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With an increasing application of Phase Measurement Units in the smart grid, it is
becoming inevitable for PMUs to operate in severe conditions, which results in outliers
and missing data. However, conventional techniques take excessive time to clean outliers
and fill missing data due to lacking support from a big data platform. In this paper, a flexible
ensemble algorithm is proposed to implement a precise and scalable data clean by the
existing big data platform “Apache Spark.” In the proposed scheme, an ensemble model
based on a soft voting approach utilizes principal component analysis in conjunction with
the K-means, Gaussian mixture model, and isolation forest technique to detect outliers.
The proposed scheme uses a gradient boosting decision tree for each extracted feature of
PMUs for the data filling process after detecting outliers. The test results demonstrate that
the proposed model achieves high accuracy and recall by comparing simulated and real-
world Phase measurement unit data using the local outlier factor algorithm and Density-
Based Spatial Clustering of Application with Noise (DBSCAN). The mean absolute error,
root mean square error and R2-score criteria are used to validate the proposed method’s
data filling results against contemporary techniques such as decision tree and linear
regression algorithms.

Keywords: data cleaning, outlier detection (OD), data recovery, phase measurement unit(PMU), apache spark

INTRODUCTION

Due to the increasing demand for accurate control and management in smart grids, many advanced
online monitoring devices have been installed and provide abundant operating data resources using
Phase Measurement Units (PMUs). The data preprocessing is an important step that transforms the
raw operating data used in the load forecasting model, user clustering tool, equipment maintenance,
and energy theft detection technique. The outcome of data preprocessing has a significant impact on
the data modelling process. For instance, a prediction model fed by a raw dataset with noise and bad
data will be inefficient and cause inaccuracy. PMU failures, such as communication errors and noises,
cause irregular packet data and asymmetric magnitude spikes, which are particularly problematic for
smart grid applications. As a result, PMUs’ data cleaning algorithm must maintain high speed and
sensitivity to faulty data in order to deliver a highly reliable data mining model. However, designing a
data cleaning algorithm that balances high speed and sensitivity is a technological challenge that
needs to be addressed.

Data cleaning technologies are a heavily studied domain of data statistics and machine learning.
The whole process of extensive data cleaning is illustrated as outlier detection and data filling. The
outliers which do not follow the main of the data may be produced by inducing random errors and
faulty measurements (Zhao et al., 2019). For outlier detection, with the recent advancement in
machine learning techniques, both unsupervised and supervised methods have been investigated for
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better accuracy, speed, and computation cost. In supervised
models, such as one-class support vector machine (SVM) (Ma
and Perkins, 2003), decision forest (Reif et al., 2008),
convolutional neural network (Ren et al., 2020), and the long
short-term memory network (LSTM) (Wu et al., 2020) can
achieve excellent performance by learning massive labeled
data. However, labeling massive data is very time-consuming
and needs great manual effort, which limits its application at an
industrial scale. In comparison, unsupervised outlier detection
does not need labeling and can achieve good accuracy in most
cases. Even though some of their results are poor in complicated
scenarios, unsupervised methods, namely Kmeans, Gaussian
Mixture Model (GMM), CURE (Lathiya and Rani, 2016),
Density-Based Spatial Clustering of Application with Noise
(DBSCAN) (Manh and Kim, 2011), local outlier factor (LOF)
(Pokrajac et al., 2007) and isolation forest (iForest) (Liu et al.,
2008) are extensively used in real-world scenarios because they
are easy to implement. Subsequently, there have been several
attempts to use an unsupervised model to clean PMU data in the
smart grid. For example, in (Mahapatra et al., 2016), principal
component analysis (PCA) is used to detect outliers in PMU
measurements. Likewise, PCA is incorporated with an artificial
neural network (ANN) to improve detection accuracy
(Mahapatra et al., 2017).

