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The orderly deregulation of planned electricity generation and consumption is an important
measure for electricity market reform in several countries (such as China), and a reasonable
proportion of planned electricity in the total energy consumption is conducive to the
smooth transition from the regulation mode to the market mode. Under the plan-market
double-track mechanism (PMDM) implemented, a modified linear bidding function of
generation companies (GCs) is first proposed, and the unified clearing price of unilateral
generation market is determined accordingly. Second, considering the robust bidding
strategies of generation companies, a bi-level optimal planned electricity allocation model
for power exchange (PX) is constructed. In the upper level, the proportion of planned
electricity is optimized by PX tominimize the CVaR of Lerner Index (LI), so as tomaintain the
market power at a low level. In the lower level, based on the robust optimization theory and
the prediction of rival bidding, the bidding strategy of a GC is optimized by solving a
specified max–min problem. Simulations based on data from a provincial electricity market
in China illustrate that the market power can be reduced through a reasonable proportion
of planned electricity designed by the PX. In addition, when more GCs tend to avoid a
market risk, the proportion of planned electricity can be increased accordingly.

Keywords: plan-market double-track mechanism, planned electricity, conditional value at risk, robust optimization,
lerner index

INTRODUCTION

Electricity market reform is a task that many countries are facing or will face, the key point of which is
to ensure the smooth transition from regulation to deregulation (National Development and Reform
Commission National Energy Administration, 2017). In the past, due to low load demand and low
risk of reform at the initial stage of electricity market construction, it took only a short time for many
countries or regions to complete the transition, and the liberalization of these electricity markets is
achieved by gradually easing market access. For example, it took only 5 months for ERCOT
electricity market in Texas, the United States, to realize the transition from the pilot stage to the
full liberalization of electricity market users (Sioshansi, 2013). All eligible users are allowed to
participate in the transaction at the early stage of electricity market reform in Norway, which is the
predecessor of Nord Pool (Woo et al., 2003). However, the rapid liberalization of the electricity
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market may also lead to many problems in the early stage of
electricity market reform. Among them, the market power issue is
themost concern of the PX. For example, the rotational and large-
scale blackouts in California from 2000 to 2001, which led to
direct economic losses of as much as US $40 billion, were partly
caused by GCs using market power to manipulate market prices
(Budhraja, 2001). In 2006, the economic withholding of GCs in
the capacity market in New York caused a total loss of US $160
million (Antitrust, 2010). Even in a period of low load demand
and little influence of market power, huge economic losses have
been caused by the rapid liberalization of market. Nowadays,
electricity market reform is underway in China and the load
demand is much higher than 20 years ago, thus it is necessary to
pay more attention to the market power in the transition from the
regulation mode to the market mode.

Electricity market reform had been carried out in some areas
of China several years ago. For example, the generation side
market bidding transaction was implemented in Northeast China
in the last electricity market reform. However, because of the full
liberalization of market in the early stage of the reform, the
generation and consumption plans are highly mismatching. In
May 2006, Northeast Power Grid Company lost a total of 3.2
billion CNY within 16 days as GCs improved their bidding price
together (International Energy Agency, 2006). Therefore, in the
current electricity market reform, in order to ensure the stability
of the market, China gradually allows users to participate in the
electricity market according to the voltage level or annual
electricity consumption, which is similar to the mode of the
British electricity market reform (Sioshansi, 2013). The plan-
market double-track mechanism (PMDM) is put forward in the
electricity market reform since 2016, which means that only some
of the qualified electricity users participate in the market, and
correspondingly, GCs have both planned electricity and market
electricity. The PMDM is also an effective mechanism that can be
used in electricity market reforms for other countries. The key
task of PMDM is to determine the reasonable proportion of
planned electricity in total consumption.

Under this background, an appropriate method to determine
the proportion of planned electricity in total electricity
consumption is needed by PX, so as to set the market access
conditions and ensure the smooth progress of electricity market
reform. In a study by Jiang et al. (2004), the economic allocation
of planned electricity and market electricity is realized
considering the unit operation and network congestion
constraints. In a study by Sun et al. (2020), an intraday
planned electricity rolling model aiming at fairness is
established to deal with the uncertainty of wind power
generation. Obviously, the existing researches focus on the
allocation and scheduling of planned and market electricity for
specified units in time series, but few on the proportion of
planned electricity in the total consumption. Therefore, to
make up for the lack of previous research, an optimal planned
electricity allocation model for PX is established, with the bidding
strategy of GCs under PMDM considered.

