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Lignin and hemicellulose structures in cellulosic materials serve as a barrier for enzyme
reactions. A pretreatment step is often needed to break these components to allow the
biomass to be utilized as a source of value-added products. Various available pretreatment
methods possess common drawbacks of the high amount of liquid and chemical
requirements, harsh process conditions, and the high amount of waste produced,
which driving up the production costs of bioproducts. Low moisture anhydrous
ammonia (LMAA) pretreatment capable of eliminating those drawbacks. In this study,
Distillers Dried Grains with Solubles (DDGS), corn gluten feed (CGF), corn fiber (CF), and oil
palm frond (OPF) with different moisture contents were subjected to LMAA pretreatment at
the specific ammonia loading rate, 1 h ammoniation, and 75°C incubation temperature.
This pretreatment successfully decreased the lignin content of the materials, increased
their percentage of α-cellulose, and improved enzymatic digestibility for most of the
materials tested. The effect of moisture content (30 and 50% db) was found to be
more significant than that of incubation time (24 and 72 h).

Keywords: lignocellulose, biomas, LMAA pretreatment, ammonia, biorefinery and biofuel, bioproducts,
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INTRODUCTION

Pretreatment is a crucial step in any type of lignocellulosic-based bioproduct production. Through
pretreatment, the recalcitrant structure of lignocellulosic materials is loosened and disrupted, thus
enhancing enzyme penetration and hydrolysis of the biomass crystalline backbone structure.
However, pretreatment has also been found to potentially increase the production cost of the
lignocellulosic-based bioproducts, either because of the cost of intensive processing or the amount of
chemicals required. Conventional pretreatment methods such as chemical and mechanical
pretreatment essentially require high chemical loading, high energy consumption, a large
amount of water, and a need for waste treatment. Other pretreatment approaches have been
developed to eliminate these drawbacks; one of them, physicochemical pretreatment, combines the
advantages of chemical pretreatment and physical pretreatment. Typical physical pretreatment
would require an energy cost of approximately >20% of operating cost (Baruah et al., 2018).
Nuruddin et al. (2016) highlighted that the tandem operation of physical and chemical pretreatment
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could significantly reduce the energy cost from the reduction of
intensity of each single pretreatment (Nuruddin et al., 2016).
Chemical pretreatment incurs not only high operating cost from
the large volume of chemical used and waste produced, formation
of undesired inhibitor compounds and severe cellulose
degradation but also from high capital cost due to high
corrosion level of equipment as in acid pretreatment (Taylor
et al., 2019; Stoklosa et al., 2021). Therefore, physicochemical
pretreatment is seen as a viable way to increase the value of some
underutilized materials.

Ammonia-based physicochemical pretreatments have been
among those most explored by researchers because of the
attractive properties of ammonia (NH3) as a pretreatment agent,
including the effects of swelling, delignification, and preservation (Li
andKim, 2011; Yoo et al., 2011). Among these pretreatmentmethods
include ammonia fiber explosion (AFEX), ammonia recycle
percolation (ARP), and low liquid ammonia (LLA) pretreatment.
These pretreatments still require either high consumption of energy
or liquids, thus are not considered feasible for commercial
application. AFEX, ARP and LLA run at approximately 60–120,
150–210, and 30°C, respectively. While the high amount of water
washing requirement is essential to reduce the alkalinity of the
materials, which will then generate a large sum of wastewater in
addition to the use of aqueous pretreatment chemical itself (Kim et al.,
2016). Not long ago, low moisture anhydrous ammonia (LMAA)
pretreatment was introduced, which employs gaseous ammonia
(NH3) as the pretreatment agent at nearly ambient operating
conditions (Yoo et al., 2011). The use of gaseous NH3 results in a
substantial reduction of liquid requirements and also since it is gas, it
could easily be removed from thematerials with the aid of vacuum or
slight increase in temperature, eliminating the need for additional
water washing step to remove the residual NH3. The study on LMAA
pretreatment is still limited with most works focused on specific
biomass such as corn stover (Yoo et al., 2011; Cheng and Rosentrater,
2016; Guo et al., 2017; Yang and Rosentrater, 2017), sweet sorghum
bagasse (Stoklosa et al., 2021), ryegrass (Yasuda et al., 2015) and
napiergrass (Yasuda et al., 2013), limiting the feasibility evaluation for
its wider application. Regardless, LMAA pretreatment of corn stover
has yielded promising results in a large scale reactor, suggesting the
possibility of effectively using LMAA pretreatment for larger-scale
application (Cheng and Rosentrater, 2016; Yang and Rosentrater,
2017).

This study subjected distillers dried grains with solubles
(DDGS), corn gluten feed (CGF), corn fiber (CF), and oil
palm fronds (OPF), which are undervalued and underutilized
materials, to the LMAA pretreatment process. DDGS, CGF, and
CF are generated in abundance from corn processing plants as co-
products and currently have relatively low economic value. The
current market for these materials is primarily in animal feed
manufacturing and only a small proportion as low-cost food
additives. In 2019–2020, U.S. DDGS and CGF exports were down
by 7 and 26% respectively compared to the previous year
(Richman, 2021). CF is often mixed with corn gluten feed
therefore rarely been exported. Similarly, oil palm fronds
(OPF) are abundantly generated throughout the year in palm
oil plantation areas. In Malaysia, between 44 and 51 × 106 t of
OPF is annually produced (Goh et al., 2010; Awalludin et al.,

2015), with the amount higher during replanting periods. There is
no current commercial application of OPF. Attempts to utilize it
in ruminants feed production and wood manufacturing did not
yield promising results (Bals et al., 2006).