Meanwhile, researchers have been drawn to the drawbacks of
stand-alone approaches, which produce inconsistent results in
complex situations. As a result, various ensemble-based models
have been designed to address deficiencies in real-world
applications and improve their performance. For example, to
improve accuracy, the local outlier factor (LOF) algorithm,
correlation outlier probabilities, and single-linkage-based outlier
detection methods are used (Kummerow et al., 2018). The
DBSCAN, Chebyshev, and linear regression models are
combined to predict PMU outliers (Zhou et al., 2019), but the
approach cannot distinguish abnormal and regular operations. The
Kmeans and local outlier probability methods are used to identify
various types of anomalies based on the iForest anomaly score,
such as fault detection, transient disturbance, etc. (Khaledian et al.,
2020). In complex scenarios, these ensemble methods can present
improved performance. However, the performance of extremely
big data sets that may be computationally analyzed to discover
patterns is rarely mentioned.

With the development and deployment of PMUs, the size of
received data risen exponentially for a data center. (Khan et al.,
2014; Yang et al., 2015). When dealing with vast amounts of data,
conventional data processing methods can take days or weeks,
which is insufficient time for data analysis. As a result, to ensure
successful data processing, some attempts focus on big data
technology. An adaptive hoeffding tree with a transfer learning
approach is proposed (Mrabet et al., 2019) to detect the PMU
data’s events. In another attempt, a feature generation system is
well-designed via Apache Spark core, which successfully fits 400
PMUs from the North American power grid (Kumar et al., 2021).
A streaming interface based on Apache Spark for the
synchrophasor data stream is investigated (Menon et al.,
2018). Despite this, the integration and expansion of detection
algorithms on existing big data platforms have limitations.

Furthermore, data filling is often addressed in publications as
an important step in avoiding missing values. Statistic techniques
and machine learning methods can complete the data filling
processing. For statistic techniques, an improved cubic spline
interpolation method is used to recover the missing data in the
transient state and static state of power systems (Yang et al.,
2019). A feature component extraction-based approach is
proposed to recover a single channel data of PMU, which
accounts for more details of the data waveform (Gao et al.,
2016), but the relationship between PMUs is ignored. By
contrast, an extreme learning machine and a random vector
functional link model are introduced to produce good filling
results (Li et al., 2019). Besides, artificial neural network
technologies are also developed to achieve a good performance
against complex scenarios. For example, a least-squares
generative adversarial network is adopted to generate adequate
monitoring data (Wang et al., 2021). Except for developing a new
method, the researchers utilize the potential information in
power systems’ features to improve the accuracy, such as
network topologies and operation mode. In (Ren and Xu,
2019), the network topologies are considered in a recovery
program based on a generative adversarial network (GAN).
Although the importance of topology in data recovery
processing is investigated, publications seldom cover the whole
data cleaning process, including outlier detection and data
recovery.

Traditional bad data detection algorithms may underperform
when dealing with complex scenarios and take a long time to run
without big data technologies. Our motivation is to investigate
how to apply the complete data cleaning process of PMUs,
including outlier detection and data filling, to existing big data
platforms to achieve expected performance. A flexible ensemble
approach for data cleaning is given in this study to adapt to the
failure of a single technique. In outliers detection, we adopt an
ensemble method that includes three sub-detectors, the Kmeans
combined with PCA, GMM, and iForest. A flexible voting
mechanism then aggregates their results, and the aggregation
is used to label outliers. After the outliers detection, the Gradient
Boost Decision Tree (GBDT) is used and well designed to recover
missing data and observed outliers. Apache Spark platform, Spark
streaming system, Kafka and Hadoop distributed file system is
selected to perform and test the proposed algorithm with massive
datasets. In more detail, the contributions of this paper are listed
as follows. First, a flexible data cleaning algorithm uses Apache
Spark to automate the identification of outliers and retrieve
missing data. Second, we propose a flexible voting mechanism
for outlier detection to aggregate the outputs of PCA-Kmeans,
GMM, and iForest in complex cleaning scenarios.

PROBLEM DESCRIPTIONS

The Framework of Proposed Data Cleaning
via Spark
Figure 1 depicts a hierarchical data-cleaning framework
proposed in this paper. The presented data cleaning algorithm
is deployed in the Spark and Hadoop distributed file systems.
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Master nodes and worker nodes are included in the system (2
nodes, as shown in Figure 1). When the proposed algorithm
interacts with the master node, the master node asks the cluster
manager for computing resources. The cluster manager responds
by allocating jobs to worker nodes, and the worker nodes perform
tasks based on PMU data.

