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In this paper, we define indicators, with a focus on the electricity sector, that translate the
results of energy systems modelling to quantitative entities that can facilitate assessments
of the transitions required to meet stringent climate targets. Such indicators, which are
often overlooked in model scenario presentations, can be applied to make the modelling
results more accessible and are useful for managing the transition on the policy level, as
well as for internal evaluations of modelling results. We propose a set of 13 indicators
related to: 1) the resource and material usages in modelled energy system designs; 2) the
rates of transition from current to future energy systems; and 3) the energy security in
energy system modelling results. To illustrate its value, the proposed set of indicators is
applied to energy system scenarios derived from an electricity system investment model
for Northern Europe. We show that the proposed indicators are useful for facilitating
discussions, raising new questions, and relating the modelling results to Sustainable
Development Goals and thus facilitate better policy processes. The indicators presented
here should not be seen as a complete set, but rather as examples. Therefore, this paper
represents a starting point and a call to other modellers to expand and refine the list of
indicators.
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INTRODUCTION

The need for a climate-neutral and circular European economy, consistent with sustainability targets,
is a stated priority of the European Union (EU) (European Commission, 2019). In less than three
decades, carbon emissions from the electricity systemmust be reduced to zero, if the targets proposed
for Year 2050 by the European Commission are to be met (European Commission, 2018). Extensive
policy support is required to achieve this transition.

In this context, energy systems modelling is often used to assist decision-making. Numerous
studies have investigated the transition of energy systems, focusing on the European electricity
system (e.g., Fürsch et al., 2013; van Sluisveld et al., 2015; Napp et al., 2017; Schlachtberger et al.,
2018; Göransson et al., 2021). The majority of these studies have provided their results on a rather
aggregated level, reporting on the development of the generation technology mix over time or for a
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certain year and for a certain region (e.g., EU Member State, EU
as a whole) (e.g., van Sluisveld et al., 2015; Napp et al., 2017;
Göransson et al., 2021).

Although the outcomes of such energy systems modelling are
valuable, it remains unclear as to what the actual implications of
the pathways produced by models are, beyond the technology
mix and the associated costs. Further understanding of the
implications in a wider context would reveal the direct
impacts on the physical energy infrastructure and economic
and social systems. While there are examples of rapid
technological uptake in regional or national electricity systems
(Cao et al., 2016; Sovacool, 2016), the scale and rate of
technological changes required to decarbonise the electricity
supply in Europe, and elsewhere, in the coming few decades
are massive. Therefore, there is an urgent need to develop
methods that facilitate the transparent interpretation and
dissemination of energy system modelling results, thereby
identifying clear policy implications and supporting the work
of private and public decision-makers, so as to refine policy for
sustainable development in the EU.

Energy systemmodels use simple rules in the decision-making
process, usually with the goal of identifying the solution with the
lowest net present value under the given resource, operational,
policy and climate constraints (Neumann and Brown, 2021).
However, considerations other than direct costs may play
significant roles in determining the consequences of a certain
solution. In other words, there are wider societal consequences
that are difficult to express in cost terms. For example, while the
costs for wind power plants calculated by models reflect
investment and operational cost projections, they do not give
any information as to whether Society can provide the materials
(e.g., steel and concrete) required to build the plants at the scale
and rate obtained from the modelling results. Furthermore, the
level of public acceptance for the expansion of wind power may be
lower than is assumed in the models, which means that less-
favourable wind sites have to be used, thereby increasing the cost
of generation. Recently, there has been a call for a more-thorough
analysis of the feasibility of model scenarios, to distinguish
pathways that have greater political feasibility, as well as
techno-economic feasibility (Pfenninger et al., 2014; Anderson
and Jewell, 2019; Pye et al., 2021). To move beyond the narrow
techno-economic focus, a better understanding of the
implications of different pathways is needed. To consider
issues other than upfront costs, indicators are frequently
applied in the post-analysis of scenarios (e.g., Lehtveer and
Hedenus, 2015; Berrill et al., 2016), often by focusing on the
life-cycle impacts of the energy model results (e.g., Kouloumpis
et al., 2015; Berrill et al., 2016; García-Gusano et al., 2016;
Iribarren et al., 2020; Vandepaer et al., 2020). In some cases
such considerations are directly included in the optimisation
either by defining constraints (Louis et al., 2018) or by finding
Pareto optimal solutions in multi-criteria analysis (e.g., Lehtveer
et al., 2015; Pratama et al., 2017; Peng et al., 2018). The indicators
described in the literature often relate to a single area, such as
energy security (e.g., Kruyt et al., 2009; Badea et al., 2011; Azzuni
and Breyer, 2018), water stress (Behrens et al., 2017) and biomass
resource potential (de Wit and Faaij, 2010), a specific group of

indicators (e.g., Hammond et al., 2013; Kouloumpis et al., 2015;
Berrill et al., 2016; García-Gusano et al., 2016), a single
technology (e.g., Lehtveer and Hedenus, 2015; Eichhorn et al.,
2019), or sustainability in general (e.g., Liu, 2014; Rösch et al.,
2017). We believe that creating a deep understanding of the
opportunities, risks, synergies and trade-offs within each modelled
pathway is crucial to the use of energy systems modelling results as
a basis for decisionmaking. This can be achieved through the use of
various indicators that reflect accurately the implications of
pathways in areas that are important for Society.

In this paper, we describe a set of indicators that reveal some of
the numerous impacts that the electricity system transition can
have.We argue that these indicators are important for making the
model results more accessible and useful for managing the
transition, as well as for internal evaluations of produced
scenarios. To exemplify this approach, the suggested indicators
are applied to energy system scenarios derived from an in-house
electricity system investment model for Northern Europe. The
indicators presented in this work should not be regarded as a
complete set, but rather as examples of indicators that can help in
assessments of modelling results. Nevertheless, we believe that the
selected indicators address important questions related to
transformation of the electricity system by shedding light on,
for example, potential competing goals and inconsistencies. We
have deliberately chosen indicators that are typically not
presented in the energy systems analysis literature [i.e., the
common ones, such as electricity generation, investments per
technology, and total systems cost are not included in this study
but can be found elsewhere (Göransson et al., 2021)]. The choice
and presentation of the indicators in this work were to some
extent guided by the model structure and resolution that was used
to produce the analysed scenarios and the expertise of the group
of authors. Also, the present scenario analysis only considers part
of the energy system and, thus, can only provide insights into the
cost-effective use of resources within those boundaries.
Furthermore, the indicators presented here were not part of
the optimisation but were applied ex post, i.e., the indicators
did not influence the optimisation. However, these indicators
could be integrated in the optimisation as a next step of analysis,
but this would be a intricate task considering that the indicators
cover a large range of sustainability areas with complex
interdependences and is out of the scope of this paper.

DESCRIPTION OF INDICATORS

The indicators are divided into three main categories: resource
indicators; transition rate indicators; and energy security
indicators. They highlight the areas in which indirect costs
and other barriers play significant roles in shaping the future
energy system (Figure 1). For the sake of brevity, some of the
indicators are presented in the Appendices. Other categorisation
systems could be used that focus, for example, on economic,
social and technical indicators. With the resource indicators, we
relate the modelling results to the requirements for land and
natural resources, such as biomass and the usage of basic and
critical materials for the construction of energy infrastructure
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and for the production of battery systems. The transition
indicators describe developments in the energy system over
time in terms of the installation and phase-out rates of
different technologies, changes in cost structures, emissions
intensities, load patterns, and system structure. The energy
security indicators provide information on the import and
export dependencies and the operational reliability of the
system.