Revenues from these materials are not comparable to those of
the primary manufacturing products, i.e., ethanol from corn wet
and dry milling, and oil from palm oil mills. The growth of the
palm oil industry has resulted in continuous generation of OPF
(Ooi et al., 2017; Rizal et al., 2018), and the relatively slow current
ethanol market (2020) has resulted in a greater desire of corn
processing industries to increase their co-products value and
market (Cooper et al., 2021).

The similarity of these materials is the high content of non-
fermentable polysaccharides (cellulose, and hemicellulose), which is
of important polymer feedstock for biorefinery and other bio-based
structural product. The LMAA pretreatment has the potential to
make these polysaccharides more available by removal or disruption
of the recalcitrant lignin. It is important to ensure that the utilization
of these waste materials to be at the lowest economic effect possible to
increase the whole life-cycle value of the primary product. Hence, this
study proposed a way to utilize such co-products and other waste
materials in a possibly lower-cost approach using LMAA
pretreatment (Mahmud and Rosentrater, 2020). The study focused
on investigating the effects of LMAA pretreatment on DDGS, CGF,
CF, and OPF. The efficiencies of LMAA pretreatment were evaluated
in terms of the reduction in lignin content, increase in available
cellulose, and also improvement in the percentage of enzymatic
digestibility, which could indicate its suitability especially for a
biochemical process for generation of higher value compounds.

MATERIALS AND METHODS

Materials
DDGS was obtained from Absolute Energy, L.L.C. (St. Ansgar,
IA, United States), CGF was obtained from Grain Processing
Corporation (Muscatine, IA, United States), and CF was obtained
from Honeyville, Inc. (North Ogden, UT, United States). OPF
was obtained from an oil palm plantation site in Malaysia. OPF
was cleaned, dried, and chopped into 1 cm pieces. The
compositions of each of the raw materials are summarized in
Table 1. The moisture content of all raw materials was
determined according to the NREL LAP standard method
(Sluiter et al., 2008). The moisture content of the raw
materials was adjusted to 30% dry basis (db) and 50% dry
basis (db) by addition of water and steeped for 24 h.

Enzyme
Cellulase enzyme (Celluclast® 1.5 L) used was purchased from
Sigma Aldrich Corp. (St. Louis, MO, United States) with a
determined activity of 65 FPU/ml.

Low Moisture Anhydrous Ammonia
Pretreatment
LMAA pretreatment was conducted in a 0.9 L reactor (Parr
Instrument Co., Moline, IL, United States). Anhydrous
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ammonia (NH3) loading was 0.09 g/g biomass for DDGS, CGF,
and CF, and 0.18 g/g biomass for OPF. This was based on a
previous study, which highlighted that materials with higher
lignin content should be treated with a higher dosage of
ammonia loading (Cheng and Rosentrater, 2016). In this
regard, OPF used in this work contains similar lignin
content compared to corn stover used in their work. NH3 was
introduced into the reactor filled with raw materials while
monitoring the pressure (Figure 1). The reactor was held for
1 h after which the lid was removed in the fume hood for 15 min
to enable evaporation of the NH3. The ammoniated raw
materials were transferred into glass bottle with screw cap
and subjected to incubation at 75°C for 24 and 72 h in a
convection oven. When the incubation process had been
completed, the glass bottle caps were removed for 1 h to allow
surplus NH3 to evaporate. The whole pretreatment procedure
was according to (Cheng and Rosentrater, 2016; Yang and
Rosentrater, 2017).

Compositional Analyses
Holo-, Alpha-, and Hemicellulose Determination
Holocellulose and α-cellulose content of the pretreated samples
were determined using the Wise method (Wise et al., 1946).
Hemicellulose content obtained by subtracting the holocellulose
content with the α-cellulose content.

Lignin and Carbohydrate Determination
Lignin content determination was according to the NREL LAP
standard method (Sluiter et al., 2012). The acid-insoluble lignin
(AIL) content was determined based on a gravimetric method

while the acid-soluble lignin (ASL) content was determined
at 320 nm using Cary 8454 UV/Vis Diode Array
Spectrophotometer (Agilent Technologies, Santa Clara, CA,
United States). Absorptivity at lambda max value (ε) of 30 L/
g cm was used to calculate the percentage of soluble lignin for
all types of raw materials (Noureddini and Byun, 2010;
Nomanbhay et al., 2013). The glucose content was
determined using HPLC equipped with Bio-Rad Aminex
HPX-87H column (Bio-Rad Laboratories, Hercules, CA,
United States), Varian 356-LC refractive index detector
(Varian, Inc., CA, United States), guard column and
autosampler based on the following conditions: injection
volume—10 μl; mobile phase—0.01 N HPLC grade sulfuric
acid; flow rate—0.6 ml/min; column temperature—65°C;
detector temperature—as close as possible the column
temperature; detector—refractive index; run time—20 min. A
set of sugar recovery standards (SRS) was prepared to determine
degradation losses, which is used to compensate for degradation
losses of the samples.