The bidding strategy of generators has been studied. In the
study by Bompard et al. (2008), the optimal bidding strategy of
generators is obtained by analyzing the residual demand curve,

and the stable state of the market is studied by iteration. In the
study by Park et al. (2001), the bidding behaviors of generators
under complete information market is modeled and analyzed
based on the Nash equilibrium game theory. In other studies,
probability statistics or fuzzy mathematics are introduced to
model the uncertainty of market price and rival biddings, so
as to optimize the bidding strategy of GCs. In a study byWen and
David (2001), the linear bidding model of generators under
incomplete information is constructed, and the prediction of
competitors’ bidding strategies is simulated by the probability
density function of joint normal distribution. In a study by Ansari
and Rahimi-Kian (2015), considering the uncertainty of market
demand, a bidding model of generators is established which takes
variance of profit as the risk measurement. In the study by
Pousinho et al. (2013), the prediction of market demand and
competitors’ bidding strategies is reflected by the residual
demand curve in multi-scenarios, and the conditional value at
risk is used to measure the profit risk of market, and then the
sectional bidding model of generators is constructed. The bidding
model of microgrid based on robust optimization is constructed
in the study by Liu et al. (2016), and the uncertainty of its own
output and market price is simulated by the scenario based on
prediction data. However, the bidding strategies of GCs are
influenced by the planned electricity under PMDM. In order
to model the bidding behavior of GCs under the special market
mechanism, amodified linear bidding function is proposed in this
study, and an optimal bidding strategy model of power
generation companies based on robust optimization is further
constructed.

The contributions of this work are presented as follows:

(1) The optimal planned electricity allocation model for PX is built
in the study to formulate a reasonable proportion of planned
electricity in total consumption, so as to reduce the risk of
transition from regulation to deregulation. Considering that the
existing studies rarely focus on the proportion of planned
electricity and related market power issues in the transition
of electricitymarket, this study provides effective support for the
PX to operate the market.

(2) A modified linear bidding function of generators is proposed
in the study due to the traditional linear bidding function is
not suitable for PMDM. By comparison, since the impact of
planned electricity is considered, the bidding strategies of
GCs under PMDM are better reflected by the modified linear
bidding function, which further supports PX to determine
the proportion of planned electricity.

The rest of this article is as follows. The modified linear
bidding function of generators is analyzed in Modified Linear
Bidding Function of Generation Companies under Plan-Market
Double-Track Mechanism. The planned electricity allocation bi-
level model for PX is constructed in Bi-level Optimal Planned
Electricity Allocation Model Considering Generation Companies’
Robust Bidding Strategies. The effectiveness of the model is
analyzed by the market data of a province in China in Case
Study, and the main research results of the study are summarized
in Conclusion.
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MODIFIED LINEAR BIDDING FUNCTION OF
GENERATION COMPANIES UNDER
PLAN-MARKET DOUBLE-TRACK
MECHANISM

Under PMDM in China, the total electricity generation is divided
into planned electricity and market electricity by PX, planned
electricity is allocated according to the generation capacity of GCs
and settled at regulated prices, while the market-oriented
generation is allocated according to the bidding of each
generating unit. The market electricity on the consumption
side is determined by the types of electricity users and market
access conditions of each province. For example, in 2017, it was
only large industrial enterprises with annual electricity
consumption of more than 80 million kWh, commercial users
with consumption of more than 50 million kWh, and some
designated enterprises or users that were allowed to participate
in the electricity market in the Guangdong Province of China
(Guangdong Economic and Information Commission et al.,
2017); and in 2020, industrial/commercial enterprises with
annual electricity consumption of more than four million
kWh are allowed to participate in the transaction (Guangdong
Electric Power Exchange Center Co., Ltd, 2020). Let QP and QM

represent planned electricity and market electricity, respectively.
Thus, the total electricity consumptionQU is expressed as follows:

QU � QP + QM . (1)

The planned electricity for the year Y + 1 is announced by PX
at the end of the year Y and allocated to GCs according to the
ratio of the generation capacity. After allocation, GCs participate
in the electricity market of the year Y + 1 based on their residual
generation capacity. Therefore, in order to give priority to
meeting the planned demand for electricity, part of the
capacity of GCs in a certain period of time is occupied, and
the rest is involved in market transactions. Considering the
increasing marginal generation cost of units, the occupied
capacity will increase the cost of the market electricity of GC,
which should be fully considered in market bidding.

