section 5.1 are computed and analysed in this section. Hence,
Figure 8 displays the breakdown of synthetic methane costs
obtained under various techno-economic assumptions, while
Figure 9 gathers the capacities and average capacity factors of key
conversion and storage technologies. These results are elaborated
upon below.

Solar PV System. This analysis assumes that wind power
plants cannot be deployed, and the full electricity supply must
therefore come from solar PV power plants. As can be seen in
Figure 8, the cost of synthetic methane for this configuration is
around 202 e/MWh, which is almost 35% more expensive than
that found in the reference scenario. In this case, electrolysis
plants contribute the most to total system cost, followed by solar
PV power plants. In addition, it is clear from Figure 8 that the
cost of each technology located upstream of the inflexible plants
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FIGURE 7 | Material and energy balance diagram for the reference scenario, along with technology capacities. All energy-equivalent flows of energy carriers other

than electricity were computed using their HHV. Flow values represent yearly averages (i.e., flows were integrated over the full time horizon and divided by the number

of years) and all values were rounded up to keep significant digits only.

(i.e., methanation, direct air capture, and desalination plants)
increases in absolute terms compared with the reference scenario.
The only technologies whose cost remains the same are direct
air capture and methanation. This claim is supported by the
results shown in Figure 9. Indeed, the capacities of conversion
and storage technologies located upstream of the inflexible ones
are larger in the solar-only case, while the capacities of inflexible
technologies are equal in both cases. Furthermore, the average
capacity factors of key conversion technologies (e.g., electrolysis
plants) are much lower in the solar-only case. This observation
suggests that these plants are oversized to help absorb the highly
variable input from solar PV power plants, as smoothing it with
storage systems alone would be uneconomical. Overall, relying
on solar PV power plants alone results in a system design that
is much less efficient and much more expensive than the one
identified in the reference scenario.

System Flexibility. In the reference scenario, several
technologies were assumed to be inflexible, namely methanation
(MT), direct air capture (DAC) and desalination (DS) plants.
Their inflexibility, combined with the fact that the renewable

power supply is highly variable, was found to have an impact
on synthetic methane cost. Although these assumptions are
well-founded, the minimum level and ramping constraints of the
three aforementioned technologies are now relaxed (i.e., µ = 0.0
and 1+ = 1− = 1.0) in order to evaluate the sensitivity of
our results. Figure 8 shows that shifting to a system with fully
flexible methanation, direct air capture and desalination plants
can lead to cost savings around 6%, and has a substantial impact
on the capacities of several technologies. More specifically, the
capacity of solar PV power plants decreases by 10%, while the
capacities of battery and hydrogen storage systems shrink by
40 and 80%, respectively. On the other hand, the capacities of
methanation and direct air capture plants increase by 20 and
11%, respectively, which slightly offsets the cost savings made
elsewhere. Although not shown in Figure 9, the capacity of
liquefied methane storage tanks in the coastal hub more than
doubles. This can be explained by the fact that the transport of
liquefied methane does not occur on a continuous basis, which
introduces some inflexibility in the supply chain. Since liquefied
methane storage is much cheaper than battery or hydrogen
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FIGURE 8 | Breakdown of synthetic methane costs obtained under various techno-economic assumptions.

FIGURE 9 | Capacities and average capacity factors (shown as greyed fractions of capacity bars) of key conversion and storage technologies under various

techno-economic assumptions.

storage, the buffer absorbing the variability of renewable power
generation is moved downstream in the supply chain. It is worth
noting that even if the transport of liquefied methane took

