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To reliably evaluate the practical performance and to undertake optimal control of PV
systems, a precise PV cell parameter extraction–based accurate modeling of PV cells is
extremely crucial. However, its inherent high nonlinear and multimodal characteristics
usually hinder conventional optimization methods to obtain a fast and satisfactory
performance. Besides, insufficient current–voltage (I–V) data provided by
manufacturers cannot guarantee high accuracy and flexibility of PV cell parameter
extraction under various operation scenarios. Hence, this article proposes a novel
parameter extraction strategy by data prediction–based meta-heuristic algorithm
(DPMhA). An extreme learning machine (ELM) is adopted to predict output I–V data
from measured data, which can provide a more reliable fitness function to meta-heuristic
algorithms (MhAs). Consequently, MhAs can undertake a more stable search for optimal
solution through extended I–V data; thus, PV cell parameters can be obtained with high
accuracy and convergence rate. Its effectiveness is validated via three typical PV cell
models, that is, single diode model (SDM), double diode model (DDM), and three diode
model (TDM). Last, comprehensive case studies illustrate that the DPMhA can
considerably enhance the accuracy and effectiveness compared with those without
data prediction.
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INTRODUCTION

With severe environmental deterioration (Peng et al., 2020), fossil fuel depletion (Yang et al., 2018),
severe air pollution (Sun et al., 2020), and increasing concerns on global energy crisis over the past
decade (Yang et al., 2018), energy reform and sustainable development have become essential for an
environment-friendly society (Wang et al., 2020). Hence, environmental protection and energy
conservation are paramount for all countries around the world (Shen et al., 2019), in which
exploitation and utilization of various renewable energy technologies, for example, wind (Li et al.,
2019; Zhang et al., 2019) and solar (Liu et al., 2020), have been broadly focused. In particular, solar
energy is considered to be one of the most sustainable and viable energy sources of the future (Chaibi
et al., 2019), such that photovoltaic (PV) system is widely used for solar energy applications thanks to
its distinct merits, for example, abundant resources, low cost, and pollution-free (Yang et al., 2016).

Particularly, measured current–voltage (I–V) data–based reliable PV modeling is extremely
critical to dynamic behavior analysis of PV systems. Thus far, a series of PV cell modeling
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methods have been proposed (Jordehi, 2016) to characterize the
output of PV systems for better performance analysis and
prediction (Youssef et al., 2017), maximum power point
tracking (MPPT) (Yang et al., 2019; Yang et al., 2019), and
fault diagnosis (Chen et al., 2018). Two equivalent circuit
models, single diode model (SDM) (Nunes et al., 2018) and
double diode model (DDM) (Abbassi et al., 2018), are
extensively adopted for the sake of simplicity, while more
complicated triple diode model (TDM) (Qais et al., 2019) is
barely investigated because it might increase computation
burden. Nevertheless, as the TDM allows a more efficient
and accurate analysis of the complex output characteristics
of PV systems, this article validates the performance of all three
PV models mentioned above. In particular, the accurate
extraction of several electrical parameters related to the
model is the most basic and critical step of reliable
modeling. However, they are unavailable and changeable as
insufficient electrical parameters provided by manufacturers
and are only experimentally obtained under standard test
conditions (STCs) (Xiong et al., 2018). Besides, their values
are also time-varying due to degradation and faults of PV cells,
which further increases modeling uncertainties. Hence, the
aforementioned two shortcomings render parameter
extraction thorny to obtain satisfactory results in practical
applications.

To tackle such obstacles, the design of numerous methods
consists of three main categories, namely, analytical methods
(Majdoul et al., 2015; Torabi et al., 2017), deterministic
techniques, and meta-heuristic algorithms (MhAs). Analytical
methods are based on a series of mathematical calculations and a
number of key points on the I–V curve, which owns a high degree
of simplicity, but lacks high accuracy in different operating
scenarios. Meanwhile, deterministic techniques, including
iterative curve fitting (Villalva et al., 2009) and Newtonian-
based methods (Li et al., 2017), can yield more accurate
results, while they are extremely demanding in terms of model
properties. Moreover, they are highly sensitive to initial operation
conditions; thus, the inherent high nonlinearity and
multimodality of PV systems always make them easy to be
trapped at a local optimum. Hence, the limitations of the
aforementioned two methods hinder them to maintain a stable
and satisfactory performance on PV cell parameter extraction. In
contrast, MhAs can effectively avoid these shortcomings thanks
to their outstanding merits, such as high flexibility on problem