Resource Indicators
Biomass Use
The magnitude of the sustainable biomass supply for future
energy purposes depends on such factors as the willingness to
pay for biomass in different sectors, population growth, diets,
technological developments, crops used, requirements and views
related to biodiversity (Slade et al., 2014). Thus, it is unclear as to
how much biomass will be available for the electricity sector and
at what cost. To estimate the dependency on biomass in the
various scenarios, we calculate the yearly biomass used in the
modelling scenarios (EJ) per region r and compare this to the
estimates of sustainable biomass potentials in the region (ESBP)
in EJ/yr (de Wit and Faaij, 2010). Since the latter is a subject for
debate, it becomes even more important to contextualise the
biomass demand in modelling. The biomass use rate (BUR) is
calculated as:

BURr,y � BUr,y

ESBP
(1)

where BU is the biomass usage in region r, in year y, and ESBP is
the estimated sustainable biomass potential. Although outside the
scope of the present work, it will be important to derive this
indicator for all sectors that aspire to using biomass, i.e., the
industry, transport and heating sectors. In a climate-constrained
world, there will most likely be different levels of willingness to
pay for biomass. It should also be mentioned that when it comes
to forestry-derived biomass this is typically used in a cascading
way, reflecting the willingness of Society to pay for different
biomass products. Thus, biomass for energy purposes currently
exists in the form of residues from the forest industry. In a world
that is developing in line with the Paris Agreement, the cascading
order may change depending on how Society values different
activities, and whether and to what extent these can substitute for
the use of carbon-based fuels and feedstocks (Berndes et al.,
2018).

Basic Material Use
The growth of renewable energy technologies needed for an
energy transition inevitably entails increased demand for
certain resources (IEA, 2020). While previous studies have
focused primarily on the roles of critical minerals in a low-
carbon transition (Vidal et al., 2013; Moss et al., 2018;
Boubault and Maïzi, 2019), here we focus on the implications
for basic materials. Renewable energy technologies, such as wind
and solar energy, are more metal-intensive than current energy
sources, with wind turbines requiring high-grade primary steel
(Davidsson et al., 2014). Moreover, the construction of wind

FIGURE 1 | Schematic overview of the indicators. Indicators marked with an asterisk are presented in the Supplementary Material.
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turbines involves a substantial need for concrete foundations.
Furthermore, an energy system with a high level of non-
dispatchable Variable Renewable Energy (VRE) could increase
the need for transmission capacity, which is also material-
intensive (Jorge et al., 2012a; Jorge et al., 2012b). To assess the
natural resources demand, we calculate the additional demands
for metals and concrete based on the power capacity added and
the transmission capacities installed on an annual basis, taking
into account the replacement needed for power capacities. We use
the average material use per MW of wind power (divided into on-
shore and off-shore) and the two main options for transmission
capacity: overhead lines or cables buried in trenches (including
substations and transformers) (Harrison et al., 2010; Jorge and
Hertwich, 2013). The material demand (MD) is, thus,
calculated as:

MDu,r,yn � ∑
t

MUu,t p (NICt,r,yn +NICt,r,yn−30)
+∑

tt

MUu,tt pNICtt,r,yn (2)

where MDu,r,yn is the demand for material u, consisting of
cement, steel, aluminium and copper, in region r in year yn;
MU is the use of material u perMWof wind power for generation
technology t, consisting of on-shore and off-shore wind, and for
transmission technology tt, consisting of overhead lines or cables
in trenches; and NIC is the new installed capacity of generation
technology t or transmissions technology tt in region r in years n.
The material use indicator presented here has an important
application in determining what the different energy
technologies in scenarios obtained from energy systems
modelling (in the present paper, electricity generation) will
require in terms of material use [e.g., metals as investigated by
Kleijn et al. (2011)], in comparison to today’s material production
levels.

Critical Material Uses and Scale-Up of Batteries
Batteries in the electricity system can be used in two forms:
stationary and electric vehicle (EV) batteries. Stationary batteries
can be used to reduce the total system cost by storing electricity
from hours of low net-load [i.e., electricity generation from VRE
minus demand] to hours with high net-load. EV batteries can be
used to power the EV when driving, as well as to store the
electricity through vehicle-to-grid systems or to absorb electricity
at low or negative net-load hours when the vehicles are parked.
The current ability to manufacture batteries, as well as to provide
enough critical materials (mainly cobalt, vanadium and lithium in
today’s battery chemistries), is limited (Alves Dias et al., 2018).

The first indicator, called the battery production ratio (BPR),
highlights the challenge of producing the amount of economically
profitable battery capacity required by the models. It is
calculated as:

BPRr,y � BCIr,y
BPCr,y�2019

(3)

where BCI is the amount of battery capacity installed in the model
per region and year and BPC is the battery production capacity

per region in the current year (2019). Newly installed batteries per
year include both new batteries and the replacement of old EVs
and stationary batteries.

The second indicator, termed the critical material ratio
(CMR), highlights the challenge of providing the quantity of
critical materials needed for battery production. It is calculated as:

CMRr,y,cm � CMUr,y,cm

CMRer,cm
(4)

where CMU is the cumulative amount of critical material cm
needed in a region r up to a certain year y for producing EV and
stationary batteries, and CMRe represents the reserves of critical
material in the modelled region (critical material reserve). We
used cobalt and vanadium as two examples of critical materials
used currently in battery production. The indicator CMR can be
used in the same way for other types of (critical) materials, for
example the lithium used in batteries, neodymium and
dysprosium used in wind power production, and indium and
selenium used for solar PV production. Furthermore, there is a
potential for recycling critical materials, thereby, extending their
lifespans and reducing the CMU. A recycling rate of 90% for
cobalt and vanadium is assumed in the calculation of the CMU
(Alves Dias et al., 2018). Even though the recycling potential of
batteries is >90% for many of the materials, given the use of new
recycling technologies and the presence of a suitable
infrastructure for battery collection and full-scale recycling
plants (Andersson et al., 1016), there is a high risk that the
recycled materials from batteries will be used as carrier metals,
construction materials, and back-filling materials or will be land-
filled in many countries instead of their metal properties being
utilised (e.g., in new batteries) (Author anonymous, 2019a).

Transition Rate Indicators
Installation Rates
Decarbonisation of the electricity system will require a rapid
ramping up of low-CO2 electricity generation capacity. The rate
of deployment of low-carbon technologies may give an indication
of the plausibility of a given scenario, where rapid uptake of a
certain technology over a short period of time in a country or
region may call for closer scrutiny. Napp et al. (2017) have
identified a number of factors to consider when assessing
technology penetration rates, including the availability of
supporting technologies, lead time to build technology and the
availability of financial and human capital, skills and supply
chains. While historical development is not necessarily a good
guide of future development, a common approach to assessing
the viability of the rate of change suggested in a scenario is to use
historical growth rates as benchmarks. Several different measures
of the rate of deployment of new electricity generation capacity
are used in the literature (Sovacool, 2008; Wilson et al., 2013; van
Sluisveld et al., 2015; Cao et al., 2016; Napp et al., 2017), including
measures of absolute growth (ΔGW/yr, ΔTWh/yr) and relative or
normalised growth [average annual growth (% change), GW/yr/
GDP, kWh/cap/yr]. Here, for each scenario, we calculate the
annual installation rates (ΔGW/yr) and average annual growth
rates (%) for each technology in each country and region. For the

Frontiers in Energy Research | www.frontiersin.org September 2021 | Volume 9 | Article 6772084

Lehtveer et al. Indicators for Energy Systems Models

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


key technologies, we also provide an estimate of the number of
installations required. The average annual added capacity (ΔC)
for each technology is calculated as:

ΔCt,r � ICt,r,yn − ICt,r,ym

yn − ym
(5)

where IC is the installed capacity of technology t in region r in
year (y) m and n. The average annual growth rate (G) is
calculated as:

Gt,r � (ICt,r,yn

ICt,r,ym

) 1
yn−ym

− 1 (6)

where, again, IC is the installed capacity of technology t in region
r in year (y) m and n.