place continuously, the mismatch between the production and
demand profiles would need to be balanced by some storage
capacity, which will always come at a cost.
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Investment Costs. A number of technologies used in the
proposed remote carbon-neutral synthetic methane supply chain
have not yet reached full maturity. In particular, electrolysis (EL),
direct air capture and methanation plants are still undergoing
development, and their costs thus remain highly uncertain
to 2030. The cost figures used for electrolysis plants in the
reference scenario lean toward moderately optimistic for 2030,
and achieving them would require both sustained research and
development efforts and a commercial scale-up (Schmidt et al.,
2017). Likewise, the cost figures used for direct air capture plants
are on the fairly optimistic side for 2030. Indeed, the cost of
each ton of carbon dioxide captured from the atmosphere is
between 65 and 70 e (energy costs excluded) in the reference
scenario, which is close to long-term cost targets of $100/ton
(energy costs included) that Keith et al. (2018) seek to reach.
Methanation cost estimates, however, are rather conservative
(Agora Verkehrswende et al., 2018; International Energy Agency
(IEA), 2019). The uncertainty around these costs and their
impact on synthetic methane cost is resolved as follows. Firstly,
the CAPEX and FOM of electrolysis and direct air capture
plants are increased by 50%, which yields synthetic methane cost
estimates around 168.1 e/MWh (which is approximately 12%
higher than that of the reference scenario). Then, the CAPEX and
FOM of electrolysis, direct air capture and methanation plants
are decreased by 50%, first on an individual basis and then all at
once. Although such drastic cost reductions seem very unlikely,
they nevertheless make it possible to estimate the sensitivity
of synthetic methane cost to these assumptions and provide a
lower bound on costs that may realistically be achieved. The
least sensitive of these parameters is the cost of direct air capture
plants, followed by the cost of methanation plants. Decreasing
them individually only leads to methane cost reductions of 5% or
less. Decreasing the cost of electrolysis plants by 50%, however,
has a much greater impact and leads to cost reductions around
10%. Decreasing the costs of all three technologies at once leads to
cost reductions of roughly 16% and yields a strong lower bound
of 125.1e/MWh on the reductions in synthetic methane cost that
may be achieved in this fashion. It is worth noting that these
cost savings are achieved with virtually no change in deployed
capacities (as shown in Figure 9), which suggests that the latter
mostly depend on renewable production profiles, the flexibility
of technologies and the demand that must be satisfied.

DAC Energy Consumption. The direct air capture process
used in this analysis requires high-temperature heat to calcine
calcium carbonate compounds and release the carbon dioxide
that they trap. In this paper, it is assumed that this heat is
provided by burning hydrogen, and slightly less than 20%
of the total hydrogen production is used for this purpose.
Hence, the fact that this hydrogen must be produced from
renewable electricity leads to the deployment of additional power
generation, storage, transport, electrolysis and hydrogen storage
capacity, which directly translates into a lower overall efficiency
of the full supply chain and a higher synthetic methane cost.
Instead, a different capture process that only uses low tomedium-
temperature heat and electricity could be used (Wurzbacher
et al., 2011). It has been estimated that this process consumes
approximately 0.5 MWh of electricity per ton of carbon dioxide

captured and requires roughly 2.5 MWh of heat at 100◦C.
Since the production of one ton of synthetic methane by the
Sabatier reaction releases 2.87 MWh of high temperature heat
(and requires 2.75 tons of carbon dioxide), some of the heat
required by the direct air capture process could be supplied
by nearby methanation plants. The impact of such a change
is analysed by increasing the electricity consumption of the
direct air capture process fivefold (i.e., setting it to roughly 0.5
MWh/ton instead of 0.1 MWh/ton in the reference scenario) and
setting the hydrogen consumption to zero. The same cost figures
as those of the reference scenario are used. Results shown in
Figures 8, 9 confirm the intuition that using hydrogen to satisfy
the heat requirements of a high-temperature direct air capture
process has a substantial impact on synthetic methane cost and
the capacities of various key technologies. More precisely, the
cost of synthetic methane in this configuration is approximately
10% lower than that found in the reference scenario, while the
capacities of power generation and electrolysis plants are 10
and 20% smaller, respectively. Although promising, a detailed
analysis of the heat integration potential and the cost of this
process should be performed in order to confirm these findings.

Financing Costs. A weighted average cost of capital of 7% has
so far been used. In order to evaluate the impact of financing
costs, a hypothetical situation where the cost of financing the
system is set to zero is now studied (i.e., annualised CAPEX
values are calculated using Equation (25)). Thus, in this set-up,
the cost of synthetic methane production and delivery solely
reflects the costs and efficiencies of technologies in the supply
chain, and provides an absolute lower bound on costs that may be
realistically achieved. Results in Figure 8 suggest that neglecting
financing costs leads to a synthetic methane cost of 88.3 e/MWh
(which corresponds to a 40% reduction compared with the
reference scenario), which is by far the lowest observed in this
paper and highlights the influence of weighted average cost of
capital assumptions. It is also worth noting that this cost decrease
is achieved with little change in the capacities of conversion and
storage technologies compared with the reference scenario.