characteristics (Nesmachnow, 2014), easy implementation
(Roeva and Fidanova, 2018), and insensitivity to gradient
information (Figueroa et al., 2020). Until now, a large number
of MhAs are adopted in PV cell parameter extraction (Yang et al.,
2020), such as genetic algorithm (GA) (Jervase et al., 2001),
differential evolution (DE) (Ishaque and Salam, 2011), particle
swarm optimization (PSO) (Ye et al., 2009), artificial bee colony
(ABC) (Oliva et al., 2014), whale optimization algorithm (WOA)
(Amroune et al., 2019; Dasu et al., 2019), backtracking search
algorithm (BSA) (Yu et al., 2018), moth flame optimizer (MFO)
(Allam et al., 2016), grey wolf optimization (GWO) (Yang et al.,
2017), bird mating optimizer (BMO) (Askarzadeh and
Rezazadeh, 2013), water cycle algorithm (WCA) (Kler et al.,
2017),wind-driven optimization (WDO) (Derick et al., 2017),
fireworks algorithm (FWA) (Babu et al., 2016), and various
hybrids.

Except for the improvements focusing on mechanism and
structure of algorithms to enhance the optimization
performance, one should realize that all modeling techniques
heavily rely on the number and accuracy of measured data.
However, in order to improve the simulation accuracy, some
parameters in the PV system are not provided by the manufacturer
and therefore need to be extracted based on the I–V curve. Such low-
dimensional data provided by the manufacturer, while saving
computational resources, may also cause important data
information to be lost during the simulation. Hence, it is
imperative to develop effective data processing methods to enrich
data samples. Recently, artificial neural network (ANN) (Grondin-
Perez et al., 2014; Zhao et al., 2019) and deep learning strategy
(Schmidhuber, 2015) show their great effectiveness in data analysis
and prediction. This article adopts a learning algorithm called
extreme learning machine (ELM) with a single-hidden layer
feedforward neural network (SLFN) for output I–V data
prediction (Huang et al., 2006), which can provide a more
reliable fitness function to MhAs. The main contributions of this
article can be summarized as follows:

• The existing MhAs are directly adopted for PV cell parameter
extraction via measured I–V data of PV systems, which are easy
to be trapped at a low-quality optimum if measured I–V data
are inadequate or distributed intensively. In contrast, the
proposed data prediction–based MhA (DPMhA) can
effectively solve this difficulty since measured I–V data can
be extended via ELM-based data prediction.

TABLE 1 | Error functions of three different models.

Model Error function Solution vector

SDM fSDM(VL , IL , x) � Iph − Isd[exp(VL+ILRs
aVt

) − 1] − VL+ILRs
Rsh

− IL x � {Iph , Isd , Rs , Rsh , a}

DDM fDDM(VL , IL , x) � Iph − Isd1[exp(q(VL+ILRs )
a1Vt

) − 1] − Isd2[exp(q(VL+ILRs)
a2Vt

) − 1] − VL+ILRs
Rsh

− IL x � {Iph , Isd1 , Isd2 ,Rs , Rsh , a1 , a2}

TDM fTDM(VL , IL, x) � Iph − Isd1[exp(q(VL+ILRs )
a1Vt

) − 1] − Isd2[exp(q(VL+ILRs)
a2Vt

) − 1] − Isd3[exp(q(VL+ILRs)
a3Vt

) − 1] − VL+ILRs
Rsh

− IL x � {Iph , Isd1 , Isd2 , Isd3 ,Rs , Rsh , a1 , a2 , a3}

Frontiers in Energy Research | www.frontiersin.org June 2021 | Volume 9 | Article 6932522

Li et al. PV Cell Parameter Extraction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


• Several advanced MhAs with data prediction are applied for
parameter extraction of PV cells, which are thoroughly
validated via three different kinds of PV models.

• Four case studies show that DPMhA can achieve simulation
results with higher precision and stability compared with those
only based on measured data.

The rest of this article is organized as follows: PVCell Modeling
and Problem Formulation illustrates mathematical modeling of
PV cell and objective function. The overall introduction of data
prediction–based MhAs is elaborated in Methodologies. Case
study results on different PV models are provided in Case
Studies. Last, conclusions are given in Conclusion.

PV CELL MODELING AND PROBLEM
FORMULATION

Shockley diode–based equivalent circuits are always deemed as
standard PV models, among which three most widely used
models, that is, SDM, DDM, and TDM are discussed in this
section.