Equations 1–4 were used to calculate the percentage of lignin
and glucose in the sample after hydrolysis, where AIR, acid-
insoluble residue; ODW, oven dry weight; Wt.C, weight of
crucible; Wt.P, weight of protein; V, volume; correction factor
� 0.9. The protein content of each raw materials was assumed at
31.4% (Pedersen et al., 2014), 25.1% (Miron et al., 2001), 9.9%
(Noureddini and Byun, 2010), and 5.3% (Khalil et al., 2012) for
DDGS, CGF, CF, and OPF, respectively.

% AIL � (Wt.C+AIR(g) − Wt.C(g)) − (Wt.C+ash(g) − Wt.C(g)) − Wt.P(g)
ODWsample(g)

× 100

(1)
% ASL � UVabs × Vfiltrate(mL) × Dilution

ε (L/g.cm) × ODWsample (g) × Pathlength (cm) × 100 (2)

% Recovery sugar � Sugar conc.(after hydrolysis)(mg/mL)

Sugar conc.(before hydrolysis)(mg/mL)
× 100 (3)

%Glucose � Sugar conc.(mg/mL) × Correction factor × Vfiltrate (mL)
% recovery sugar × ODWsample(g)

× 100

(4)

Enzymatic Digestibility Test
Enzymatic digestibility test was conducted according to the NREL
LAP standard method (Selig et al., 2008). The cellulase enzyme
loading was 60 FPU/g cellulose. The mixture was incubated at

TABLE 1 | Composition of untreated lignocellulosic biomass used in the study.

Biomass Compositions (%)

α-cellulose Hemicellulose AIL ASL Ash

DDGS 15.33 ± 1.03 39.33 ± 3.14 9.91 ± 2.36 1.19 ± 0.05 8.00 ± 0.00
CGF 26.67 ± 1.03 22.00 ± 0.89 15.56 ± 1.72 2.36 ± 0.19 8.27 ± 0.00
CF 22.67 ± 4.13 41.00 ± 4.98 7.78 ± 0.86 3.17 ± 0.26 2.33 ± 0.00
OPF 49.33 ± 6.77 17.67 ± 4.41 25.60 ± 0.54 0.33 ± 0.01 5.50 ± 0.00

Values are mean of triplicate analysis with ± standard deviation. AIL, acid insoluble lignin; ASL, acid soluble lignin. DDGS, distillers dried grains with solubles; CGF, corn gluten feed; CF,
corn fiber; OPF, oil palm frond; DDGS, distillers dried grains with solubles; CGF, corn gluten feed; CF, corn fiber; OPF, oil palm frond.

FIGURE 1 | Experimental set-up of the LMAA pretreatment.
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50°C and 150 rpm in an incubator shaker (Excella E24 Incubator
Shaker Series, New Brunswick Scientific, Edison, NJ,
United States). Samples were taken at 24 h intervals for up to
120 h. Percentage of digestions were calculated in term of glucan
digestibility based on Eq. 5, where 0.9 is a correction factor for
calculating 6-cabon polymeric sugars from corresponding
monomeric sugars.

% Digestion � Cellulose digested (g)
Cellulose added (g)

× 100 × 0.9 (5)

Non-linear changes in percentage digestibility over time were
modeled by developing a regression trendline using the Hanes-
Woolf approach, where the kinetic rate constants were
determined by linear regression on a time over digestibility
versus time plot.

Experimental Design and Data Analysis
The independent variables tested for each feedstock were
moisture content (30% db and 50% db) and LMAA
incubation time (untreated (UT), 24, and 72 h). Untreated
samples of each feedstock were subjected to the same analyses
and served as a control. The measured dependent variables were
α-cellulose (wt. %), hemicellulose (wt. %), AIL (wt. %), ASL (wt.
%), and glucan contents (wt. %), along with enzymatic
digestibilities percentages. All experimental procedures were
run in triplicate and average data with standard deviation
were presented.

Statistical analyses were conducted using JMP Pro 13.1.0 (SAS
Institute, Cary, NC, United States) statistical software.
Comparisons amongst mean values of results from the
moisture content factor were conducted using paired Student’s
t-test. Tukey’s Honestly Significant Difference (HSD) test was
used for multiple pairwise comparisons amongst mean values of
results from the incubation time factor, as well as the interaction
between factors. The analyses were conducted at α � 0.05.

RESULTS AND DISCUSSIONS

Effect of Moisture Content and Incubation
Time on Biomass Compositions
Variations in incubation time and moisture content have resulted
in different amounts of α-cellulose, hemicellulose, AIL, and ASL
for all types of materials tested. Table 2 summarizes the p-values
of each factor at α � 0.05. Results for main and interaction effects
of factors on materials compositions after LMAA pretreatment
are shown in Tables 3, 4, respectively.

Distillers Dried Grains With Solubles
Incubation time had a significant effect on DDGS compositions
(Table 2). There was no significant difference in the compositions
at the moisture contents tested, suggesting that working at lower
MC will insignificantly affect sample compositions. The results
(mean values) for the main effect (Table 3) and the interaction
effect (Table 4) show that different incubation times resulted in
significant differences in mean values of compositions between

level UT and the others but not always significantly different
between levels 24 and 72, suggesting that 24 h is a sufficient
incubation time for DDGS.

The highest cellulose content recorded was 27.33 wt. % from
30% MC DDGS treated for 24 h (Table 4). Similarly, the same
parameters resulted in no significant differences in the mean of
hemicellulose and AIL, but not for ASL. It could be observed that
cellulose in DDGS was slightly decreased as incubation time
increased to 72 h, suggesting that a longer incubation period
might enhance cellulose degradation, either partially into glucose
or fully into the carbon unit. The latter is undesirable in the
biochemical process because it would decrease the substrate
available for the fermentation process. Results of glucan
content (Figure 2) show that total glucan in the sample was
not decreased, perhaps eliminating the possibility of occurrence
for the latter scenario mentioned above.