Investment Cost Ratio
For a large-scale transition, significant levels of new investments
are needed. We choose the investment cost to GDP (ICtGDP)
ratio for the analysis and define it as the ratio between the
investment cost in the electricity generation capacities and GDP:

ICtGDP � ∑tI Costt, c,y
GDPc,y

(7)

where, I Costt,c,y is the investment cost of a generation
technology t in country c and year y, and GDPc,y is the GDP
of country c in year y. The GDP projections up to Year 2050 are
extracted from the Shared Socioeconomic Pathways 2 (Riahi
et al., 2017). It should be noted that in the present work
investment costs (in ICtGDP) differ from the capital costs,
such that the investment costs in a given year comprise the
real (not annualised) investments in the technologies invested in
that year, while the capital costs in a given year include annualised
investments in all the technologies with life-times spanning that
year. Financial investments in the energy system will depend on
many parameters related to public and private spending and the
conditions of the financial markets. Furthermore, investments in
the energy sector are likely to boost economic activity, create new
jobs reduce different environmental costs, making investment
cost and GDP interdependent and not independent factors. Thus,
the indicator in Eq. 7 should only be regarded as a first measure to
compare the required future investments with historical
spending.

Sectoral Emissions Reduction Rates
It is expected that the electricity sector will support other sectors,
such as the industry, transport, and heat sectors, in their
decarbonisation efforts via electrification. Thus, the sectoral
CO2 emissions intensity indicator is important to assess the
progress of decarbonisation and to track the transition
towards fully decarbonised sectors.

The CO2 intensity of the given electricity system is defined
as the ratio of CO2 emissions from the fuel inputs of the
electricity generation technologies to the total electricity
demand. Thus, the Electricity Emission Intensity (EEI) is
calculated as:

EEIr,h,y �
∑t(EGt,r,h,y

ηt
EFt)

Dr,h,y
(8)

where EG is the electricity generation of technology t, in region r,
at hour h and year y, η is the efficiency of technology t, EF is the
emissions factor of the fuel, and D is the electricity demand in
region r, at hour h and year y.

The sectoral CO2 emissions intensity (SEI) is calculated as the
total CO2 emissions that arise from sector activity relative to
sectoral demand:

SEIsr,y � ∑h(EEIr,h,y p SEDr,h,y) + SEInoElr,y sr,y(1 − ir,y)
SDs

r,y

(9)

where SEI is the total sectoral CO2 intensity in region r and year y,
and SED is the sectoral electricity demand in region r, at hour h
and year y. SEInoEl is the CO2 intensity of the non-electrified part
of the sector, SDs is the total sectoral demand, and i represents the
share of the electrified sector in region r and year y.

For the sake of simplicity, it is assumed that the emissions
from the non-electrified shares of the sectors will remain at
current levels for all years. In reality, these emissions are also
likely to be reduced. Sectoral electrification rates were taken from
a previous publication (Göransson et al., 2021). More details on
the calculation of sectoral CO2 intensities can be found in
Supplementary Appendix A3.

Energy Security Indicators
Import/Export Dependency
Energy security, which is an integral part of energy policy,
encompasses many different aspects, with one important
dimension being availability (Cherp and Jewell, 2011). Azzuni
and Breyer (2018) have defined availability using three
parameters: the regional availability of energy resources;
energy infrastructure; and energy consumers. The latter refers
to accessibility to consumers who can utilise energy generated
within the region. In this paper, we quantify two parameters that
are related to this definition of availability, namely the import and
export dependencies in regions with regards to electricity. The
import dependency is defined as the share of the total demand in
the region that is met by imported electricity, and the export
dependency is the share of total generated electricity within a
region that is required to be exported to other regions. The import
and export dependencies can, thus, be said to concern all three of
the availability parameters stated above, with energy resources
and energy infrastructure being related to import dependency.
Thus, a low import dependency indicates the availability of good
VRE conditions and a high level of infrastructure in the region
that can supply the regions demand. A high export dependency
indicates a low availability of consumers in the region in relation
to power generation, and that the region is dependent upon access
to consumers in other regions. When calculating the
dependencies, it is important to adopt a time resolution that
can capture variations, both in the generation from non-
dispatchable technologies and in demand. A too-coarse time
resolution risks hiding intra-period needs for import and
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export. The equations for import dependency (ID) and export
dependency (ED) over a year with hourly resolution are:

IDr � ∑hNIh,r∑hDh.r
(10)

EDr � ∑hNEh,r∑hEGh.r
(11)

where NIh,i (net import) and NEh,i (net export) are the positive
net total amounts of electricity imported and exported in
each time-step and in each region, respectively. Thus, for a
specific time-step, a region has a positive NI with NE being
zero, a positive NE with NI being zero, or both values are
zero. D denotes the electricity demand and EG represents
the electricity generation. There are, of course, also other
parameters that are relevant for energy security, such as
diversification of fuel imports. Therefore, the indicators
presented here should be complemented with additional
indicators related to energy security, such as changes caused
to imports/exports by other energy carriers, e.g., nuclear fuel
and biomass.

Operating Reserves
To ensure reliable on-demand electricity, the system requires
some reserve capacity to compensate for unforeseen events,
forecast errors, as well as normal variations in supply and
demand. While these reserves can be designed for several
time-scales (primary, secondary and tertiary reserves), only
secondary reserves are analysed here, as an example. We
perform a post-modelling analysis by looking at the frequency,
duration, and distribution of events with critically low operational
reserves. The level of operating reserves required in high-VRE
systems is difficult to estimate without statistical analysis of the
historical operation (a challenging task for modelled future
scenarios), and it depends on the exact composition of the
system. Nevertheless, the reserves required to manage typical
load variations can be estimated using either historical data or
heuristic formulas. Here, we use the latter type, calculating the
reserves (R) as:

Rd �













a pLd, max + b2

√
− b (12)

where Ld, max is the maximum hourly demand during day d, and
a and b are parameters used to tune the correlation between daily
load and reserve requirements. This equation was used to take
into account the fact that different regions have vastly different
load-levels in accordance with the ENTSO-E Operation
Handbook (ENTSOE, 2015), so as to calculate the secondary
control reserve with a � 10 MW and b � 150 MW. These values
are used also in the present study and result in approximately
200–500 MW of required reserves in the studied regions. For
reference, Sweden has a total reserve demand of 573 MW
according to the Swedish TSO.

To estimate available secondary reserves, we assume that
online units can ramp up to some extent (20–50%), whereas
hydropower and online gas turbines ramp up fully. Furthermore,
stationary batteries can contribute as reserves with the energy that

is not used for energy arbitrage throughout the day. Lastly, any
curtailment also counts as available reserves.