Design of Mathematical Modeling
In general, there are minor differences in the model structures of
the three models mentioned above, which are also systematically
summarized in Supplementary Table S1 for a more detailed
presentation.

FIGURE 1 | Basic structure of ELM network.

FIGURE 2 | Framework of ELM-based data-driven procedure for PV cell parameter identification.
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As demonstrated in Supplementary Table S1, IL and VL

represent the output current and output voltage of the PV cell
respectively; Ish refers to the current of the parallel resistor Rsh;
and the thermal voltage VT is calculated by

VT � KT
q
, (1)

where T represents the surface temperature; K is the Boltzmann
constant, which has a value of 1.38 × 10− 23 J/K; and qmeans the
electron charge, respectively, with a size of 1.6 × 10− 19 C.

All the other variables are provided in Nomenclature.

Objective Function
The main objective of parameter identification for various PVmodels
is to find suitable parameters so that the model can more accurately
describe the output characteristics of the PV system andminimize the
errors between the experimentally collected data and the simulation
data, which can be evaluated quantitatively by means of an objective
function. The root mean square error (RMSE) is chosen here as the
objective function, which can be calculated as

RMSE (x) �

����������������
1
N

∑N
k�1

[f (VL, IL, x)]2√√
, (2)

where x represents the solution vector of the unknown
parameters to be identified and N denotes the number of
experimental data, respectively.

Error functions f (VL, IL, x) for three PV models are tabulated
in Table 1.

From Table 1, for the sake of minimizing the difference
between experimental data and simulated data, objective
function RMSE (x) needs to be minimized by optimizing
solution vector x. Note that the objective function value is
inversely proportional to the solution quality.

METHODOLOGIES

Data Prediction by Extreme Learning
Machine
Principle of ELM
ELM is a simple learning strategy for SLFNs that mainly depends
on generalized inverse matrix theory (Huang and Siew, 2005),
which randomly initializes the input weight with no
adjustment requirement in subsequent operations (Huang
et al., 2000; Huang et al., 2006). Besides, output weight is
analytically determined by generalized inverse, which only
requires a one-step calculation. Hence, compared with other
normal feedforward network learning strategies, for example,
back-propagation (BP) algorithm, the ELM can significantly
enhance robustness, generalization ability, learning speed,
and training accuracy. The main operation structure of ELM
is demonstrated in Figure 1.

For N different training samples (xi , yi) ∈ Rn × Rm, i � 1, 2,
3 . . ., N, network output of standard SLFNs with K hidden

neurons and an activation function g(ωi · xi + bi) is calculated
by (Huang et al., 2006)

yi � ∑K
i�1

βigi(xj) � ∑K
i�1

βig(ωi · xi + bi), j � 1, 2, 3, . . . , N , (3)

where ωi represents the connecting weight vector between the ith
hidden layer neuron and input neuron; bi denotes threshold of
the ith hidden layer of the network; βi means the connection
weight between the ith hidden layer neuron and output neuron,
respectively.

Since SLFNs can approximate training samples with zero
errors for any ω and b when the number of neurons in the
hidden layer equals the number of training data samples (Huang

et al., 2006), for example, ∑N
i�1

∣∣∣∣∣∣∣∣yi − ti
∣∣∣∣∣∣∣∣ � 0, which means there exist

ωi, bi, and βi that can satisfy the relationship, as follows:

tj � ∑K
i�1

βig(ωi · xi + bi) , j � 1, 2, 3, . . . , N. (4)

Hence, the two equations above are rewritten more simply, as
follows:

Hβ � T , (5)

H � ⎡⎢⎢⎢⎢⎢⎣ h(x1)
«

h(xN)
⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ g(ω1 · x1 + b1)/g(ωK · x1 + bK)

«
g(ω1 · xN + b1)/g(ωK · xN + bK)

⎤⎥⎥⎥⎥⎥⎦, (6)

β � ⎡⎢⎢⎢⎢⎢⎢⎢⎣ β’1«
β’K

⎤⎥⎥⎥⎥⎥⎥⎥⎦
K×m

andT � ⎡⎢⎢⎢⎢⎢⎢⎣ T ’
1

«
T ’
K

⎤⎥⎥⎥⎥⎥⎥⎦
K×m

, (7)

whereH represents the hidden layer output matrix; T denotes the
expected output matrix; and β is determined by least square
approach, as follows:∣∣∣∣∣∣∣∣∣∣H~β − T

∣∣∣∣∣∣∣∣∣∣ � minβ

∣∣∣∣∣∣∣∣∣∣Hβ − T
∣∣∣∣∣∣∣∣∣∣, (8)

When the hidden layer output matrix is column full rank, it yields

~β � argminβ

∣∣∣∣∣∣∣∣Hβ − T
∣∣∣∣∣∣∣∣ � H†T , (9)

TABLE 2 | Execution procedure of DPMhA for PV cell parameter extraction.