The proposed data cleaning process is divided into three
stages, as shown in Figure 1. The first step is to prepare the
data. In this stage, the PMU data is uploaded to the worker nodes,
preparing them for the next cleaning process. The cleaning
procedure is preceded by a preprocess duplication and missing
values. We remove duplication data and then find missing values.
In this condition, the remaining data with noises are normalized.
After that, the missing values labelled with “−2” and the
normalized data are combined to form the dataset. Choosing
−2 is to distinguish missing values from the normalized data (Liu
et al., 2020). In the second stage, we randomly sample from the
dataset to train PCA-KMeans, GMM, and iForest algorithms to
predict outliers using a soft voting mechanism. Note that outliers
include noise data. In the third stage, the outliers and missing
values with “−2” are replaced with null values due to their
abnormal features. If any record only contains null values,
linear regression is used to recover this record.

Outlier Detection
In general, outlier detection algorithms should be unresponsive to
normal data, resilient and robust to outliers, and capable of
computation. However, only a few algorithms can meet the
requirement in most cases, and the algorithm’s output can
jeopardize the data analysis credibility. To be more specific, 1)
the algorithm may be insensitive to one or more types of outliers,
such as bad data or missing values. 2) the model with adjustable
parameters generates a high computational cost when cleaning a
large dataset and can result in overfitting. 3) The algorithm may
be vulnerable to standard power system manual operations, such
as network topology changes.

To demonstrate more clearly, we take a section of PMU data
shown in Figure 2, where five points are identified as outliers and
highlighted in the figure. The state-of-the-art detecting
algorithms, Kmeans, GMM, iForest, DBSCAN, and LOF, are

compared, with their parameters tuned. Most of the algorithms
miss two outliers due to the topology change. However, only a
small number of algorithms are capable of detecting all outliers.

To overcome these challenges, combining different findings
from different detectors is necessary. The combining model can
take advantage of every detector by aggregation and coherently
achieve better performance. Its aggregation mechanism is the key
to utilize the benefits fully. This paper investigates a flexible
voting aggregation mechanism for the ensemble method to
identify outliers.

Furthermore, in an ensemble algorithm, sub-detector selection
is a critical step. In theory, any outlier detectors can be used for
the ensemble, but since the compute resource is limited, the sub-
detector number is limited. In the sub-detector selection, the
detectors based on different methodologies are welcomed. In this
paper, the density-based method, iForest, is chosen because of its
high scalability and low memory use. The clustering-based
methods, Kmeans and GMM, are used since the Kmeans ease
of implementation in distributed computing. The GMM is
selected because of its fuzzy clustering, which provides the
probability of data points belonging to each cluster and is
more flexible than Kmeans. While starting the cleaning
process, three detectors are trained by the sampling data and
then process the entire data separately and simultaneously using
Spark’s pipeline mechanism which can improve computing
efficiency.

FIGURE 1 | The framework of data cleaning in Spark.

FIGURE 2 | The framework of data cleaning in Spark.

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 6950573

Shen et al. Algorithm for PMUs’ Data Cleaning

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Data Filling
Standard manual operations, such as network topology changes and
line maintenance, often occur and cause PMU data to drift. Some
filling algorithms, on the other hand, ignore the information and
predict a significant error. As a result, such information should be
considered when training a filling algorithm.

Furthermore, the filling algorithm’s accuracy should be given
more consideration. As a famous filling algorithm, GBDT can
reach a high accuracy than other filling algorithms. The GBDT is
a classic ensemble learning method that creates a strong
regression tree by combining weak regression trees (typically
train classification and regression tree (CART)). Thereupon,
GBDT handles nonlinear relationships well and achieves high
accuracy in fragmented datasets. Therefore, we adopt the GBDT
method against missing data packets.

ENSEMBLE MODELING FOR OUTLIER
DETECTION

Data Preparation
In this subsection, an ensemble method based on sub-detector
PCA-Kmeans, GMM, and the iForest algorithm is proposed in
order to obtain a more accurate detection of an outlier. To clearly
illustrate the process, let D � dk, dk+1, dk+2, . . . , dk+w be the kth
data window with size w, while D is a set of data rows. In which
each data row dicontains seven components: voltage magnitude,
current magnitude, current angle, active power, apparent power,
reactive power, and power factor angle.