Generally, quadratic function is introduced to model the
relationship between generation cost and generation capacity,
and expressed as follows (Dagoumas, 2019):

Ci � 1
2
aiQi + biQi + ci, (2)

where ai, bi, and ci represent the inherent generation cost
coefficients of the GC i, which can be obtained by fitting the
historical data. Qi represents the total generation of the GC i.
Then, the marginal generation cost CM

i can be obtained by
deriving the generation cost of the GC i, and expressed as follows:

CM
i � aiQi + bi, (3)

Linear bidding function is a common form of cost-based
bidding strategy for GCs, which can be expressed as follows:

Pbid,nor
i � knori Qi + bi, (4)

where bi is the fixed generation cost coefficient. knori is the
optimization variable; each different knori represents a bidding
strategy for generation company i.

The marginal generation cost of GC is positively related to
the total generation, and planned electricity increases the
marginal cost of the market electricity, which is not
considered in the bidding function in Eq. 4. Let Qi

represents the maximum generation capacity of the GC i
and QP

i represents the planned electricity of the GC i, then
the latter can be expressed as follows:

Qp
i � Qp Qi

∑n
j�1

Qj

,
(5)

where n is the total number of GCs.
As shown in Figure 1, the bidding function curve of GCs

(in green) is higher than the marginal generation cost (in
yellow) without planned electricity. But under PMDM in
China, as part of the generating capacity of GCs is occupied
by the planned electricity, and the traditional linear bidding
function (in blue) of GCs is lower than the marginal
generation cost within a certain range (i.e., the shadow
part). For rational GCs, the linear bidding function under
PMDM should be modified, as shown by the red curve in
Figure 1. On the premise that the allocated planned
electricity is known to GC in advance, its quotation in the
market will be higher than or equal to the corresponding
marginal cost. Thus, the modified bidding function can be
expressed as follows:

Pbid,p
i � kpi (Qi − QP

i ) + aiQ
P
i + bi , kpi ≥ ai, (6)

where Pbid,p
i is the bidding function of the GC i. kpi is the modified

quotation coefficient. aiQP
i represents the marginal generation

cost increment resulting from the allocated planned electricity.
For a generation side quotation market with n generation

companies, the unified clearing price PMCP can be expressed as
follows:

PMCP � kpi Q
M
i + aiQ

P
i + bi , i � 1, 2,/, n. (7)

Here, QM
i is the market electricity of GC i, which meets the

following equation:

∑n
i�1

QM
i � QM . (8)

By solving the Eqs 1, 5, 7, and 8 simultaneously, the unified
clearing price of the electricity market under PMDM is obtained,
which can be expressed as follows (Wen and David, 2001):

PMCP �
QU − QP + ∑n

i�1

aiQiQP+bi∑n
j�1

Qj

kpi ∑n
j�1

Qj

∑n
i�1

1
kpi

. (9)
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THE BI-LEVEL OPTIMAL PLANNED
ELECTRICITY ALLOCATION MODEL
CONSIDERINGGENERATIONCOMPANIES’
ROBUST BIDDING STRATEGIES

In order to ensure the stable operation of the electricity market in
reform, it is important to allocate planned electricity and market

electricity reasonably. The impact of the planned electricity on the
market behavior of GCs should be fully considered by PX when
determining the planned electricity. Under this background, a bi-
level model of planned electricity allocation considering the
robust bidding strategy of GCs is constructed in this section,
and the schematic diagram of the model is shown in Figure 2. In
the upper level, the planned electricity is optimized by PX to
minimize the CVaR of Lerner index in multiple scenarios,

FIGURE 1 | The bidding function of GCs under the PMDM.