1: Determine PV cell type
2: Initialize algorithms parameters and population
3: Set k: � 0
4: WHILE k ≤ kmax

5: FOR1 i � 1 : n
6: Calculate fitness function of the ith individual by Eq. 10
7: END FOR1
8: Determine roles of all individuals based on their fitness values
9: FOR2 i � 1 : n
10: Update solution of the ith individual according to its designated global
exploration and local exploitation
11: END FOR2
12: Set k: � k+1
13: END WHILE
14: Output optimal parameters for PV cell
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where H† denotes Moore Penrose generalized inverse of the
output matrix of hidden layer H.

Output I–V Data Prediction
For a PV cell, output current and voltage can be measured for
parameter extraction, while the increase of measured data will
lead to a high extraction accuracy. To employ ELM for output
I–V data prediction, PV cell voltage and current are regarded
as the input and output of ELM, respectively. Therefore,
output I–V data prediction of a PV cell can be achieved by
ELM with single input and single output, as described by
Eqs. 3–9.

Data Prediction–Based MhAs
Data Prediction–Based Fitness Function
Based on prediction data, MhAs can implement a balance between
global and local search with an updated fitness function. Due to all
optimization, variables are limited within their lower and upper

bounds; RMSE (2) is taken as the fitness function, which should
also take the prediction data into account, as follows:

RMSE (x) �

����������������������
1

N + Np
∑N+Np

k�1
[f (VL, IL, x)]2

√√
, (10)

where Np means the total count of the prediction data.

General Execution Procedure
The overall operation framework of DPMhA mainly consists of
three parts, as illustrated in Figure 2. First, measured output I–V
data of various PV cells are transferred to the ELM. Second, the
ELM is trained by measured data to predict new data; thus, a
more reliable fitness function can be established to evaluate the
performance of various MhAs. Finally, MhAs implement
relevant global exploration and local exploitation to find
optimal PV parameters. Particularly, the detailed execution
procedure of DPMhA is given in Table 2, in which the main
differences between various algorithms are individual roles and
searching mechanisms of global exploration and local
exploitation.

CASE STUDIES

In this section, several well-established MhAs are utilized for
parameter extraction of three PV cell models. In particular, a
total of 26 pairs of measured I–V datasets utilized for
simulation are acquired from Easwarakhanthan et al. (1986),
which are measured on a 57 mm diameter commercial silicon
R.T.C. France solar cell under weather condition (G � 1000 W/
m2 and T � 33°C). This dataset has been widely used to test the
techniques developed for parameter extraction. Many existing
studies (Ye et al., 2009)-(Yu et al., 2018) were tested based on
these 26 pairs of measured data. To guarantee a fair comparison
with them, the proposed GNN is also implemented based on
these 26 pairs of measured data. For the sake of verifying the

TABLE 3 | Average RMSE obtained by various algorithms for the SDM with six measured data.

Algorithm Average RMSE

Number of measured data (%)