Corn Gluten Feed
In CGF, p-values of <0.05 were recorded with respect to a time
factor, indicating that different times resulted in significantly
different compositions. In spite of this, based on the results in
Tables 3, 4, significant differences in compositions were recorded
only between levels UT and 24, and levels UT and 72 but not
always between levels 24 and 72. Varying the MC resulted in no
significant difference in mean values of compositions (except for
α-cellulose content). α-cellulose content in CGF was decreased
after the pretreatment compared to that of untreated samples,

TABLE 2 | p-values of individual and interaction effects after LMAA pretreatmenta.

DDGS

Factor α-cellulose Hemicellulose AIL ASL

MC 0.1116 0.2780 0.9599 0.7453
Time 0.0086 <0.0001 0.0264 <0.0001
MCaTime 0.4217 0.7255 0.8573 0.2644

CGF

Factor α-cellulose Hemicellulose AIL ASL

MC 0.0191 0.1408 0.3538 0.2313
Time 0.0024 <0.0001 0.0001 <0.0001
MCaTime 0.2027 0.4915 0.7657 0.6271

CF

Factor α-cellulose Hemicellulose AIL ASL

MC 0.0482 0.0005 0.5725 0.0013
Time <0.0001 <0.0001 0.0537 0.0570
MCaTime 0.3324 0.0158 0.7202 0.0358

OPF

Factor α-cellulose Hemicellulose AIL ASL

MC 0.2244 0.6510 0.0864 0.0001
Time 0.0338 0.0300 <0.0001 <0.0001
MCaTime 0.6679 0.8740 0.4162 <0.0001
aHo � the mean values of compositions from all factors are not significantly different at α �
0.05. MC, moisture content; Time, incubation time; AIL, acid insoluble lignin; ASL, acid
soluble lignin; DDGS, distillers dried grains with solubles; CGF, corn gluten feed; CF, corn
fiber; OPF, oil palm frond.
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possibly indicating that the pretreatment conditions applied were
too much for CGF, causing degradation of α-cellulose.

Analysis of glucan content (Figure 2) shows a slight reduction
of total glucan in 30% MC CGF, possibly indicating sugar
degradation. This effect was not observed in 50% MC CGF.
Pretreatment conducted on 50% MC CGF recorded a
significantly less α-cellulose degradation than that of 30% MC
CGF. However, the results between 24 and 72 h incubation times
were not significantly different.

Corn Fiber
The effect of MC on CF compositions was more apparent than
those of DDGS and CGF, with a significant difference in the
results except for AIL content. Sample with 50% MC recorded
significantly higher α-cellulose, lower hemicellulose, and lower
ASL. Conversely, there was no statistically significant difference
in mean values of compositions between levels 24 and 72 of the
incubation time, suggesting that 24 h LMAA incubation time
might be sufficient for CF. The α-cellulose content recorded for
50% MC CF treated for 24 h (38 wt. %) were not significantly
different from those of 72 h (39.33 wt. %) (Table 4). Other
compositions exhibited similar trends. There was a statistically

significant interaction between all factors for hemicellulose and
ASL content (Table 2).

Oil Palm Frond
For OPF, there was no significant difference of α-cellulose
recorded for the different MC tested. This was also true for
hemicellulose and AIL content, but not for ASL content. Different
incubation time was mostly giving a significant difference of
results at levels 0 and 24, and between levels 0 and 72, but not
always between levels 24 and 72. Only the mean of ASL content
has recorded a statistically significant interaction between all
factors (Table 2). The cellulose content recorded for 50% MC
OPF treated for 24 h (58 wt. %) was insignificantly different from
those of 72 h (59.33 wt. %), possibly indicating that these
parameters (50% MC and 24 h) are sufficient for LMAA
pretreatment of OPF.

From the results, lower MC (30%) in the DDGS and OPF
was observed to not giving a statistically significant difference
in α-cellulose content after LMAA pretreatment from those for
50% MC biomass, suggesting its suitability for future use. For
CGF and CF, significantly higher α-cellulose content was
recorded at higher MC (50%). According to Yang and

TABLE 3 | Main effects of factors on biomass compositions after LMAA pretreatment. a, b, c these signify significant differences.

DDGS

Factor Levels α-cellulose (wt. %) Hemicellulose (wt. %) AIL (wt. %) ASL (wt. %)

Time (h) UT 15.33 ± 1.03b 39.33 ± 3.14a 9.91 ± 2.36a 1.19 ± 0.05c

24 25.33 ± 4.13a 5.67 ± 4.14b 5.79 ± 3.44ab 1.91 ± 0.08b

72 22.33 ± 7.42ab 9.00 ± 6.49b 4.34 ± 2.69b 2.09 ± 0.08a

MC (% db) 30 22.89 ± 6.48a 16.67 ± 17.36a 6.72 ± 3.66a 1.72 ± 0.42a

50 19.11 ± 5.93a 19.33 ± 15.94a 6.64 ± 3.81a 1.73 ± 0.41a

CGF

Factor Levels α-cellulose (wt. %) Hemicellulose (wt. %) AIL (wt. %) ASL (wt. %)