FIGURE 2 | Schematic diagram of the bi-level model of planned electricity allocation.
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considering the uncertainty of the load demand. In the lower
level, the bidding coefficient is optimized by GCs to maximize the
robust profit under a certain confidence level considering the
uncertainty of the competitors’ bidding strategies. The decision
variable of the upper level model will affect the earnings of GCs in
the lower level model, which in turn affect their bidding strategies;
the bidding strategies of GCs determine the price of the market,
which affects the Lerner index in the upper target function. More
details on the objectives and variables of the upper and lower level
models are presented in Robust Bidding Strategies and The Lower
Level Model: An Optimal GC’s Bidding Strategy Model Based on
Robust Optimization Theory and The Upper Level Model: Optimal
Planned Electricity Allocation Model Based on CVaR, respectively.

Bi-level nonlinear optimization is a relatively complex
optimization problem. Common solving algorithms include
the penalty method by Dault and Shanker (2015), tabu search
by Wu and Soto (2020), the genetic algorithm by Silva et al.
(2019), the neural network by Zarco and Froese (2018)., etc. The
proportion of planned electricity consumption is related to user
structure, while the latter is related tomarket access conditions. In
fact, the relevant parameters of market access conditions are
usually discrete points in a limited range, so that the solution of
the model does not need to be globally optimal and accurate. The
genetic algorithm (GA) has good global search capability, and it is
suitable for solving the optimal planned electricity. Thus, in this
study, GA is used to solve the upper level model and the fmincon
function in MATLAB is used to solve the lower level model.

The Lower Level Model: An Optimal
Generation Companies Bidding Strategy
Model Based on Robust Optimization
Theory
With the implementation of PMDM, the revenue of GCs includes
planned electricity revenue and market electricity revenue. The
planned electricity and the corresponding regulated price are
determined in advance in the previous year, while the market
electricity quantity and the unified price are obtained according
to the clearing results of the electricity market. The revenue of GC
i under PMDM can be expressed as follows:

Ri � RP
i + RM

i − Ci, (10)

RP
i � QP

i P
P, (11)

RM
i � QM

i P
MCP. (12)

Here, RP
i and R

M
i represent the electricity sales revenue of planned

electricity and market electricity, respectively. PP is the regulated
price of planned electricity that is estimated by the government
and fixed during a settlement cycle.

In fact, the bidding strategies of GCs is carried out in a market
with limited information. The bidding coefficients of other
companies are unknown to a particular GC, but the
uncertainty set of their bidding coefficients can be calculated
based on the historical bidding data. For GC i, the predicted
uncertainty set of its rival’s quotation coefficient is [klowi , khighi ].

Due to the uncertainty of competitors’ bidding, the market
quotation of power generation companies is a kind of risk

decision. According to the robust optimization theory, risk-averse
GCs are usually more concerned about the highest revenue they can
earn in the worst case while meeting a certain degree of confidence
conditions in the decision-making (Annamraju and Nandiraju,
2019). The theory has been applied in many fields such as power
system planning (Chowdhury et al. 2020) and dispatching (Choi et al.
2018). Based on robust optimization theory, the model is established
to maximize the lowest possible profit RRB

i (kpi ), and the objective
function can be expressed as follows:

max RRB
i (kpi ) � min Ri(kpi , k̂i), (13)

where the decision variable kpi represents the bidding coefficient
of the GC i. The random variable k̂i represents the uncertain
counterparty’s bidding strategy.

In order to solve the problem, ψi(kpi , α) is defined as the
probability that the GC’s profit is not less than a certain critical
value α, and expressed as follows:

ψi(kpi , α) � ∫
Ri(kpi ,k̂i)≥ α

p(k̂i)dk̂i, (14)

where p(k̂i) is the probability density function of competitor’s
bidding coefficient. According to robust optimization theory,
RRB
i (kpi ) can be obtained by solving the following models

(Zhang et al., 2020):

max α, (15)

s.t. ψi(kpi , α)≥ ε. (16)

Here, ε is a given confidence level.
In addition, the constraints of the bidding model of GCs are as

follows:

0≤QM
i ≤Qi − QP

i , i � 1, 2,/, n. (17)

The Upper Level Model: An Optimal Planned
Electricity Allocation Model Based on CVaR
As a nonprofit organization, the goal of PX is to improve social benefits
through reasonable planned electricity allocation. In an immature
electricity market, due to the oligopoly of the generation side, some
generation companies may have great market power. Therefore,
market power supervision is one of the key tasks for PX to
promote the reform of electricity market (Hakam et al., 2020).

