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The increasing consumption of fossil fuels leads to energy crisis and environmental issues, which
seriously affects human daily life. To date, great efforts have been made to explore sustainable, eco-
friendly and renewable energy alternatives to fossil fuels. In the past few decades, various energy
conversion and storage technologies, such as water splitting (Zhang F. et al., 2019; Hu et al., 2021;
Wu et al., 2021), proton exchange membrane fuel cells (Edwards et al., 2008; Park et al., 2012),
nitrogen reduction reaction (NRR) (Wan et al., 2019; Zhang W. et al., 2019; Yang et al., 2020b;
Li et al., 2021), CO2 reduction reaction (CO2RR) (Ozdemir et al., 2019; Liu et al., 2020; Yang
et al., 2020a; Ma et al., 2021; Wang et al., 2021), and metal-air batteries (Cheng and Chen, 2012)
have shown promising potential due to the high efficiency, energy security, and environmental
protection. In these fields, more attention has been paid to preparing advanced materials with
outstanding performance, and developing advanced technologies for prediction, characterization
and detection (Centi, 2020).

Electrocatalytic NRR to NH3 has been regarded as an attractive alternative to the traditional
Haber-Bosch process owing to its lower energy consumption under ambient conditions (Tang and
Qiao, 2019; Yang et al., 2020b). The development of advanced NRR catalysts with outstanding
performance and low costs is highly desired. Recently, Wang et al. reported that the ringlike
V2O3 nanostructures could effectively convert N2 to NH3 under ambient conditions. Scanning
electron microscopy analysis shows that the ringlike structure is uniform with outer diameter
of 350–500 nm. Transmission electron microscopy (TEM) analysis confirms that such nanoring
possesses a rough surface, displaying more active sites. The high-resolution TEM image of an
individual nanoring indicates a contracted interplanar distance of 0.211 nm, corresponding to
the (113) plane. This work presents a facile strategy to fabricate the advanced non-noble-metal
catalysts for NRR. It is believed that more effective and stable electrocatalysts would be developed
for boosting the NRR in the future.
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Energy efficiency is another efficacious way to alleviate the
energy crisis. In the field of energy-saving optoelectronics,
electrochromic devices (ECDs) have shown great advantages.
Among various fabrication materials for ECDs, coordination
polymer (CP) shows a broad application prospect due to good
cycle stability, high color rendering efficiency, and fast switching
speed. Liu et al. present a comprehensive survey of the current
achievements and progresses of CP in energy efficient ECDs from
the aspect of influence of composition, coordination bonding
and microstructure of pyridine-based CP on the performance
of ECDs. This work is expected to provide the guideline for
achieving a substantial enhancement in electrochromic and other
optoelectronic fields.

Nevertheless, one of the paramount challenges to develop
new high-efficiency energy transformation materials is the long
span from experiment to practical application, due to the
complexity of research objects and methods, insufficient personal
accumulated experience, etc. (Luo et al.) Artificial intelligence
(AI) has potential for solving the problems mentioned above.
Luo et al. investigated and summarized research works on
energy storage materials for capacitors and Li-ion batteries.
They pointed out that machine learning (ML), as a subset
of AI, algorithms can reduce test number of cycles and
required experiments, which greatly reduces time consumption
and accelerates every stage of development. In addition, they
summarized the status and progress of AI in energy storage
materials and present solutions to relevant deficiencies, such
as the establishment of a database, extracting data from
unstructured literature with automaticity and high efficiency
and accuracy, etc. Apart from saving time, AI can predict
the performance of materials, monitor reaction processes, and
explore reaction mechanisms (Luo et al.; Yang et al.). Focusing
on the superiority of AI in predicting experiments, Yang et al.
reviewed the situation and application of AI in respects of
optoelectronic materials, hydrogen peroxidation catalysts, water

electrolysis catalysts and microbial fuel cells. It indicates that
the relationship between prediction and actual experiments is
mutually facilitating. In other words, the efficiency of actual
material processing can be promoted with accurate prediction,
and the database for AI is extended.

In conclusion, the development of advanced materials and
technologies for energy conversion and storage are of vital
importance. Until now, various promising materials with
excellent performance have been prepared, such as carbon
nanomaterials [nanofibers (Zhao et al., 2018; Lee et al., 2020),
nanotubes (Ma et al., 2019; Sun et al., 2020; Tuo et al.,
2020; Zhang et al., 2020), graphene (Chen et al., 2020),
etc.], reticular structure [metal-organic framework (Nam et al.,
2018), covalent organic framework (Lin et al., 2015)], and
tandem catalyst (Morales-Guio et al., 2018), etc. It is worth
mentioning that traditional technologies in detection and
characterization are gradually substituted with new and advanced
solutions, such as computer science (AI, ML, etc.), and in-
situ characterization (In-situ/operando synchrotron radiation,
in-situ/operando morphology/spectrum, etc.). It is believed the
emerging technologies for materials design and characterization
in energy conversion and storage will be greatly developed in
the future.
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