— 50% 60% 70% 80% 90% 100%

ABC N 4.28 × 10−3 3.60 × 10−3 3.20 × 10− 3 3.47 × 10− 3 3.01 × 10− 3 3.04 × 10− 3

Y 3.40 × 10− 3 3.13 × 10− 3 3.18 × 10− 3 3.21 × 10−3 2.93 × 10−3 3.12 × 10− 3

BSA N 3.43 × 10− 2 3.40 × 10− 2 2.40 × 10− 2 3.16 × 10−2 2.53 × 10−2 2.41 × 10− 2

Y 2.82 × 10− 2 2.55 × 10− 2 2.24 × 10− 2 2.54 × 10−2 2.77 × 10−2 2.63 × 10− 2

GWO N 2.67 × 10− 2 2.09 × 10− 2 1.96 × 10− 2 1.99 × 10−2 1.99 × 10−2 2.17 × 10− 2

Y 1.84 × 10− 2 1.79 × 10− 2 1.76 × 10− 2 1.81 × 10−2 1.76 × 10−2 2.03 × 10− 2

MFO N 5.46 × 10− 3 3.65 × 10− 3 2.92 × 10− 3 5.39 × 10−3 2.90 × 10−3 3.74 × 10− 3

Y 3.45 × 10− 3 2.94 × 10− 3 2.32 × 10− 3 3.66 × 10−3 2.55 × 10−3 3.54 × 10− 3

PSO N 1.16 × 10− 2 9.39 × 10− 3 6.96 × 10− 3 1.09 × 10−2 5.69 × 10−3 2.72 × 10− 3

Y 2.05 × 10− 3 6.30 × 10− 3 4.76 × 10− 3 6.55 × 10−3 2.68 × 10−3 5.11 × 10− 3

WCA N 2.71 × 10− 3 1.98 × 10− 3 2.11 × 10− 3 2.35 × 10−3 1.78 × 10−3 1.87 × 10− 3

Y 2.08 × 10− 3 1.84 × 10− 3 1.99 × 10− 3 1.96 × 10−3 1.81 × 10−3 1.75 × 10− 3

WOA N 3.82 × 10− 2 3.70 × 10− 2 3.76 × 10− 2 4.45 × 10−2 3.35 × 10−2 3.40 × 10− 2

Y 3.55 × 10− 2 3.44 × 10− 2 3.66 × 10− 2 3.41 × 10−2 3.29 × 10−2 3.52 × 10− 2

FIGURE 3 | Comparison of total average RMSE values with six different
datasets for the SDM.
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optimization performance of MhAs based on insufficient
measurement data, six sets of data were selected from 26
sets of measurement data in different ratios of 50, 60, 70, 80,
90, and 100% of the measurement data. The presented ELM is
essentially a simple single-input and single-output network.
Therefore, the pairs of measured data are adequate for training

the ELM. To provide a reliable fitness function to MhAs, the
total number of each dataset and the prediction data are set to
be 50, for example, 24 prediction data for 100% dataset. In
addition, each MhA is evaluated under two circumstances, that
is, without data prediction (i.e., with only selected measured
data) and with data prediction. Note that the measured I–V

FIGURE 4 | Boxplot of RMSE obtained by various algorithms in different data for the SDM: (A) 50% data and (B) 100% data.

FIGURE 5 | Comparison between actual data and model curve obtained by the best algorithm in different training data for SDM: (A) I-V curve in 50% training data
(B) P-V curve in 50% training data (C) I-V curve in 100% training data and (D) I-V curve in 100% training data.
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data are not hard to be acquired. But it is difficult to acquire
adequate high-accuracy data with a general measuring
instrument. Hence, the measured I–V data cannot
completely represent the I–V output feature of the PV cell.
Besides, the added prediction I–V data can provide a reliable
fitness function; thus, the optimization accuracy and
convergence stability of each meta-heuristic algorithm can
be improved.

The main parameters of meta-heuristic algorithms are the
population size and the maximum number of iterations. To
guarantee a fair comparison, these two parameters are set to
be the same values for all MhAs under each PV model that is
designed to be identical, in which their specific parameters (e.g.,
the maximum velocity in PSO) are set to be the default values. In
order to fairly compare the performance of each algorithm, the
maximum number of iterations and the population size of each
algorithm were set to be the same. Specifically, the maximum
number of iterations for each model was 300, while the

FIGURE 6 | Convergence of various algorithms for SDM: (A) 50% data and (B) 100% data.

TABLE 4 | Average RMSE obtained by various algorithms for the DDM with six measured data.

Algorithm Average RMSE

Number of measured data (%)