Time (h) UT 26.67 ± 1.03a 22.00 ± 0.89a 15.56 ± 1.72a 2.36 ± 0.19c

24 20.00 ± 3.79b 4.42 ± 2.89b 6.91 ± 1.88b 3.06 ± 0.14b

72 20.67 ± 4.50b 3.42 ± 2.63b 7.32 ± 3.34b 3.55 ± 0.34a

MC (% db) 30 20.67 ± 4.80b 10.78 ± 8.55a 10.51 ± 4.54a 3.06 ± 0.60a

50 24.22 ± 3.53a 9.11 ± 9.96a 9.35 ± 5.03a 2.92 ± 0.52a

CF

Factor Levels α-cellulose (wt. %) Hemicellulose (wt. %) AIL (wt. %) ASL (wt. %)

Time (h) UT 22.67 ± 4.13b 41.00 ± 4.98a 7.78 ± 0.86a 3.17 ± 0.26a

24 35.00 ± 3.74a 24.33 ± 7.78b 4.99 ± 2.23a 3.41 ± 0.36a

72 36.33 ± 5.13a 17.25 ± 11.68b 4.99 ± 2.23a 3.44 ± 0.29a

MC (% db) 30 29.33 ± 6.40b 32.94 ± 7.84a 5.64 ± 2.23a 3.53 ± 0.31a

50 33.33 ± 8.43a 22.11 ± 15.30b 6.20 ± 2.32a 3.15 ± 0.18b

OPF

Factor Levels α-cellulose (wt. %) Hemicellulose (wt. %) AIL (wt. %) ASL (wt. %)

Time (h) UT 49.33 ± 6.77b 17.67 ± 4.41a 25.60 ± 0.54a 0.33 ± 0.01c

24 56.00 ± 2.83a,b 12.58 ± 4.59a,b 12.10 ± 3.69b 0.55 ± 0.03b

72 57.00 ± 3.52a 8.17 ± 5.53b 11.48 ± 3.82b 0.62 ± 0.13a

MC (% db) 30 52.67 ± 4.90a 12.22 ± 6.80a 17.65 ± 6.31a 0.54 ± 0.18a

50 55.56 ± 6.23a 13.39 ± 5.60a 15.13 ± 8.37a 0.46 ± 0.11b

Values are mean of triplicate analysis with ± standard deviation, and levels not connected by the same letter are significantly different at α � 0.05. MC, moisture content; Time, incubation
time; UT, untreated; AIL, acid insoluble lignin; ASL, acid soluble lignin; DDGS, distillers dried grains with solubles; CGF, corn gluten feed; CF, corn fiber; OPF, oil palm frond. a, b, c these
signify significant differences.
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Rosentrater (2017), LMAA pretreatment performance was
optimum at 50% MC for corn stover, in comparison to the
same materials at 20 and 80% MC. In this regard, looking
more detail into the structure and compositions of each
material used in this work, OPF is more closely resembles
that of corn stover, however, corn stover required a higher MC

requirement might be due to slightly higher cellulose content
in it (Mensah et al., 2021). In other aspect, this also proves
the requirement of moisture in LMAA pretreatment,
although it varies with the cellulose content of materials
(Kim et al., 2016; Yang and Rosentrater, 2017; Stoklosa
et al., 2021). The difference in MC requirement could also
be attributed to the difference in water absorption behavior
that somehow related to the compositional difference in
materials, which will be described in the following
paragraph. α-cellulose content was assumed to be the most
critical component because it gives the most sugar (glucose)
for the fermentation process and is a high purity material for
bio-based structural as such nanocellulose development
(Phanthong et al., 2018), this was used to decide the most
effective parameters for the LMAA pretreatment process.
Following α-cellulose, hemicellulose also potentially can
supply sugar (xylose) to the system (Mahmud and
Rosentrater, 2020). It was observed that hemicellulose
contents at the selected MC (30% for DDGS and OPF, and
50% for CGF and CF) were slightly less than those of the other
MC, although the reason for the trend is unclear.

In the LMAA pretreatment process, it was hypothesized that
water molecules present in the biomass bind with NH3 molecules
during ammoniation and form ammonium ions (NH4+) and

FIGURE 2 | Glucan content in the biomass after LMAA pretreatment.
Error bars represent ± standard deviations. DDGS, distillers dried grains with
solubles; CGF, corn gluten feed; CF, corn fiber; OPF, oil palm frond. Numbers
in the x-axis indicate moisture content designation.

TABLE 4 | Interaction effects of factors on biomass compositions after LMAA pretreatment.

DDGS

Time (h) MC (% db) α-cellulose (wt. %) Hemicellulose (wt. %) AIL (wt. %) ASL (wt. %)

30 50 30 50 30 50 30 50

UT 15.33 ± 1.03a 39.33 ± 3.14a 9.91 ± 2.36a 1.19 ± 0.05c

24 27.33 ± 0.02a 23.33 ± 0.02a 3.83 ± 0.02b 7.50 ± 0.02b 5.34 ± 3.23a 6.24 ± 6.47a 1.86 ± 0.08b 1.95 ± 0.07a,b

72 26.00 ± 0.02a 18.67 ± 0.03a 6.83 ± 0.02b 11.17 ± 0.03b 4.91 ± 3.23a 3.78 ± 0.81a 2.11 ± 0.10a 2.06 ± 0.05a

CGF

Time (h) MC (% db) α-cellulose (wt. %) Hemicellulose (wt. %) AIL (wt. %) ASL (wt. %)