The commonly used market power indicators include the
Herfindahl–Hirschman index (HHI), must run ratio (MRR),
the Lerner index (LI), etc. HHI and MRR are static index
which reflect the capacity concentration of the market
participants (Hajiabadi and Samadi 2019) and the possibility
of market power based on market share (Wang et al. 2004),
respectively. By contrast, LI reflects the degree of market
monopoly by measuring the deviation between market clearing
price and marginal cost, and is a market power index used to
analyze the performance of electricity market afterward (Razmi
et al., 2021). Therefore, LI is used to reflect the market power
under PMDM in this section.
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Considering that the LI of the market is influenced by the
load demand, the load on the user side is assumed to obey the
normal distribution N (μ, σ2) in this study. The scenario set S
of load demand can be obtained by sampling user load through
quantiles of normal distribution (Soranzo and Epure, 2014), as
shown in Figure 3. The median of two quantiles is taken as the
sampling value and the shadow area is the probability of the
sampling value.

Because the load demand is uncertain, LI is subject to a
probability distribution rather than a certain value.
Furthermore, as the market power cannot be avoided, the LI
in adverse conditions is more concerned by PX than the
expectation of LI. CVaR measures the average loss when the
loss exceeds the value at risk (VaR) in a certain confidence level.
For the PX, CVaR of the LI indicates the expected value when the
LI is higher than the critical value (Yin and Zhao, 2018).
Therefore, the objective function of the upper model is to
minimize the CVaR of LI, and expressed as follows:

min ICVaR(c) � ∑
Ls > IVaR(c),s ∈ S

πsLs, (18)

where πs is the probability of scenario s. ICVaR(c) and IVaR(c)
represent the CVaR and the VaR of LI in confidence level c,
respectively. Ls is the LI in scenario s, which can be expressed as
follows:

Ls � Ps − CM
s

Ps
, (19)

Ps � QPPP + QM
s P

MCP
s

QU
s

, (20)

CM
s �

∑n
i�1

QiCM
i,s

∑n
i�1

Qi

. (21)

Here, Ps and CM
s represent the average electricity price and the

average marginal cost of GCs in scenario s, respectively. PMCP
s is

the unified market clearing price in scenario s. CM
i,s is the marginal

generation cost of GC i in scenario s. QU
s and QM

s represent the
total electricity demand and market electricity demand on the
user side in scenario s, respectively.

The constraint of the planned electricity allocation model is
the upper and lower limit of the electricity, which can be
expressed as follows:

0≤QP ≤min
s ∈ S

{QU
s }. (22)

CASE STUDY

The data of a provincial electricity market in China are served for
demonstrating the proposed planned electricity allocation model
for PX. The generation cost and bidding parameters of the five
major large power generation companies in the province are
shown in Table 1. The original planned electricity in the province
is set at 250 billion kWh, and the regulated price of planned
electricity generation is 0.384 CNY/kWh. The normal
distribution obeyed by load demand is N (300,225). The
confidence level ε and c are 0.9 and 0.8, respectively.

FIGURE 3 | The method of sample user load based on normal distribution quantile.

TABLE 1 | Generation costs and bidding parameters.

Name of GC Qi (billion kWh) ai bi ci [klow
i , khigh

i ]

HN 20 0.073 307 1,000 [0.021, 0.063]
DT 50 0.064 286 5,000 [0.022, 0.068]
GT 75 0.057 271 9,000 [0.024, 0.072]
GD 100 0.048 264 14,000 [0.025, 0.075]
WN 125 0.039 258 18,000 [0.027, 0.081]

The optimization results of the bi-level planned electricity allocation model.
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By solving the above bi-level model, the optimal planned
electricity allocation is 93 billion kWh (the proportion is about
31%). Compared with original planned electricity (250 billion
kWh), the CVaR of LI decreases from 0.2015 to 0.1344, that is, a
decrease of 33.3%. The LI of electricity market under different
load demand is shown in Figure 4, and the LI is obviously
decreased after optimization. The main reason for the decrease of
LI is the reduction of average electricity price. As the regulated
price of planned electricity is much higher than that of the
market, the reduction of planned electricity means the
decrease of the average electricity price. However, as can be
inferred from Eq. 9, when the market electricity increases, the
supply and demand ratio decreases and the market unified
clearing price increases correspondingly, which leads to a
higher LI. Therefore, it is necessary to maintain a certain
amount of planned electricity under a given constant supply
side conditions.