MODEL DESCRIPTION

The indicators in this work are designed to quantify the
implications of the results obtained from electricity system
investment models. In this study, we use a semi-heuristic,
cost-minimising electricity system investment model, called
Hours-to-Decades (H2D), to illustrate the results from the
indicators (Göransson, 2019). In the H2D model, the
investment decision is solved for 2-weeks segments, thereby
spanning the duration of wind variations that frequently occur
in the range of 8 days at the hub height of modern turbines
(Sørensen, 2017). There is a 3-hour time resolution within each 2-
weeks segment. The 2-weeks segments are run in parallel and the
generation, storage and transmission capacity investments of
each segment are collated to form the basis for the investment
cost distribution between the 2-weeks segments in subsequent
model runs. Through iterative solving, the 2-weeks segments
converge in terms of generation, storage, and transmission
capacity expansion. The model includes a representation of
the existing electricity and heat generation infrastructure, as
well as its age profile. A full description of the model is
available elsewhere (Göransson, 2019). The segmentation of
the year into 2-weeks pieces allow the H2D model to combine
a high temporal resolution with a high level of technical detail and
a large geographical scope. However, it also restrains the model
from assessing the size of seasonal storages. And while an
evaluation of the modelling methodology shows that the final
electricity system suggested by the H2D model has a total system
cost close to the cost-optimal system composition, the embedded
heuristics in the methodology does not guarantee optimality
(Göransson et al., 2021).

The H2D model includes several aspects of what we here refer
to as variation management (Göransson and Johnsson, 2018),
including thermal cycling, H2 storage, heat storage and stationary
battery storage. Storage is dispatched such that the storage level in
the last time-step in the 2-week period equals the storage level in
the first time-step of the same 2-week period. The full range of
generation and storage technologies considered in this study, and
the properties thereof, can be found in Supplementary Appendix
A2. In addition, variation management through electrification of
electrification of the iron ore reduction process in the steel-
making industry the steel-making industry and passenger
vehicles, as well as the replacement of fossil fuels for
residential heating is included and further described elsewhere
(Göransson et al., 2021). Electrification of other industrial sectors
is not considered in this study.

Scenarios
The geographical scope considered in this work is Northern
Europe, and includes Denmark, Estonia, Finland, Germany,
Ireland, Latvia, Lithuania, the Netherlands, Norway, Poland,
Sweden, and the United Kingdom. The countries are
subdivided into 12 regions to represent major transmission

Frontiers in Energy Research | www.frontiersin.org September 2021 | Volume 9 | Article 6772086

Lehtveer et al. Indicators for Energy Systems Models

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


bottlenecks, as shown in Supplementary Appendix Figure A1.1.
Trade across the geographical scope is allowed, and investments
in new transmission capacities among regions is possible. The
temporal scope of the study is three decades (2030, 2040 and
2050), where each decade is represented by 1 year in the model.
The existing power-plant fleet, as given by the continuously
updated Chalmers Power Plant Database (Kjärstad and
Johnsson, 2007), is taken as a starting point, and generation
capacity is gradually phased out as the present power plants reach
their technical end-of-life, although the use of power plants may
be discontinued before this if they become un-economical. The
main difference between the studied decades is the increase that
occurs in the cost of CO2, starting at 40 EUR/tonne in 2030,
increasing to 100 EUR/tonne in 2040, and reaching 400 EUR/
tonne in 2050. The 2030 level correspond to projects made on
ETS market prices (Schjølset, 2014). However, recent estimates
point to that the 2040 level, as applied here, could be attained
already in 2030 (Shankleman, 2021). The 2050 level is set to
effectively disincentivise electricity generation associated with
CO2 emissions. The cost of CO2 affects both the operation of
existing plants and new investments in the electricity system (as
well as the operation thereof). However, electricity generation
capacity already in place remains available until the technical life-
time is reached. Electricity demand from electrification of the
steel industry and passenger vehicles, together with the
replacement of fossil fuels with electricity for heating (using
heat pumps with a coefficient of performance of 3) is added to
the current electricity demand in respective region, as explained
in a previous paper (Göransson et al., 2021). Overall, this
electrification results in an additional electricity demand of
around 900 TWh per year by 2050 for the regions
investigated, corresponding to an increase in electricity
demand of around 50%.

Two main scenarios are considered in this work: the
Collaboration and No Collaboration scenarios. Whereas
scenarios in previous work mainly differ in degree of
electrification (European Commission, 2018; IEA, 2018), these
scenarios differ in terms of how demands for electricity and heat
from the transport, industry and heat sectors are being integrated
into the electricity and district heating systems. This
differentiation between the two scenarios is made possible by
the high temporal resolution and degree of technical detail of the
H2D model. Table 1 summarises the differences between the
scenarios. In the No Collaboration scenario, the new demands for
heat and electricity have a predefined temporal distribution
(i.e., no load shifting is assumed). EVs recharge their batteries

directly whenever they are parked for 6 h or longer. The charging
is only limited by the charging capacity, i.e., 3.7 kWh per hour,
and does not consider the availability or price of electricity. The
electricity required to produce H2for the steel-making process is
in the No Collaboration scenario evenly distributed across the
hours of the year. Furthermore, in the No Collaboration scenario,
natural gas for heating is replaced by individual heat pumps
located in the individual buildings and operated according to the
heat demand profile of the households.

In contrast, in the Collaboration scenario, EV charging is
always flexible in relation to time for 30% of the vehicles, while
still meeting the driving demand for transportation. It is also
possible for these EVs to discharge back to the grid (i.e., vehicle-
to-grid; V2G). The remaining 70% of the EVs still charge as soon
as they are parked for 6 hours or more. As for the steel industry, in
the Collaboration scenario, there is an option to make additional
investments in electrolyser capacity and H2 storage. Natural gas
for heating is in this scenario replaced by district heating. The
heat demand for district heating can be met by combined heat
and power (CHP) plants, electric boilers (EB), and heat pumps
(HP). There is also the possibility to invest in thermal tank and pit
storages (TES Tank and TES Pit). No current national or regional
policies are included in this study such as achieving carbon
neutrality before 2050. Further details on scenarios can be
found elsewhere (Göransson et al., 2021).

RESULTS AND DISCUSSION

Basic Scenario Results
We show that collaboration between the electricity system and an
electrified steel industry, passenger vehicles and household heat
supply can reduce total system costs by 8% compared to the No
Collaboration scenario, under the assumptions made in this
work. However, the Northern European electricity system
composition is found to be dominated by wind power,
irrespective of whether sectorial collaboration is available.
Figure 2A shows the annual levels of electricity generation in
Northern Europe under the two scenarios in the years
investigated, and the corresponding capacities are given in
Figure 2B. In Year 2050, inter-sectoral collaboration increases
the share of the demand supplied: from 61 to 63% for wind power;
and from 16 to 19% for solar PV. The largest difference between
the scenarios investigated is the way in which the variability is
managed. Figure 2C gives the energy storage capacities for the
scenarios considered. In the No Collaboration scenario, the high

TABLE 1 | Differences between the Collaboration and No Collaboration scenarios.