PCA-Kmeans Detector
The Kmeans is a classical classifying method that marks the data
into several clusters. By analyzing and classifying the clusters, the

clusters of outliers can be detected. However, given the potential
vulnerability of the Kmeans on high dimensional data, the PCA
approach is combined with Kmeans to reduce the dimension of
the data, called the PCA-Kmeans detector. The PCA approach is
one of the most popular dimensionality reduction techniques
(Mahapatra et al., 2017), aiming to find an orthogonal subspace
whose basis vectors correspond to the maximum-variance
directions in the original space. By using the output of the
PCA model, the Kmeans method can achieve better accuracy.
For clarity, let take B � {b1, b2, . . . , bi, . . . , bw} as the output of
PCA. Each bi has nsub features. In the Kmeans method, each biof
B should be assigned to the cluster which has the least squared
Euclidean distance (Khaledian et al., 2020). To begin with, the k
number of the centroid is selected randomly as m(1)

1 , . . . ,m(1)
k .

Whereas a centroid is a data point at the cluster center. Next,
iterations are implemented to find the nearest centroid for each
bi, as given by Eq. 1.

C(t)
i � {bi: ‖bi −m(t)

i ‖2 ≤ ‖bi −m(t)
j ‖2 ∀j, 1≤ j≤ n} (1)

where C(t)
i is the serial number of the nearest cluster for bi in t

iteration, 1≤C(t)
i ≤ n. m(t)

i is the mass point of C(t)
i . n is the

number of clusters.
After labeling each feature set in every iteration, the centroid in

each step will be updated by Eq. 2.

m(t+1)
i � 1∣∣∣∣C(t)

i

∣∣∣∣ ∑
bi∈C(t)

i

bi (2)

Meanwhile, when the centroid difference in an adjacent
iteration is less than ξ, the iteration comes to a halt and gives
final labels to each feature set in vector B based on Eq. 3.

m(t+1)
i −m(t+1)

i ≤ ξ (3)

FIGURE 3 | The mechanism of iTree.
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where Ei is the mean of data points in Ci , ξ is a very small positive
number. Here, we take the result of the PCA-Kmeans that is a set
of cluster labels Skmeans.

Gaussian Mixture Model-Based Detector
The GMM is a useful algorithm for detecting outliers based on a
density function (De la Torre et al., 2012). Unlike Kmeans, the
data is assumed to be modelled by several Gaussian density
functions in this method. Each Gaussian density in the kth is
given by a Gaussian function Eq. 4. The GMM model is the
weighted sum of several Gaussian densities, illustrated by Eq. 5.

gk(d∣∣∣∣μk, σk) � 1�����
2πσ2

k

√ e
−(d−μk)2

2σ2
k (4)

g(D; μ,π, σ) � ∑M
k�1

πkgk(D; μk, σk) (5)

where π � {π1, . . . , πM}, μ � {μ1, . . . , μM}, σ � {σ1, . . . , σM}, and
πkis the specific weights of each Gaussianmodel within a mixture.
M is the number of Gaussian function. μk, σkare the means and
the covariance matrix of each model, respectively.

To determine the parameters such as π, μ, σ of the Gaussian
functions, the maximum likelihood function given by Eq. 6 is
used for help by using the Expectation-Maximization (EM
Algorithm) (De la Torre et al., 2012). The log-likelihood is
used as Eq. 7 to determine if a data point belongs to the
Gaussian functions measured earlier. The GMM’s output is
then assigned the weight of each data point to simple
Gaussian density.

L(μ,π, σ) � ∏w
i�1

∑M
k�1

πkgk(di; μk, σk) (6)

log L(μ,π, σ) � ∑M
k�1

∑w
i�1

zki{log( πk) + log(gk(di; μk, σk)) } (7)

Zki contains 0 or 1 depending on whether the data di belongs to
Gaussian function k.