30 50 30 50 30 50 30 50

UT 26.67 ± 1.03a 22.00 ± 0.89a 15.56 ± 1.72a 2.36 ± 0.19c

24 17.33 ± 0.01b 22.67 ± 0.01a,b 6.00 ± 0.01b 2.83 ± 0.01b 7.99 ± 0.71b 5.82 ± 1.77b 3.14 ± 0.17a,b 2.98 ± 0.03b,c

72 18.00 ± 0.01b 23.33 ± 0.01a,b 4.33 ± 0.04b 2.50 ± 0.02b 7.98 ± 3.53b 6.66 ± 3.53b 3.69 ± 0.20a 3.41 ± 0.43a,b

CF

Time (h) MC (% db) α-cellulose (wt. %) Hemicellulose (wt. %) AIL (wt. %) ASL (wt. %)

30 50 30 50 30 50 30 50

UT 22.67 ± 4.13b 41.00 ± 4.98a 7.78 ± 0.86a 3.17 ± 0.26c

24 32.00 ± 0.01a,b 38.00 ± 0.01a 31.00 ± 0.01a,b 17.67 ± 0.02b,c 4.16 ± 1.77a 5.83 ± 3.53a 3.72 ± 0.02a 3.10 ± 0.19c

72 33.33 ± 0.03a 39.33 ± 0.01a 26.83 ± 0.04b 7.67 ± 0.02c 4.99 ± 3.53a 4.99 ± 1.77a 3.69 ± 0.06a,b 3.19 ± 0.10b,c

OPF

Time (h) MC (% db) α-cellulose (wt. %) Hemicellulose (wt. %) AIL (wt. %) ASL (wt. %)

30 50 30 50 30 50 30 50

UT 49.33 ± 6.77a 17.67 ± 4.41a 25.60 ± 0.54a 0.33 ± 0.01c

24 54.00 ± 0.01a 58.00 ± 0.01a 12.33 ± 0.03a 12.83 ± 0.05a 13.68 ± 4.46b 10.52 ± 4.46b 0.55 ± 0.03b 0.56 ± 0.02b

72 54.67 ± 0.02a 59.33 ± 0.01a 6.67 ± 0.04a 9.67 ± 0.07a 13.68 ± 2.23b 9.27 ± 5.58b 0.73 ± 0.04a 0.50 ± 0.03b

Values are means of triplicate analysis with ± standard deviation, and levels not connected by the same letter are significantly different at α � 0.05. MC, moisture content; Time, incubation
time; UT, untreated; AIL, acid insoluble lignin; ASL, acid soluble lignin; DDGS, distillers dried grains with solubles; CGF, corn gluten feed; CF, corn fiber; OPF, oil palm frond. a, b, c these
signify significant differences.
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hydroxyl ions (OH−) that react with lignin (Yoo et al., 2011).
Water molecules can also form hydrogen bonds with cellulose,
which causes swelling of the cellulose crystalline structure,
resulting in micro-cracks and later increasing accessibility of
enzymes (Yoo et al., 2011; Célino et al., 2014). For CGF and
CF, for which a significant amount of starch is part of their
compositions, water might be absorbed into the starch in addition
to that absorbed into the other cellulosic structure. Therefore, in
total, more amount of water was absorbed as bound water,
providing more sites for NH3-H2O reactions, justifying the
requirement of higher MC by these materials. For OPF,
although the presence of high cellulose might enhance water
absorption and therefore potentially produce a higher α-cellulose
content after the pretreatment, no significant differences were
found between 50 and 30% MC samples. For DDGS, which
consists of a low amount of starch and cellulose, only a small
amount of water was retained in its structure to provide the
pretreatment effect. The addition of more water to DDGS might
result in its only being kept in the structure as free water and thus
not contribute to any reaction with NH3 (Yoo et al., 2011).

Several previous studies have reported that water absorption
capacity was less in protein than in starch and cellulose,
explaining the results of this study (Greer and Stewart, 1959;
Wang et al., 2007). The approximate starch content in
DDGS, CGF, and CF, are 6% (Pedersen et al., 2014), 20%
(Schroeder, 2012), and 17.77% (Noureddini and Byun, 2010),
respectively. For the incubation time factor, longer time (72 h)
resulted in no significant overall effect on the materials,
especially in terms of α-cellulose content, which was in
contrast to the previous study (Yang and Rosentrater, 2017).
This might be attributed to the higher NH3 loading applied
during ammoniation, which might be suitable for materials
used in this work, speeding up the digestion reaction within the
structural materials.

Other than increasing the α-cellulose available in the materials
compared to that in untreated materials (except for CGF), the
LMAA pretreatment decreased the hemicellulose and AIL
content for all materials. While the ASL content for all
materials after pretreatment was increased, this was not
particularly valuable information in biochemical processing,

TABLE 5 | Biomass compositions after LMAA pretreatment and comparison with other published pretreatment processes.