Collaboration No Collaboration

Electric vehicle charging strategy Optimised, including V2G, for 30% of the fleet and immediately
when parked for 6 h or more for 70% of the fleet

Immediately when parked for 6 h or more

Hydrogen storage Rock cavern storage units available No storage available

Natural gas replacement in heating District heating supplied by CHP, EB or HP Individual heat pumps

Heat storage in district heating Tank, pit storages available No heat storage available
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share of VRE sources is achieved through large investments in
stationary battery capacity (Figure 2C), together with the
operation of combined-cycle and open-cycle gas turbines
(Figure 2B). Consequently, around 700 GWh of stationary
batteries are expected to be in place by Year 2050. In the
Collaboration scenario, stationary batteries play a negligible
role in managing variations of generation. Instead, these
variations are managed by flexible H2 production and strategic
EV charging, enabled by investments in H2 storage and strategic
operation of the vehicle batteries, respectively. The batteries of the
EVs provide flexibility without compromising their primary
purpose of providing transportation, and it is here assumed
that the flexibility provision to the grid does not degrade the
battery substantially (i.e., no costs are associated with this
flexibility provision). In the Collaboration scenario, demand-
side flexibility not only reduces the need for stationary
batteries, but also reduces the need for flexible generation.
Flexible generation, in the form of combined-cycle gas
turbines, support the electricity system during periods of
prolonged low-level wind power generation, from Year 2030
and onwards. Natural gas-fired combined-cycle gas turbines
dominate flexible generation up to Year 2040. However, in
Year 2050 they are replaced with biogas-fired combined-cycle
gas turbines in both scenarios. By Year 2050, biogas-based
electricity generation is 32 TWh higher per year in the No
Collaboration scenario than in the Collaboration scenario. The
total biogas-based electricity production corresponds to 6–7% of
the annual electricity demand. While the cost of biomass can be
expected to increase with the demand for biomass in the transport
and industry sector, previous work has shown that a small share
of bio-based electricity generation has a very high value as a
complement to wind and solar power (Johansson et al., 2019). For
more detailed results for the scenarios regarding system
composition and operation, the reader is directed to the
previous paper (Göransson et al., 2021).

Resource Indicators
Biomass Use
Biomass use in the electricity system is low in Year 2030 and Year
2040 (less than 0.3 EJ) but increases significantly by Year 2050,
reaching 0.86 EJ in the Collaboration scenario and 0.93 EJ in the
No Collaboration scenario, corresponding to ca. 17.3 and 18.6%,
respectively, of the estimated sustainable biomass supply in the
whole studied region (deWit and Faaij, 2010) (Figure 3). Most of
the biomass is used in only two regions, where it compensates for
limitations associated with other resources, i.e., in the southern
United Kingdom region, which has a high electricity demand and
relatively low VRE resource potential, and in the southern
Germany region, which also has limited wind potential. For
comparison, according to EUROSTAT, 0.78 EJ of biomass

FIGURE 2 | Modelling results, as obtained from the two scenarios investigated in this work. (A) The annual electricity generation; (B) the total installed electricity
generation capacity; and (C) the total energy storage capacity, for the two scenarios for Years 2030, 2040 and 2050. CCS, Carbon capture and storage, here with
biomass blending for zero total emissions; CCGT, combined-cycle gas turbine; ST, steam turbine; H2store, hydrogen storage; TES, thermal energy storage; bat_Lion,
Li-ion stationary batteries; bat_flow, flow stationary batteries. The batteries in electric cars are not included in this graph.

FIGURE 3 | The amounts of biomass (left axis) used in the modelled
region in the two scenarios in Years 2030, 2040 and 2050, and including
(right axis) this usage as a percentage of the estimated sustainable biomass
in the region.
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were used in the entire studied region in Year 2018 for electricity
and combined heat and power production, with the main users of
biomass being Germany (0.33 EJ), the United Kingdom (0.13 EJ),
and Sweden (0.09 EJ). An assessment of used biomass
sustainability is not available. This level of biomass usage is
significantly higher than that obtained from the modelling for
Years 2030 and 2040 (cf. Figure 3), which indicates that
conversion to a VRE-based electricity system may temporarily
reduce the need for biomass in the electricity system. Nonetheless,
biomass will play an important role in balancing the electricity
system when near-zero emissions are reached and a large share of
the future sustainable biomass could be needed for that purpose.
Yet, due to the limited scope of the model used here, the value of
biomass for the electricity system should be compared to the
value of biomass for other sectors, to ensure a thorough appraisal.
In addition, it is not obvious to what extent biomass can be
reallocated between regions in terms of import/export. Ideally,
the biomass should be sourced to the regions that display the
highest level of willingness to pay for the biomass (i.e., having the
greatest need for this fuel). Overall, it should be noted that the
modelling results are cost-optimal solutions, so they will not
reflect the real development, where considerations other than cost
are included. Although it seems unlikely that biomass-fired units
will to a large extent be phased out until Year 2030, the modelling
shows that other types of generation are more cost-efficient.

Basic Material Use
Steel and concrete/cement are the main basic materials used in
the construction of most systems for electricity generation
capacity (except solar PV). In the present study, we focus on
the material use associated with wind power, as this generation
technology dominates the expanded generation capacity of the
coming decades in the model. Additional transmission capacity
also implies the increased use of basic materials, predominantly in

the forms of aluminium and copper, both of which are used in
transmission cables, substations and transformers. As shown in
Figure 4, the levels of material use for wind power and
transmission technologies are highest over the present decade
(2020–2030). The expected annual level of material use for the
energy transition is equivalent to around 10% of the annual
consumption of copper in the EU, while corresponding to around
2% of EU steel and aluminium consumption and less than 1% of
the annual consumption of cement in the EU. While the overall
levels of material use for the entire region do not demonstrate
large differences between the two scenarios, there are substantial
differences between the scenarios for individual regions. In
Sweden, for example, the amount of steel required for the
expansion of wind capacity up to Years 2040 and 2050 for the
No Collaboration scenario is almost double than that for the
Collaboration scenario. In both cases, a high demand for steel can
be expected beyond Year 2050 when the wind turbines built in
Year 2030 will need to be replaced. Obviously, there is a need to
relate the transition of the energy system to the needs for
materials and other resources. This will have important
implications for different industries and their associated value
chains in terms of what they can expect in the future, given
different scenarios. This will likely entail both opportunities for
material suppliers (as in the current example) and challenges such
as increased competition (resulting in increased prices) for raw
materials (such as iron ore for steel production).

Critical Material Uses and Scale-Up of Batteries
The lithium-ion EV battery manufacturing capacity globally was
200 GWh/yr in 2019 (Author anonymous, 2019b). The average
cobalt content of a battery is about 0.36 kg/kWh based on the
current battery chemistries. The average amount of vanadium in
flow batteries (an option to invest in stationary applications in the
model) is about 5.2 kg/kWh (Zhang et al., 2016). The cobalt and

FIGURE 4 | Material usage of base materials in the analysed scenarios.
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vanadium global reserves amount to 18 and 22 Mtonnes,
respectively, of which around 10% (1.8 Mtonnes) and <1%
(<0.2 Mtonnes), respectively, are located in the modelled
region (Alves Dias et al., 2018). Table 2 shows the number of
stationary and EV batteries produced and the results for the two
indicators: the BPR (i.e., the required battery capacity divided by
the current production capacity) and the CMR, in the two
scenarios for the entire modelled region in Years 2030, 2040
and 2050.