— 50% 60% 70% 80% 90% 100%

ABC N 4.16 × 10− 3 3.46 × 10− 3 3.25 × 10−3 3.55 × 10−3 3.26 × 10−3 3.14 × 10− 3

Y 3.48 × 10− 3 3.19 × 10− 3 3.16 × 10−3 3.41 × 10−3 3.12 × 10−3 3.26 × 10− 3

BSA N 1.30 × 10− 2 1.26 × 10− 2 1.01 × 10−2 1.18 × 10−2 1.19 × 10−2 1.04 × 10− 2

Y 8.97 × 10− 3 1.02 × 10− 2 8.48 × 10−3 1.11 × 10−2 7.29 × 10−3 1.02 × 10− 2

GWO N 2.22 × 10− 2 1.87 × 10− 2 1.53 × 10−2 1.54 × 10−2 1.70 × 10−2 1.50 × 10− 2

Y 1.15 × 10− 2 1.58 × 10− 2 1.46 × 10−2 1.52 × 10−2 1.26 × 10−2 1.43 × 10− 2

MFO N 4.88 × 10− 3 2.79 × 10− 3 2.78 × 10−3 3.61 × 10−3 2.43 × 10−3 2.71 × 10− 3

Y 3.64 × 10− 3 2.55 × 10− 3 2.46 × 10−3 2.74 × 10−3 2.43 × 10−3 2.50 × 10− 3

PSO N 5.92 × 10− 3 4.20 × 10− 3 2.99 × 10−3 5.52 × 10−3 2.71 × 10−3 2.65 × 10− 3

Y 3.14 × 10− 3 2.79 × 10− 3 2.91 × 10−3 4.12 × 10−3 2.88 × 10−3 2.69 × 10− 3

WCA N 2.38 × 10− 3 1.71 × 10− 3 1.75 × 10−3 1.75 × 10−3 1.51 × 10−3 1.58 × 10− 3

Y 1.89 × 10− 3 1.61 × 10− 3 1.71 × 10−3 1.62 × 10−3 1.60 × 10−3 1.67 × 10− 3

WOA N 2.56 × 10− 2 2.67 × 10− 2 2.30 × 10−2 2.68 × 10−2 2.43 × 10−2 2.28 × 10− 2

Y 2.25 × 10− 2 1.94 × 10− 2 2.16 × 10−2 2.56 × 10−2 1.90 × 10−2 2.00 × 10− 2

FIGURE 7 | Comparison of total average RMSE values with six different
datasets for the TDM.
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population sizes for SDM, DDM, and TDM were designed to be
30, 50, and 70, respectively. In addition, each algorithm was run
100 times independently in each PV cell model to obtain
statistical results.

Results on SDM
Table 3 shows statistical results of the average RMSE obtained by
each algorithm with six measured datasets, where symbol “Y”
represents MhAs are applied with data prediction and “N”

represents the condition that without data prediction. This
shows the average RMSE obtained by each MhA with data
prediction is significantly smaller than that with only
measured data, especially under 50% measured data. For
instance, the average RMSE obtained by PSO with data
prediction is 82.32% smaller than that without data prediction
under 50% measured data, which verifies such data prediction
strategy can significantly enhance searching efficiency and
optimization accuracy.

FIGURE 8 | Boxplot of RMSE obtained by various algorithms in different data for the DDM: (A) 50% data and (B) 100% data.

FIGURE 9 | Comparison between actual data and model curve acquired by the best algorithm in different training data for DDM: (A) I-V curve in 50% training data
(B) P-V curve in 50% training data (C) I-V curve in 100% training data and (d) I-V curve in 100% training data.
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Besides, the average RMSE obtained by each algorithm with
six inadequate measured datasets and six prediction datasets is
demonstrated in Figure 3, which indicates prediction data–based
PV parameter extraction for SDM can obtain higher accuracy and
stability.

In addition, Figure 4 shows the boxplots of RMSE obtained
by various algorithms in the SDM. From Figure 4, it is clear
that as the amount of data increases, the outliers of the RMSE
obtained by each algorithm decrease. For instance, the RMSE
of PSO exists as several outliers under 50% training data, while
these outliers disappear as training data increase to 100%.
Besides, the range and upper and lower limits of the
distribution are smaller under the 100% data than that
under the 50% data. This can effectively validate that MhA
improves convergence stability and searching ability based on
the increased amount of ELM data predicted.

Figure 5 plot I–V and P–V curves obtained by the best
algorithm (i.e., algorithm can obtain the minimum RMSE)

TABLE 5 | Average RMSE obtained by various algorithms for the TDM with six measured data.

Algorithm Average RMSE

Number of measured data (%)