5.3. Discussion
Discrepancies exist between the results presented in Sections
5.1 and 5.2 and synthetic methane production cost estimates
published elsewhere in the literature. Indeed, recall that Zeman
and Keith (2008) provide cost estimates ranging from 74.1 to
94.6 e/MWh. Furthermore, in Fasihi and Bogdanov (2015), the
cost of producing synthetic methane from renewable electricity
in central and southern Algeria and delivering it to Japan is
estimated to be around 65–75 e/MWh in 2030 for a hybrid
solar-wind system using a WACC of 7%. In Fasihi et al. (2017),
the cost of producing synthetic methane in the same region
and delivering it to Finland is estimated to be between 100 and
110 e/MWh (HHV) by 2030 and between 90 and 100 e/MWh
(HHV) by 2040, respectively, using a WACC of 7%. Finally, in
Agora Verkehrswende et al. (2018), a uniform WACC of 6% is
used, yielding cost estimates around 140 e/MWh (LHV) for a
solar PV configuration and around 150 e/MWh (LHV) for a
hybrid solar-wind configuration. Notably, the hybrid solar-wind
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configuration is slightly more expensive than the solar-powered
system in their reference cost scenario.

The methods used in the aforementioned papers, which are
discussed in Section 2, suffer from several shortcomings. More
precisely, they use a very low temporal resolution (one time
period per year in the so-called full load hour model) that
completely smoothes out the variability of power production
signals. Furthermore, their models have a very low level of
technical detail. The combination of these two features makes
it very difficult to capture the interaction between subsystems
and accurately model the supply chain in an integrated fashion.
Hence, this typically removes the need for oversizing renewable
power generation technologies or deploying flexibility options
such as storage systems to balance the variable power supply and
satisfy operating constraints, in spite of the fact that the operation
of some technologies further down the chain is inflexible or
discontinuous (e.g., methanation plants or transport by liquefied
methane carrier vessels). Oversizing plants or deploying storage
technologies is relatively expensive and both account for a non-
negligible share of the final methane cost, as discussed in Sections
5.1 and 5.2. For example, the fact that solar PV variability has
been completely smoothed out by the full load hour model
used in Agora Verkehrswende et al. (2018) explains the fact
that solar-only and hybrid solar-wind configurations yield very
close methane cost estimates, while the solar-only configuration
is almost 35% more expensive than the hybrid wind-solar
configuration considered in this paper. Thus, the aforementioned
papers underestimate final product cost as a result of inadequate
modelling choices. In addition, some of the techno-economic
assumptionsmade in Fasihi and Bogdanov (2015) and Fasihi et al.
(2017) seem particularly optimistic. For example, the CAPEX of
electrolysis and methanation plants is approximately two and
three times lower than the values used in the reference case
presented in this paper. These assumptions clearly lead to low
methane cost estimates but are poorly supported. Indeed, to
the authors’ best knowledge, such assumptions do not appear
elsewhere in the literature or in publicly-accessible databases and
are therefore difficult to cross-check.

6. CONCLUSION AND FUTURE WORK

This paper studies the economics of carbon-neutral synthetic
fuel production in remote areas where high-quality renewable
resources are abundant. With this goal in mind, a hypergraph-
based optimisation modelling framework directly applicable to
the strategic planning of remote renewable energy supply chains
is proposed. The method is leveraged to study the economics
of carbon-neutral synthetic methane production from solar and
wind energy in North Africa.