The BPR differs to some extent between the No Collaboration
and Collaboration scenarios, although in both scenarios it
indicates the need for about 80-times the current production
capacity in the modelled region already by Year 2030 (Table 2)
and the need for up to 20% more battery capacity in the No
Collaboration scenario, as compared to the Collaboration
scenario. The investments in stationary batteries in the No
Collaboration scenario are small compared to the investments
needed in EV battery capacity for the transport sector. In the No
Collaboration scenario, around 883 GWh of stationary batteries
are invested in the modelled region by Year 2050, as compared to
6 TWh of EV batteries (assuming electrification rates for
passenger cars of 50% by Year 2030, 70% by Year 2040, and
100% by Year 2050, and a battery capacity size of 30 kWh). These
batteries, obviously, have as their main purpose to power
transportation. However, since the driving profiles exploit the
EV batteries for only a fraction of their maximum potential, the
EV batteries can also serve the stationary electricity system. Yet, it
is most important to limit the EV battery capacity size, even
though using the capacity of EV batteries instead of that of
stationary batteries will further reduce the total level of battery
capacity (transport and stationery) needed.

As shown in Table 2, by 2050, in both scenarios, the amount of
cobalt needed for the construction of EV batteries is 61%% of the
cobalt reserves within the modelled region. The region will need
about 6% of all the cobalt reserves currently available globally,
and the current fleet in the region corresponds to about 10% of
the current global passenger fleet. However, the present study
assumes a high recycling rate of 90%. In addition, the cobalt in EV
batteries corresponds to about 50% of the current global market
for cobalt. Furthermore, it seems likely that passenger cars will
not be the only user of batteries in the transport sector. In 2016,
126,000 tonnes of cobalt were mined in 20 countries around the
world. The main countries with mining of cobalt are the
Democratic Republic of Congo, Russia and Australia. In
Europe, cobalt production in Year 2016 was estimated at 2,300

tonnes, all of which was sourced from Finland (Alves Dias et al.,
2018).

As shown in Table 2, vanadium reserves are scarcer than
cobalt reserves in the region. As a consequence, vanadium needs
to be imported to cover the heavy demand for stationary batteries
in the No Collaboration scenario. In this study, the amount of
cobalt and vanadium in current battery chemistries is used, as
well as, the current estimates of the reserves. New battery
chemistries that reduce the use of cobalt and vanadium or
diminish recycling of the critical materials (if no additional
reserves that can be sustainably extracted are found) are
therefore needed.

Transition Indicators
Installation Rates
As illustrated in Figure 5A, both scenarios show a rapid uptake of
wind and solar power. In the first decade (2020–2030) on-shore
wind power predominates, with an average annual installation
rate of almost 25 GW/yr. After Year 2030, solar PV installation
rates increase significantly to more than 20 GW/yr in the
Collaboration scenario and to 16–19 GW/yr in the No
Collaboration scenario. This is partly a model artefact. A
known weakness of optimisation models is the “Penny-
switching” effect, in which small changes in input parameters
may lead to considerable changes in the output (DeCarolis et al.,
2017). Here, this means that the model chooses to invest initially
in favourable wind locations and subsequently in more costly PV
capacity (2030–2040). These results can be compared with the
historical installation rates. In the period 2010–2018, the average
annual installation rates of wind power in the studied region as a
whole (which accounted for 60% of the total installed capacity of
wind power in the EU-27 in Year 2018) ranged from 5 GW/yr (in
Year 2010) to approximately 12 GW/yr (in Year 2016) (IRENA,
2019). In the same period, the average annual additions of solar
PV ranged from 3 GW/yr (in Year 2016) to 9 GW/yr (in Year
2011) (IRENA, 2019). Thus, the progress of the energy transition
is accelerating in the scenarios investigated here. Yet, these values
are not excessively high compared to the historical values and,
thus, the suggested installation rates should be feasible in most
regions.

The thermal power plant’s share of total electricity generation
decreases in both scenarios (cf. Figure 2). However, more than
5 GW/yr of biogas combined-cycle capacity is brought online in
both scenarios during the period 2030–2050. In addition, in the
No Collaboration scenario, in the period of 2030–2040, 1.8 GW/

TABLE 2 | The numbers of stationary and electric vehicle (EV) batteries produced, the battery production ratios, and the Critical Materials ratios for the Collaboration and No
Collaboration scenarios in Years 2030, 2040 and 2050.

2030 2040 2050

Collaboration No Collaboration Collaboration No Collaboration Collaboration No Collaboration

Stationary batteries produced (GWh/yr) 7 355 2 196 7 332
EV batteries produced (GWh/yr) 1,414 1,414 2,002 2,002 2,836 2,836
Battery Production Ratio (Eq. 3) 79 98 111 122 158 176
Critical Materials Ratio (cobalt) (Eq. 4) 0.28 0.28 0.43 0.43 0.61 0.61
Critical Materials Ratio (vanadium) (Eq. 4) 0.16 8.41 0.20 13.07 0.20 20.94
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yr of co-fired thermal power plants equipped with CCS (Bio-coal
CCS) are installed.

As the share of VRE sources increases, the importance of
energy storage and of other technologies to support variation
management increases. Figure 5B shows how the installation
rates of variation management technologies, including storage,
differ between the two scenarios. In the Collaboration scenario,
which allows investments in both hydrogen storage (H2 storage)
and thermal energy storage (TES Tank and TES Pit), the average
annual installation rate of H2 storage is approximately 116 GWh/
yr in the period 2030–2040 and 35 GWh/yr in 2040–2050. The
thermal energy storage capacity also increases significantly, with
more than 80 GWh of pit heat storage capacity being added
annually in the periods 2020–2030 and 2030–2040. In the No
Collaboration scenario, where H2 storage and thermal energy
storage is not available, flow batteries become important to
handle storage and variation management. In the period
2020–2030, approximately 35 GWh of flow battery capacity
are installed each year. Thereafter, the installation rates
decline. As the capacities for all of the energy storage and
variation management technologies discussed here will
increase from initially low levels, comparisons with historical
installation rates are less relevant. Instead, specification of the
performance of existing systems will here be used to provide a
point of reference. For long-term and large-scale storage of H2,
underground storage in salt caverns or lined rock caverns seems
most favourable. Based on information about the salt cavern H2

storage facilities in operation today (six worldwide) and in the
commissioning phase (IEA, 2018; Caglayan et al., 2020), an
estimated storage capacity of 50–150 GWh seems reasonable.
This would mean that 1 or 2 such H2 storage facilities would
need to be deployed each year in the Collaboration scenario

during the period 2030–2040. It is worth noting that more than
100 caverns are in use today for the storage of natural gas for
seasonal load balancing and as reserves (Caglayan et al., 2020).
The storage method and costs may vary significantly between
regions due to differences in geological conditions (Andersson
and Grönkvist, 2019). The total capacity of existing installations
for seasonal storage of heat is approximately 0.5 GWh for TES
Tanks and in the range of 5–15 GWh for TES Pits (Gibb et al.,
2018). This means that in the Collaboration scenario, 5–16 pit
storages would need to be commissioned each year.

The average annual growth rates (%) could be used as a
complementary performance indicator, and this would give an
indication of the outliers in the scenarios. As shown in
Supplementary Appendix A4.4, the average annual growth
rates can be used to spot the rapid relative growth of a certain
technology in a certain region, as well as extensive change in a
certain country (cf. Cherp et al., 2021).