— 50% 60% 70% 80% 90% 100%

ABC N 4.16 × 10− 3 3.49 × 10− 3 3.29 × 10−3 3.47 × 10−3 3.16 × 10−3 3.13 × 10− 3

Y 3.14 × 10− 3 3.19 × 10− 3 3.29 × 10−3 3.24 × 10−3 3.18 × 10−3 3.17 × 10− 3

BSA N 6.98 × 10− 3 7.56 × 10− 3 6.59 × 10−3 9.55 × 10−3 6.13 × 10−3 5.22 × 10− 3

Y 6.28 × 10− 3 6.03 × 10− 3 5.26 × 10−3 6.17 × 10−3 5.69 × 10−3 5.90 × 10− 3

GWO N 1.85 × 10− 2 1.57 × 10− 2 1.27 × 10−2 1.21 × 10−2 1.30 × 10−2 1.44 × 10− 2

Y 1.32 × 10− 2 1.22 × 10− 2 1.25 × 10−2 1.06 × 10−2 1.12 × 10−2 1.24 × 10− 2

MFO N 4.90 × 10− 3 3.06 × 10− 3 3.03 × 10−3 3.20 × 10−3 3.03 × 10−3 2.63 × 10− 3

Y 2.95 × 10− 3 2.69 × 10− 3 2.73 × 10−3 2.56 × 10−3 2.64 × 10−3 2.72 × 10− 3

PSO N 7.23 × 10− 3 4.20 × 10− 3 4.23 × 10−3 7.32 × 10−3 2.95 × 10−3 2.97 × 10− 3

Y 3.37 × 10− 3 2.87 × 10− 3 3.11 × 10−3 2.85 × 10−3 2.95 × 10−3 2.87 × 10− 3

WCA N 2.15 × 10− 3 1.54 × 10− 3 1.58 × 10−3 1.62 × 10−3 1.52 × 10−3 1.47 × 10− 3

Y 1.77 × 10− 3 1.47 × 10− 3 1.45 × 10−3 1.48 × 10−3 1.48 × 10−3 1.47 × 10− 3

WOA N 2.00 × 10− 2 2.06 × 10− 2 1.82 × 10−2 2.07 × 10−2 1.68 × 10−2 1.89 × 10− 2

Y 1.78 × 10− 2 1.55 × 10− 2 1.51 × 10−2 1.38 × 10−2 1.64 × 10−2 1.37 × 10− 2

FIGURE 11 |Comparison of total average RMSE values with six different
datasets for the TDM.

FIGURE 10 | Convergence of different algorithms for the DDM: (A) 50% data and (B) 100% data.
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under 50% training data and 100% training data for the SDM,
respectively. Note that WCA andMFO can achieve the minimum
RMSE under 50% training data and 100% training data,
respectively. It is not difficult to find that the model curves
obtained from both WCA and MFO based on data prediction
are in high agreement with the actual data, which can effectively
demonstrate their superiority in PV cell parameter extraction.

Besides, Figure 6 provides convergence of each algorithm
under different training data. It can be seen that WOA tends to
converge prematurely at the initial stage, and PSO has difficulty in
obtaining high-quality optimal solutions with 50% of the training
data. Besides, most algorithms can hardly achieve stable and
efficient convergence due to inadequate data, along with
unsatisfactory convergence accuracy. In contrast, the increase

FIGURE 12 | Boxplot of RMSE obtained by various algorithms in different data for the TDM: (A) 50% data and (B) 100% data.

FIGURE 13 |Comparison between actual data and model curve obtained by the best algorithm in different training data for TDM: (A) I-V curve in 50% training data
(B) P-V curve in 50% training data (C) I-V curve in 100% training data and (D) I-V curve in 100% training data.
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of training data helps them to gradually find high-quality
solutions with higher convergence stability and searching
efficiency as 100% data-based algorithms can better balance
local exploitation and global exploration.

Results on DDM
The average RMSE of the DDM obtained over 100 runs by the
different MhAs with six measurement datasets is shown in
Table 4, which demonstrates that increased prediction data
generated by the ELM can effectively improve calculation
accuracy. For example, the average RMSE obtained by the
GWO algorithm with data prediction is 48.19% lower than
that without data prediction under 50% measured data
scenario. This illustrates that the data prediction–based meta-
algorithm can achieve highly increased stability in finding quality
solution through increasing the amount of dataset with a desired
solution accuracy; thus, such novel strategy can output desirable
results when accuracy and reliability are both taken into
consideration in the DDM.

Figure 7 compares the average RMSE obtained by each
algorithm under six inadequately measured datasets with
that obtained under six prediction datasets in the DDM.
One can easily find that each algorithm can find the global
optimum more easily when experimental data are expanded
by prediction data, upon which optimal values of those
unknown parameters can be determined in a more
accurate and stable way.

Boxplot of various algorithms is shown in Figure 8, upon
which one can easily find that algorithms under 100%
training data have fewer outliers and smaller upper/lower
bounds in RMSE compared with that under 50% data. This
indicates that increase of training data from data-based
prediction can effectively enhance the quality of solution
and stabilize global searching ability in PV cell parameter
extraction.

Figure 9 plot I–V and P–V curves acquired based on the best
data prediction–based MhA (WCA) and actual data under 50%

training data and 100% training data, respectively. This indicates
that the model curves obtained by WCA are highly consistent
with the actual data.