For the 5 GCs, when the planned electricity is 250 billion kWh
and the load demand is equal to the expected value of 300 billion
kWh, their market electricity are 3.95 billion kWh, 25.67 billion
kWh, 40.78 billion kWh, 58.20 billion kWh, and 74.27 billion
kWh, respectively. It can be seen from the Figure 5A that the
market electricity shares of generation companies HN, GD, GT,
DT, and HN are 3.4, 6.0, 14.7, 28.9, and 46.4%, respectively, and
the shares allocated in proportion to their maximum generation
capacity are 5.4, 13.5, 20.3, 27.0, and 33.8%, respectively. The
market shares of HN, GD, and GT are less than their maximum
generation shares, while the market electricity shares of DT and
HN are higher than that of maximum generation. This is mainly
because the market share of each GCs is determined by their cost-
based bidding strategies. The larger the generation scale of the
company, the smaller the power generation cost and the bidding
coefficient, and the stronger its competitiveness in the electricity
market. As a result, GCs with larger capacity can gain more

FIGURE 4 | The Lerner Index of electricity market in actual situation and after optimization.

FIGURE 5 | The market shares and maximum generation shares of GCs: (A) in actual situation; (B) after optimization.

Frontiers in Energy Research | www.frontiersin.org June 2021 | Volume 9 | Article 6793657

He et al. Planned Electricity Allocation Model

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


market electricity than small GCs, which improves the
market power.

The market share of each GC under the optimized proportion
of planned electricity is shown in Figure 5B. By comparison, it
can be found that in the case of optimized planned electricity
allocation, the GCs acquired reasonable market share based on
maximum generation share. When planned electricity is 250
billion kWh and market electricity is low, most of the market
electricity is won by low-cost companies. On the other hand,
when the market electricity is high, the market electricity of large
GCs is limited by the increasing generation costs. Take the
generation company WN as an example, the market share
decreases from 46.4 to 37.4%, which shows that the
optimization result of the bi-level model can effectively reduce
the excessive market share of large-scale GCs and significantly
decrease the market power.

The annual electricity consumption of various users of this
province is shown in Table 2. In the original situation (the
planned electricity is 250 billion kWh), some of the large
industrial enterprises, general industrial enterprises, and
commercial users are accessed to the electricity market
according to their voltage level or annual electricity
consumption. The market access conditions and the lists of
market users are decided by PX. In order to reduce the
planned electricity from 250 billion kWh to 93 billion kWh,
the market access conditions should be changed correspondingly.
For example, when industrial enterprises and commercial users
with consumption of more than five million kWh are allowed to
participate in the electricity market, the total consumption
accessed in the market is about 190 billion kWh and the
planned electricity is about 110 billion kWh which is close to
the optimal result of the model. As for the generation side, PX
only needs to reduce GCs’ planned electricity.

There are two uncertain factors in the bi-level model
constructed in this study, that is, the uncertain load demand
in the upper model and the uncertain bidding coefficients of
competitors in the lower model. In the upper model, the
uncertainty of load demand is represented by the standard
deviation of the normal distribution, the greater the standard
deviation, the greater the uncertainty of load. The relationship
among the optimal allocation of planned electricity, the CVaR of
LI, and the uncertainty of load is shown in Figure 6. It can be seen

from Figure 6 that both the quantity of the planned electricity
and the CVaR of LI are proportional to the standard deviation.
When the standard deviation of load forecast is five billion kWh,
the optimal planned electricity is 63.2 billion kWh and the CVaR
of LI is 0.1270. Both of them are the least among five standard
deviations. This is mainly because the CVaR of LI measures the
expectation of LI when it exceeds the critical value. The smaller
the volatility of the load demand is, the more stable the LI of the
market is, and the smaller the CVaR value is.