Investment Cost Ratio
The modelling results show that investments in electric power
generation technologies in the region modelled in the scenarios
investigated constitute a small fraction of the region’s GDP. The
total region’s ICtGDP (investment cost-to-GDP) ratio initially
increases and then decreases from around 0.8% in Year 2030
down to around 0.18% in Year 2050 in both scenarios. This can be
compared to 0.2–0.3% of the GDP spent on power plants around
Year 2010 (average between Year 2005 and Year 2014) (IEA,
2016). The most significant change is observed for the Baltic
countries, in which the ICtGDP ratio is around 3% (in both
scenarios) in Year 2030 due to a dramatic increase in wind power
capacity, up from the historical level of around 0.4% in Year 2010.
Thereafter, it declines to 0.0 and 0.2% in Year 2050 in the

FIGURE 5 | Average annual installation rates for: (A) electricity generation capacity (GW/yr); and (B) variation management technology capacity (GW(h)/yr). The
graphs shows the average annual capacity additions in the period 2020–2050 for the entire regionmodelled in the Collaboration scenario and No Collaboration scenario,
respectively.
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Collaboration and No Collaboration scenarios, respectively, as all
valuable wind areas will be exploited by Year 2030. These values,
together with the results for the electricity import/export
dependency of the investigated countries (cf. Section 4.4.1),
indicate that from the Northern European perspective it is
economically justifiable for the Baltic states, as well as for
foreign investors, to divert significant resources into the
electric power sector already by Year 2030, so as to export
electricity to the neighbouring regions in the future. The
results also show that changes in the ICtGDP ratios between
other regions and investigated years are less drastic (see
Supplementary Appendix Table A4.7.1, Supplementary
Appendix A for the ICtGDP ratios for the investigated countries).

Sectoral Emission Reduction Rates
Figure 6A shows carbon intensity of the electricity sector, electric
passenger vehicles, electrified residential heating and steelmaking
with hydrogen reduction. As mentioned in Description of
Indicators, for simplicity, it is assumed that emissions from
the non-electrified shares of each sector will remain on the
current levels throughout the period investigated. The CO2

emissions intensity of the electricity system is 11 and 28%
lower in the Collaboration scenario than in the No
Collaboration scenario in years 2030 and 2040, respectively.
The electricity system of 2050 in the Collaboration scenario is
fully decarbonized, but in the No Collaboration scenario, CO2

emissions still arise from electricity generation. The CO2

intensities are 55 and 34% lower for electrified passenger
vehicles and the steel-making industry, respectively, and 3%
higher for electrified heating in the Collaboration scenario
than in the No Collaboration scenario. In 2030 and 2040, the
electrified residential heat is the most carbon-intense sector of the
electrified sectors in both scenarios, since heat consumption
occurs when the remaining fossil fuel-based electricity
generation technologies are running. Figures 6B–D, show the
total CO2 intensities of the residential heating, passenger vehicles,
and steel-making industry, expressed as kgCO2/km for vehicles
(Figure 6B), kgCO2/KWh for heating (Figure 6C), and kgCO2/
tonne for steel (Figure 6D), respectively. By Year 2050, the steel
industry and passenger vehicles are fully decarbonized. In Year
2050, the CO2 intensity of residential heating is 18 gCO2/kWhheat
in both scenarios, given that 9% of residential heating is still

FIGURE 6 | Total carbon dioxide emissions intensities of: (A) the electricity system and electrified sectors (industry, transport, and heat sector); (B) the transport
sector, in gCO2/km; (C) the heat sector, in gCO2/kWhheat; (D) the industry sector, in kgCO2/tonne steel, for different scenarios and years.
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supplied by fossil fuels. Disaggregation of the sectoral CO2

emissions trends reveals striking differences between sectors
and regions (Price et al., 1998), and provides insights for the
further development of decarbonisation. The indicator can be
further improved by considering electricity trading across regions
and the charging and discharging of storage units.

Energy Security Indicators
Import/Export Dependency
Figure 7 shows the annual import and export dependencies of a
select number of regions for the modelled years and the historical
period 2016–2019 for the Collaboration and No Collaboration
scenarios, respectively (for the results for all regions see
Supplementary Appendix Tables A4.11.1, A4.11.2). For the
modelled years, both the import and export dependencies vary
considerably between regions, with southern Sweden (SE_S)
reaching up to 70% and down to 0% in import dependency
and export dependency, respectively, and the Baltic (BAL) region
reaching 2 and 70%, respectively. Overall, there are more regions
with high export dependency than regions with high import
dependency, indicating that the energy consumer aspect of
energy availability, i.e., the access to consumers for the energy
producers, may be of greater concern than the resource and
infrastructure aspects for most regions in the investigated
scenarios. The differences between the scenarios are minor,
with the largest difference seen for the import dependency of
Norway (NO), which is 15–20 percentage points higher in the No
Collaboration scenario because Norwegian hydropower is used
more extensively for balancing. For the other regions, the
differences between the scenarios for both the export and
import dependencies are in the range of 0–8 percentage
points. The small difference between scenarios indicates that
policy choices that promote one scenario or the other do not
affect the import or export dependencies.

Some regions show considerable deviations from the historical
values. The BAL region currently has a relatively high import
dependency (30–46%) and essentially no export dependency. In

the modelled scenarios, this situation changes considerably, with
import dependency dropping to around 1–2% and export
dependency increasing to just over 70%. Similar changes can
be seen in Norway (NO), with export dependency increasing
from the current rate of around 10% to around 50% in Year 2050,
and southern Sweden (SE_S) where the import dependency
increases from the current level of 20% to 60–70% in Year
2050. The substantial changes in both the import and export
dependencies are due to shifts in system composition from,
primarily, thermal power plants, which are placed near the
demand, to VRE sources for which the location is more-
dependent on the resource potential in different regions. This
indicates that the possible future scenarios modelled in this work
will have weaker energy security than the current system, with
regards to electricity as an energy carrier.

Operating Reserves
The system requires some reserve capacity that can compensate
for unforeseen events and forecast errors, as well as compensate
for variations in supply and demand. The heuristic formula given
by Eq. 11 is used to estimate the required reserves at
approximately 200–500 MW for the studied systems. Figure 8
illustrates the violations of minimum operational reserve capacity
for the northern United Kingdom region for different years and
scenarios. The figure shows the available reserves throughout the
year in the form of a bar-code plot, in which the red lines indicate
hours of no available reserves and the orange lines indicate some,
albeit insufficient, levels of reserves. A large difference can be seen
between the two scenarios, in that the No Collaboration scenario
rarely has any available reserves while the Collaboration scenario
almost always has sufficient reserves. For the northern
United Kingdom region, this difference is due to the storage
units used. The No Collaboration scenario has flow battery
storage, which is cycled almost once per day, while the
Collaboration scenario uses EV batteries with far fewer full
cycles (in terms of aggregated battery storage). Since only
excess energy at the end of the day is considered eligible for

FIGURE 7 | The annual export and import dependencies for the modelled period and the period of 2016–2019 (“historical”) in selected regions (different colours) in:
(A) the Collaboration scenario; and (B) the No Collaboration scenario. The results for all the regions are presented in Supplementary Appendix Tables A4.11.1,
A4.11.2.
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reserves during the same day, the aforementioned difference in
storage technology generates the difference in available reserves
shown in Figure 8. It should be noted that this specific region is a
significant net-exporter of power, which over-estimates the
effects associated with assuming that reserves must be supplied
locally within the producing region. Regardless of whether or not
the evaluation of available reserves should be adjusted to account
for trade, Figure 8 clearly highlights the fact that the two scenarios
have significantly different prerequisites for providing reserves.
The results for all the regions and scenarios are given in the
Supplementary Appendix Figures A4.12.1, A4.12.2.