DDGS

Components (wt. %) LMAAa LMAA Zhang (2013) AFEX Bals et al. (2006)

Cellulose 27.33 25.40b Nd
Hemicellulose 3.83 8.76c 66.19d

AIL 5.34 13.34 nm
Ash 9.33 3.97 7.06
Other 57.73 48.53 26.75

CF

Components (wt. %) LMAAe NaOH Gáspár
et al. (2005)

NaOH + H2O2

Gáspár et al. (2005)
Extrusion

Myat and Ryu (2014)

Cellulose 38.00 46.07 59.89 25.13
Hemicellulose 17.67 31.00 19.71 31.84
AIL 5.83 3.53 3.11 7.40
Ash 3.33 3.60 2.51 2.30
Other 35.17 15.80 14.78 33.33

OPF

Components (wt. %) LMAAe SAA Jung et al.
(2012)

DA Siti Sabrina et al. (2013) Autohydrolysis
Sabiha-Hanim et al. (2011)

Cellulose 58.00 44.69f 46.5 48.69
Hemicellulose 12.83 12.12g 20.28 6.73
AIL 10.52 19.30 11.41 22.45
Ash 5.80 nm 9.28 nm
Other 12.85 23.89 12.53 22.13

DDGS, distillers dried grains with solubles; CF, corn fiber; OPF, oil palm frond. Values from published works were adjusted according to the initial compositions of materials used in this
study except for Noureddini and Byun (2010). AIL, acid insoluble lignin.
aLMAA, low moisture anhydrous ammonia (30% MC, 24 h incubation); AFEX, ammonia fiber expansion;
bAssumed equivalent to glucan.
cAssumed equivalent to xylan.
dCalculated according to xylan.
eLMAA, low moisture anhydrous ammonia (50% MC, 24 h incubation); NaOH, soaking in sodium hydroxide; NaOH+ H2O2, soaking in sodium hydroxide and hydrogen peroxide; SAA,
soaking in aqueous ammonia; DA, dilute acid pretreatment; Autohydrolysis, heated in autoclave. Noureddini and Byun (2010) LMAA (60% MC, 80°C, 0.1 g NH3/g biomass, 168 h
pretreatment), (Guo et al., 2017) AFEX (60%MC, 80°C, 0.6 g NH3/g biomass), nd, not detected; nm, not measured. Pedersen et al. (2014) NaOH/NaOH + H2O2 (25%NaOH, 0.6%H2O2,
120°C, 120 min). Miron et al. (2001) Extrusion (300 rpm screw speed, 30% MC, 140°C, 3 mm die diameter, 100 g/min feed rate). Khalil et al. (2012) SAA (7% NH3, 80°C, 20 h).
fCalculated according to glucan.
gCalculated according to xylan, nm, not measured. Selig et al. (2008) DA (0.01 M H2SO4, 60°C, 12 h). Mensah et al. (2021) Autohydrolysis (121°C, 15 psi, 60 min).
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because this fraction would be removed from the system either
during filtration or evaporated by the drying process (a moisture
reduction process that is required before the waste can be fed into
the boiler).

The p-values from statistical analysis (Table 2) support the
results described. p-values lower than 0.05 indicated no evidence
that varying the associated factors would lead to a different mean
value. Most interaction effects of the factors in all type of
materials tested reflected insignificant results at α � 0.05,
showing no evidence that effects of time differed with different
materials MC, as reported by Cheng and Rosentrater (2016),
Yang and Rosentrater (2017). Only several compositions for
several types of materials, the mean of ASL content for CF
and OPF, and the mean of hemicellulose content for CF,
exhibited a significant interaction effect. It was rather weak
supporting data for the selection of the best working
conditions. Table 5 summarizes the comparison of materials
compositions after the pretreatment process recorded in this
study with the available results from others for DDGS, CF,

and OPF. No previous research on CGF pretreatment was
available for comparison. It has been proven that LMAA
provides a competitive way of biomass pretreatment at a
potentially lower cost than other pretreatment approaches
(Yoo et al., 2011; Mahmud and Rosentrater, 2019).

FIGURE 3 | Enzymatic digestibility curves for treated DDGS. In the
legend, the first numbers indicate the MC (%db), the numbers in the
parentheses indicate the incubation time (h). Hanes-Woolf linear regressions
used to estimate the digestibilites over time were 30 (24): Y � 0.0131x +
0.0065; 30 (72): Y � 0.013x + 0.0138; 50 (24): Y � 0.0142x + 0.0106; 50 (72):
Y � 0.0148x + 0.0071; 30(UT): Y � 0.0173x + 0.0529; 50(UT): Y � 0.0193x +
0.0131. UT indicates untreated DDGS.

FIGURE 4 | Enzymatic digestibility curves for treated CGF. In the legend,
the first numbers indicate the MC (%db), the numbers in the parentheses
indicate the incubation time (h). Hanes-Woolf linear regressions used to
estimate the digestibilites over time were 30 (24): Y � 0.0157x + 0.0248;
30 (72): Y � 0.0164x + 0.0372; 50 (24): Y � 0.0171x + 0.007; 50 (72): Y �
0.0158x + 0.051; 30(UT): Y � 0.0218x + 0.0144; 50(UT): Y � 0.0218x +
0.0144. UT indicates untreated CGF.

FIGURE 5 | Enzymatic digestibility curves for treated CF. In the legend,
the first numbers indicate the MC (%db), the numbers in the parentheses
indicate the incubation time (h). Hanes-Woolf linear regressions used to
estimate the digestibilites over time were 30 (24): Y � 0.0115x + 0.1147;
30 (72): Y � 0.0128x + 0.055; 50 (24): Y � 0.0145x + 0.0328; 50 (72): Y �
0.0142x + 0.0659; 30(UT): Y � 0.0609x + 0.2771; 50(UT): Y � 0.0647x +
0.2278. UT indicates untreated CF.