In the lower level model, the uncertainty of generation
companies’ bidding strategies can be reflected by the interval
size of competitors’ bidding coefficient. The larger the interval,
the greater the uncertainty of the bidding coefficient. Taking
generation companyWN as an example, the relationship between
its bidding coefficient and the uncertain of rival bidding strategy
is shown in Figure 7with planned electricity set at 93 billion kWh
and the load demand set at 300 billion kWh. It can be seen from
Figure 7 that the bidding coefficient is inversely proportional to
the uncertainty of rival bidding strategy. When the predicted
interval of rival bidding coefficient is 0.037 and 0.071, the bidding
coefficient of WN is 0.0831 and the LI is 0.1287. When the
predicted interval is 0.017 and 0.091 whose size is the largest, the
bidding coefficient of WN is least (0.0676) and the corresponding
LI is also the smallest (0.1238). The main reason is that GCs aim
to maximize their revenue in the worst case. Thus, the more
uncertain the rival bidding strategy is, the greater the fluctuation
range of GC revenue is, and the lower the revenue in the worst
case is, which makes GCs more inclined to adopt bidding
strategies close to the cost.

The Influence of the Risk Aversion Degree
of Generation Companies on Optimal
Planned Electricity Allocation
The confidence level ε in the lower level model indicates the risk
aversion degree of GCs. The larger the ε, the higher the degree of
risk aversion of GCs. Figure 8 shows the optimal allocation
results of planned electricity under different risk aversion degrees
of GCs, and Table 3 shows the market clearing results and LI
under the corresponding optimal planned electricity allocation. It
can be seen from Figure 8 that the higher the risk aversion degree
of GCs is, the lower the allocation value of planned electricity is,

TABLE 2 | The annual electricity consumption and market electricity of various users.

Electricity user Annual electricity
consumption
(billion kWh)

The consumption
accessed

in the market
(billion kWh)

The market access conditions

Large industrial
enterprises

123.53 31.47 The voltage level is above 10kV and the annual electricity consumption is above
50 million kWh

General industrial
enterprises

43.24 3.9

Commercial users 45.07 4.63
Resident 55.26 0 Not allowed
Others 22.9 0 Not allowed

The influence of uncertainty of load and rival bidding strategy on optimal planned electricity allocation.
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FIGURE 6 | The relationship between optimization results and uncertainty of load demand.

FIGURE 7 | The relationship between the bidding strategy of generation company WN and the uncertainty of rival bidding.

FIGURE 8 | Optimal allocation of planned electricity under different risk aversion degrees of GCs.
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and the smaller the CVaR of LI is. GCs who tend to avoid risk are
willing to adopt conservative bidding strategies with low-bidding
coefficients. According to Table 3, as ε increases from 0.84 to
0.96, the unified clearing price decreases from 0.3267°CNY/kWh
to 0.3131°CNY/kWh, and the LI decreases from 0.1331 to 0.1198,
that is, a decrease of 10.0%. For PX, its objective function is to
minimize the CVaR of the LI. The decline of market clearing price
enables the PX to allocate more market electricity, reducing the
optimal allocation value of planned electricity.

CONCLUSION

An optimal planned electricity allocation model considering the
robust bidding strategy of GCs is constructed under PMDM for
PX to determine the proportion of planned electricity in the total
energy consumption. The Lerner Index is used to reflect the level
of market power. The impact of planned electricity on the market
electricity generation cost of GCs under PMDM is considered in
the lower level model. Considering the bidding strategies of GCs,
the planned electricity quantity is optimized in the upper level
model with the objective of minimizing the CVaR of LI. The
validity of the model is analyzed by taking the market data of a
province in China and the main conclusions are as follows:

1) The market power in the electricity market is effectively
decreased under the optimization results of the proposed

model. PX can reduce market power by setting a
reasonable proportion of planned electricity.

2) The optimal planned electricity decreases with the reduction
of the uncertainty of the load demand. PX should improve the
load forecasting accuracy and avoid reducing the planned
electricity when the load demand fluctuates greatly.

3) Themarket power is related to the risk aversion degree of GCs.
The more the GCs tend to avoid market risks, the lower the
market power. For PX, it is necessary to evaluate the risk
aversion degree of GCs in the process of orderly deregulation
of planned electricity generation and consumption.

In the future, the research on the bidding strategies of GCs or the
market methods of PX can bemore complicated and comprehensive.
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