The full supply chain is modelled and optimised in an
integrated fashion over five years (2015–2019) with hourly
time resolution. Essential operational constraints are taken into
account, which is key for accurately capturing interactions
between subsystems. Results suggest that the cost of synthetic
methane delivery to northwestern European consumers would
be around 149.7 e/MWh (HHV) by 2030 for a system

that relies on a combination of solar photovoltaic and wind
power plants, assuming a uniform weighted average cost of
capital of 7%. A comprehensive sensitivity analysis has also
been carried out in order to evaluate the impact of various
techno-economic parameters and assumptions on synthetic
methane cost, including the availability of wind power plants,
the investment costs of electrolysis, methanation and direct
air capture plants, their operational flexibility, the energy
consumption of direct air capture plants, and financing costs.
The most expensive configuration (around 200 e/MWh) relies
on solar photovoltaic power plants alone, while the cheapest
configuration (around 88 e/MWh) makes use of a combination
of solar PV and wind power plants and is obtained when
financing costs are set to zero. The cost estimates found for
the reference scenario and the configuration relying solely on
solar PV power plants are much higher than those previously
published in the literature. This discrepancy can be partly
explained by the fact that the models used in previous studies
had a very low temporal resolution and failed to properly capture
the interactions between highly variable power generation plants
(especially solar photovoltaic units) and inflexible conversion
technologies (such as methanation plants) and demand profiles.

Several research directions can be pursued in future work.
Firstly, quantitatively analysing some of the options suggested for
cost reductions would provide more insight into the economic
potential of an energy supply pathway based on carbon-
neutral methane synthesis in remote areas. Then, leveraging
the framework to study different pathways involving different
regions (and thus resource types and profiles) and energy
carriers (e.g., hydrogen, methanol, or ammonia), would allow
one to draw a complete picture of energy supply options and
to compare their respective merits. Finally, the graph-based
modelling framework could be expanded in different ways. For
instance, the class of problems that can be represented could
be broadened by introducing non-linear expressions. The graph
representation could also be exploited to facilitate preprocessing
tasks and the analysis of model properties, eventually enabling
the deployment of more efficient solution methods that better
exploit problem structure (Jalving et al., 2019).
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NOMENCLATURE

Sets and Indices

E, e set of hyperedges and hyperedge index

eT , eH tail and head of hyperedge e ∈ E

G hypergraph with node set N and hyperedge set E

In, i set of external variables at node n, and variable index

N, n set of nodes and node index

T, t set of time periods and time index

Parameters

ν ∈ N number of years spanned by optimisation horizon

πn
t ∈ [0, 1] (operational) availability of conversion node n at time t

κn ∈ R+ existing flow capacity of conversion or storage node n

κ̄n ∈ R+ maximum flow capacity of conversion or storage node n

µn ∈ [0, 1] minimum operating level of conversion node n (fraction of

capacity)

δ ∈ R+ duration of each time period

1n
i,+ ∈ [0, 1] maximum ramp-up rate for commodity i and conversion node

n (frac. of capacity per unit time)

1n
i,− ∈ [0, 1] maximum ramp-down rate for commodity i and conversion

node n (frac. of capacity per unit time)

φn
i
∈ R+ conversion factor between flows of reference commodity r

and commodity i for conversion or storage node n

τn
i
∈ N conversion time delay for commodity i of conversion node n

ηn
S
∈ [0, 1] self-discharge rate of storage node n

ηn+ ∈ [0, 1] charge efficiency of storage node n

ηn− ∈ [0, 1] discharge efficiency of storage node n

σn ∈ [0, 1] minimum inventory level of storage node n (fraction of

capacity)

ǭn ∈ R+ maximum inventory capacity of storage node n

ǫn ∈ R+ existing inventory capacity of storage node n

ρn ∈ R+ maximum discharge-to-charge ratio of storage node n

λet ∈ R withdrawal/injection at time t and conservation hyperedge e

ζn ∈ R+ annualised CAPEX of node n (flow component)

θn
f
∈ R+ FOM cost of node n (flow component)

θnt,v ∈ R+ VOM cost of node n (flow component)

ςn ∈ R+ annualised CAPEX of storage node n (stock component)

ϑn
f
∈ R+ FOM cost of storage node n (stock component)

ϑnt,v ∈ R+ VOM cost of storage node n (stock component)

θn
t,L ∈ R+ cost of unserved demand at conservation node n

Variables

qn
it
∈ R+ flow of commodity i at node n and time t

Kn ∈ R+ new flow capacity of node n

ent ∈ R+ inventory level of storage node n at time t

En ∈ R+ new stock capacity of storage node n
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