Moreover, Figure 10 provides convergence of all algorithms
with data prediction, which illustrates that convergence speed of
WOA is low and GWO tends to fall into a local optimum with
50% of the training data. On the contrary, convergence under
100% training data verifies that they can more stably find a better
solution, especially for GWO.

Results on TDM
Table 5 presents the average RMSE obtained by each algorithm
with six different measured datasets, which reveals that data
prediction–based algorithms still outperform those based on
measured data. For example, the average RMSE obtained by
PSO with data prediction is 61.06% lower than that without
data prediction under 80% measured data. Hence, data
prediction–based algorithms own the most satisfactory
performance in terms of the accuracy of the solution for the TDM.

Figure 11 shows the comparison of the average RMSE of each
algorithm under six inadequate measured datasets with that
obtained under six prediction datasets in the TDM. It shows
that the average RMSE obtained byWOA decreases by about 25%
via data prediction, which verifies the effectiveness of data
prediction in solution quality improvement.

Figure 12 presents the boxplot of different MhAs, while
Figure 13 show the best algorithm (WCA) and the I–V and
P–V curves obtained with the actual data under different datasets,
verifying the accuracy of the extracted PV cell parameters.
Figure 12 clearly shows that the increase in the volume of
data can significantly reduce the RMSE outliers achieved by
each algorithm, while lowering the upper/lower limits. Hence,
solution precision and stability can be greatly enhanced by
increasing the amount of experimental data.

Last, Figure 14 provides convergence of all algorithms with
data prediction, which shows that 100% training data–based
algorithms can achieve a proper trade-off between local

FIGURE 14 | Convergence of different algorithms for the TDM: (A) 50% data and (B) 100% data.
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exploitation and global exploration, while 50%-based algorithms
are easy to be trapped at a local optimum.

Statistical Results and Analysis
The radars of the average RMSE obtained by each MhA with six
groups of data at different scales are provided in Supplementary
Figure S1, Supplementary Figure S2, and Supplementary Figure
S3, where symbol “+” represents MhAs with data prediction,
which provides a more explicit illustration of stability of each
algorithm with data prediction for PV cell parameter extraction in
each model. One can see that the average RMSE obtained by each
algorithm with data prediction is smaller compared with that
obtained without data prediction at different scales of data. This
effectively verifies the outstanding reliability of DPMhA for PV
cell parameter extraction.

CONCLUSION

This article proposes a novel PV cell parameter extraction
strategy is developed for three different PV cell models. The
main three contributions/innovations in this article can be
summarized as follows:

• ELM-based data prediction allows MhAs to perform a more
stable search for optimal solution for identification of PV cell
parameter with inadequate measured output I–V data.

• Three different types of PV cell models are adopted to reliably
verify the practical enhancements and general feasibility of the
strategy of DPMhA for PV cell parameter extraction.

• Case studies demonstrate that DPMhAs can considerably
improve the accuracy, robustness, and convergence rate of
PV cell parameter extraction compared with those only
based on original measured output I–V data.

Case studies show that ELM-based MhAs can effectively
improve optimization accuracy and convergence stability

compared with original MhAs utilizing untrained measured
I–V data. Although the convergence stability of MhAs can be
improved by extending the data through the ELM, the
optimization accuracy of some MhAs still needs to be
improved in some conditions due to the error between the
generated artificial data and the real measurement data.
Hence, the next work will aim to handle this issue by
introducing some advanced neural networks with excellent
generalization.
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GLOSSARY

Variables
Iph photocurrent, A

Id, Id1, Id2, diode’s currents, A

Isd, Isd1, Isd2, Isd3 diode’s reverse saturation currents, A

Rs series resistor, Ω

Rsh shunt resistor, Ω

a , a1 , a2 , a3 ideality factors of diode

Abbreviations
ABC artificial bee colony

AIS artificial immune system

ANN artificial neural network

BP back-propagation

BSA backtracking search algorithm

DDM double diode model

DE differential evolution

DPMhA data prediction–based meta-heuristic algorithm

ELM extreme learning machine

FWA fireworks algorithm

GA genetic algorithm

GWO grey wolf optimization

I–V current–voltage

MFO moth flame optimizer

MhA meta-heuristic algorithm

MPPT maximum power point tracking

PSO particle swarm optimization

PV photovoltaic

P-V power–voltage

RMSE root mean square error

SDM single diode model

SLFN single-hidden layer feedforward neural network

STC standard test condition

SSA salp swarm algorithm

TDM three diode model

WOA whale optimization algorithm

WCA water cycle algorithm

WDO wind-driven optimization
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