FIGURE 6 | Enzymatic digestibility curves for treated OPF. In the legend,
the first numbers indicate the MC (%db), the numbers in the parentheses
indicate the incubation time (h). Hanes-Woolf linear regressions used to
estimate the digestibilites over time were 30 (24): Y � 0.0262x + 0.2085;
30 (72): Y � 0.0212x + 0.0752; 50 (24): Y � 0.0183x + 0.0199; 50 (72): Y �
0.0214x + 0.038; 30(UT): Y � 0.0798x + 0.7621; 50(UT): Y � 0.0964x +
0.0235. UT indicates untreated OPF.

TABLE 6 | p-values of main and interaction effects on enzymatic digestibilities of
the LMAA-treated biomass.

Factor DDGS CGF CF OPF

Incubation time 0.6008 0.4266 0.8222 0.6706
MC 0.0531 0.7653 0.4389 0.0146
Digestion time 0.2434 0.4511 0.0035 0.2341
MC × Incubation time 0.9443 0.9092 0.4937 0.0376
MC × Digestion time 0.9265 0.8310 0.0665 0.7046
Incubation time × Digestion time 0.8517 0.8503 0.2875 0.9937
MC × Incubation time × Digestion time 0.7378 0.4745 0.2547 0.8889

Factors: MC – 30 and 50% db; Incubation time – 24 and 72 h; Digestion time – 24 and
72 h. DDGS, distillers dried grains with solubles; CGF, corn gluten feed; CF, corn fiber;
OPF, oil palm frond.
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Effect of Moisture Content and
Pretreatment Time on Enzymatic
Digestibility
Figures 3–6 show the results for enzymatic digestibility tests.
The percentage digestibility of all LMAA pretreated materials
was higher than that of untreated materials (UT), indicating
that LMAA pretreatment was successful in allowing more
penetration of hydrolysis enzyme to the cellulose. The
highest digestibility values recorded at the end of hydrolysis
for DDGS, CGF, and CB were from those with 30% MC
and treated for 24 h, with 76.02%, 62.87%, and 80.28%
digestibility, respectively. The highest digestibility percentage
recorded for OPF was 54.15%, from those with 50% MC and
treated for 24 h. These equivalents to about 32%, 28%, 82% and
81% increase in digestibility compared to those of UT samples
for DDGS, CGF, CF and OPF, respectively. As a comparison
(Yang and Rosentrater, 2017), recorded a 64% increase in
digestibility of LMAA pretreated corn stover, whereas 80%,
6.4% increase in digestibility were recorded for corn stover
pretreated with other ammonia pretreatments, which were
aqueous ammonia and AFEX pretreatment, respectively
(Kim and Lee, 2007; Baruah et al., 2018). While (Jung et al.,
2012) recorded ∼64% digestibility of aqueous pretreated OPF.
The percentages of digestibilities generally increased as
digestion time increased. For the commercial application of
the process, from an economic standpoint, 24 h of reaction
would be considered sufficient for all type of biomass tested,
since there was no significant difference between the
percentage digestibility values at 24 and 72 h (Table 6).
However, this is dependent on the concentration of enzyme
used, with comparison (Yang and Rosentrater, 2017) required
longer digestibility time due to low concentration of cellulase
(45 FPU/ml).

p-values of the main effects revealed no significant difference
in digestibility resulting from most of the factors tested. The
exception was observed in the main effect of MC for OPF and the
main effect of digestion time for CF, in which the digestion of 50%
MC OPF was significantly higher than that of 30% MC, and the
digestion of CF at 72 h was significantly higher than that at 24 h.
With respect to the most significant parameters giving the best
yield of α-cellulose, the highest percentage digestibility recorded
for DDGS was 73.66% (30% MC and 24 h incubation), for CGF
was 57.50% (50% MC and 24 h incubation), for CF was 66.26%
(50% MC and 24 h incubation), and for OPF was 52.28% (50%
MC and 24 h incubation).

CONCLUSION

In this study, DDGS, CGF, CF, and OPF were treated using
LMAA pretreatment. DDGS required lesser MC (30%) for the
process, while the other biomass candidates exhibited better
results (increase in α-cellulose and enzymatic digestibilities)
from pretreatment at 50% MC. The two LMAA incubation
times tested produced statistically insignificant differences in
results for all materials tested, leading to a conclusion of 24 h
pretreatment is the best. Enzymatic hydrolysis conducted after
the LMAA pretreatment process increased the digestibility of the
biomass compared to those not treated; DDGS - 76.02%, CGF -
62.87%, CF - 80.28%, and OPF - 54.15%. These results have
proven the potential of LMAA-treated materials for value-added
product production especially in the production of higher value
compounds through biochemical conversion. OPF is a major
agricultural waste in oil palm plantation shown a promising
future in increasing profits of the plantation owner. This study
also highlights the potential of corn milling co-products to be
used in a variety of applications other than in the feed
manufacturing market. Additionally, some published techno-
economic analyses have concluded significantly lower
operating cost for biorefineries that adopt LMAA treatment.
This justifies continued work in this area to ensure more
concrete findings. Future studies should include more variety
in ammonia loadings to determine the effect of higher
concentrations on digestion, of which the analysis could be
conducted in more detail through chromatography analysis.
Moreover, this study concluded that 24 h digestion time was
sufficient for enzyme digestion, potentially giving more yield to
the biorefinery. It is worth investigations the correlation of
enzyme concentration and ammonia loading with enzyme
digestibility performance.
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