CONCLUSIONS AND POLICY
IMPLICATIONS

In this paper, we propose and exemplify indicators that can facilitate
the interpretation of the scenario results from energy systems
modelling and thereby enhance the basis for policy-making. We
focus on the electricity system transition, for which we provide
modelling results for two different scenarios for northern Europe,
together with 13 indicators, divided into resource, transition rate,
and energy security indicators. Together, these indicators highlight
areas in which indirect costs and other considerations can play
significant roles in shaping the future energy system.

We show that while the large-scale expansion of wind and
solar power in the scenarios investigated seems feasible from the
material and land-use perspectives, upscaling of VRE in some
regions implies the need to raise capital for energy investments
that are substantially larger than those presently put into the
energy infrastructure. Furthermore, the benefit of utilising sector
coupling for flexibility provision, rather than dedicated stationary
batteries, is found to be motivated not only by costs but also by
the availability of scarce minerals and the provision of reserve
generation. The indicators also show that the modelling
methodology has a limited ability to provide results that
render advice as to installation rates, ignoring the problems
linked to intense periods of material usage interrupted by
decades of much lower material usage. This is similar to the
real world, in which cycles of boom and bust are common in

industry. Yet, the results presented here should not be seen as a
predictor of market behaviour.

We argue that using various indicators that address different
aspects of the expected large-scale expansion of the electricity
system based on VRE sources and sectoral integration facilitates:
1) communication of the results and their consequences–both
opportunities and challenges–to policy-makers; 2) understanding
the consequences of the energy system transformation in a wider
context; 3) avoiding suboptimal solutions that could result from
ignoring specific aspects or focusing exclusively on one aspect;
and 4) assisting internal reviews and discussions around
modelling results within and between modelling groups. It is
likely that trade-offs as well as synergies exist within each
scenario, and these should be understood to make informed
political decisions.

The indicators presented in this work should be regarded as
examples. They may need to be refined, as well as complemented
with other indicators, depending on which policies are in focus
(see for example Liu, 2014; Kouloumpis et al., 2015; Rösch et al.,
2017; Azzuni and Breyer, 2018). Nonetheless, providing more
detailed results for model scenarios via indicators should make
the results more accessible for discussions in wider audiences, as
well as to scientists in other fields (e.g., social sciences), thereby
allowing further analyses of the political and social feasibilities of
the results. This is particularly important because there are many
aspects of the energy transition that are not explicitly considered
in the models and, thus, are also not part of the optimisation. The
indicators can also serve as a basis for analysing the energy
transition in a wider sustainability perspective, for example to
support the quantification of the UN Sustainable Development
Goals (SDGs). Given that the indicators aim to help non-energy
modellers in their understanding of the results from energy
system models, they should be tested and discussed with these
actors. Such cross-disciplinary exercises can help modellers to
formulate better indicators and help non-modellers to
understand more clearly the types of information that can be
derived from energy system models. In summary, we believe that
indicators of the type exemplified in this work represent a way to
make energy system models more suitably adapted to providing
well-grounded decision support.

FIGURE 8 | The violations of minimum operational reserve capacity for the northern United Kingdom region for different years and scenarios. The red and orange
lines indicate the hours of no or low reserves, respectively. Panel (A) shows the operational reserve violations for the Collaboration scenario, while panel (B) shows the
violations for the No Collaboration scenario.
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The choice and presentation of the indicators in this
work were to some extent guided by the model structure
and resolution that was used to produce the analysed
scenarios. Other indicators may be more relevant when using
more detailed country-level models. It is also important to bear in
mind the system boundaries when interpreting results. For
example, with more stringent climate targets, there will be
many sectors that will want to use biomass to reduce their
emissions. This will result in higher biomass prices and in
uncertainty regarding the amount of biomass available for the
electricity system. Therefore, the present scenario analysis only
considers part of the energy system and, thus, can provide
insights into the cost-effective use of biomass within those
boundaries. The same applies to other limited resources that
are used in several sectors.

It should also be kept in mind that most future scenarios cover
increasing levels of electrification in different sectors, reflecting
the fact that the whole system is expanding and covering more
energy services over time. This means that more investments will
be needed, as compared to the historical rates, although
comparisons to these can help to grasp the magnitude of
effort required to materialise such electricity systems.

Furthermore, the indicators presented here were not part
of the optimisation but were applied ex post, i.e., the
indicators did not influence the optimisation. Integrating
indicators into the modelling optimisation process and
investigating synergies and dependencies among them are
possible further developments of such analysis. However, as
mentioned in the introduction to this paper, to make the
indicators part of the optimization would be a highly complex
task due the different areas they cover and their
interdependencies. Yet, the authors of this work believes that
the ex post use of indicators can be an efficient tool for
highlighting challenges important for policy-makers or
scientist from other fields such as when the indicator values in
future scenarios diverge considerably from historical values. This
implies that it would be valuable to add model constrains to
investigate the consequences of limiting the indicator. Thus, the
indicators also serve an important function in evaluating scenario
designs and modelling tools in general. More dynamic inclusion
of constraints was developed for example by Sole et al. (2020).
Yet, these applications tend to have other limitations such as
limited representation of technology dispatch.

In summary, we argue that these types of indicators should be
further developed and widely used to make modelling results more
accessible and useful for managing the transition on the policy level,
as well as for internal evaluations of the scenarios produced,
especially if the target audience is broader than the scientific
community. Quantification of indicators enables discussions
within modelling groups regarding the appropriateness of the
tools to answer posed questions, as well as in policy-making to
understand the trade-offs and synergies between different solutions
and to foster a deeper understanding of the issues in the electricity
system. In both cases, these types of indicators can help to illuminate
the limitations of the scenarios developed and the limitations of the
modelling methods used. This paper should be seen as a starting
point for developing indicators and as a call to other modellers to
develop further the list of indicators and apply a selection of them
based on research question at hand to their scenarios.
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GLOSSARY

BUR Biomass use rate

BU Biomass usage

ESBP Estimated sustainable biomass potential

MD Material demand

MU Material use

NIC New installed capacity

BPR Battery production ratio

BCI Battery capacity installed

BPC Battery production capacity

CMR Critical material ratio

CMU Cumulative material use

CMRe Critical material reserve

ΔC Average annual added capacity

IC Installed capacity

G Average annual growth rate

ICtGDP Investment costs to GDP

I_Cost Investment costs

GDP Gross Domestic Product

EEI Electricity emission intensity

EG Electricity generation

η Efficiency of generation technologies

EF Emission factor

D Electricity demand

SEI Sectoral emissions intensity

SED Sectoral electricity demand

i Share of the electrified sector

SD Final sectoral demand

ID Import dependency

NI Net import

ED Export dependency

NE Net export

R Reserves

L Maximum hourly demand

LU Land use

CD Capacity density

LA Land area

p Phase out rate

E Produced energy

RtCC Running-to-Capital Costs ratio

RC Running costs

CC Capital costs

corr Correlation factor

Xg Ratio of decentralised/centralised generation over the total generation

Xd Ratio of decentralised/centralised electricity demand over the total
electricity demand

Xs Ratio of decentralised/centralised energy storage volume over the total
energy storage volume

S Total energy storage volume

Xt Ratio between centralised cross-regional trade and the total electricity
generation.

T Cross-regional trade

r region

y year

u basic materials

t technology

tt transmission technology

cm critical material

c country

h hour

d day

n,m indexes for different time periods

a parameter used to tune the correlation between daily load and reserve
requirements

b parameter used to tune the correlation between daily load and reserve
requirements
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