The mean log-likelihood criterion is then used to determine if
the incoming data in the next window matches with the current
GMM or not (Diaz-Rozo et al., 2018); it is calculated using Eq. 8.

log L(μ,π, σ) � 1
w

∑w
i�1

log⎛⎝∑M
k�1

πkgk(d; μk, σk)⎞⎠ (8)

Isolation Forest Detector
In general, anomalies are less common than normal findings and
have different values. The Isolation Forest algorithm takes advantage
of this feature tomeasure a dataset’s anomaly ratings, which are then
used to distinguish outlier points (Liu et al., 2008). In this subsection,
isolation trees (iTree) and path lengths are introduced.

For clarification, let us take a random binary tree as an example;
partitioning observations is repeated recursively until all the
observations are isolated. As shown in Figure 3, the iTree that
uses a binary tree structure is proposed to isolate observations.

Definition 1 (iTree): iTree is a random binary tree with no
more than two children per node. As shown in Figure 3, internal
nodes have exactly two children, while external nodes have none.
Each internal node has a randomly chosen function q and a split
value p, resulting in the node’s split into two child nodes
according to the condition q < p. This process is repeated
until all of the nodes have just one case.

FIGURE 4 | The flowchart of the proposed algorithm.
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We denote a training dataset with N instances by X � {x1, . . . ,
xN}. The subsampled setx⊂X is sampled from Xwith φ instances,
which is utilized for training an iTree. The process of building an
iTree is to divide up the subsampled set x recursively into
subspaces. Note that we adopt only subsampled sets of small
fixed sizes to build iTrees, regardless of the dataset’s size. This
way, we can obtain each iTree very swiftly.

Anomalies are isolated closer to the root node of an iTree and have
short path lengths, as seen in Figure 3. On the other hand, standard
points are isolated at the deep end of an iTree and therefore have long
path lengths. As a result, anomaly scores are a function of path
lengths. The length of the route is determined as follows.

Definition 2 (Path length): l(x) is the number of edges between
the root node and the external node corresponding to an instance
x in the iTree.

For the same dataset X, we can build multiple iTrees that are
constructed by randomly selected features, split values, and
subsampled datasets. To aggregate the results of iTrees and
calculate the anomaly score, we first introduce an average path
length c(φ) for instances φ in an iTree calculated by Eq. 9. This
average path length can represent the length situation of the
instances φ, which is used to normalize the length of each
component x in the instances. Next, the anomaly score of each
component x in the instance φ can be obtained by calculating Eq.
10. The anomaly score ranges from 0 to 1, and the data instance will
be normal if the score is lower than 0.5 (Liu et al., 2008). Further, the
data instance which is closed to 1 can be detected as an outlier.⎧⎪⎪⎨⎪⎪⎩ c(φ) � 2H(φ − 1) − 2(φ − 1)

φ

H(φ − 1) ≈ log(φ − 1) + e

(9)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
s(x,φ) � 0.5 − 2

− E(l(x))
c(φ)

E(l(x)) � 1
NTree

∑NTree

n�1
ln(x)

(10)

where e is the Euler constant; l(x) is the path length of each
component x in the instance φ. The expected path length is
represented as E (l(x)). NTree is the number of iTrees.

Soft Voting Mechanism
To fully utilize the advantages of sub-detectors, a soft voting
mechanism is used to combine the sub-detectors predictions and
increase robustness to complex scenarios. In particular, compared to
the outlier probability given by GMM and iForest, the prediction of
Kmeans is “hard” and has less elasticity against the scenario because
it only gives a cluster label to each data point. TheKmeans prediction
should be combined with another “soft” approach with a similar
mechanism to deal with the poor results. For example, GMM, a soft
clustering method, is used to multiple the Kmeans results marked as
SkmeansPGMM . Although SKmeans � 1, which means outlier detected in
the Kmeans method, the outlier probability is still driven by GMM.
Furthermore, to account for diversity in our voting mechanism’s
final prediction, the average outlier likelihood of all sub-detectors is
used, as seen in Eq. 11.

P � SkmeansPGMM + PGMM + PiForest

3
(11)

SKmeans, PGMM, and PiForest are the output of the PCA-
KMeans, GMM, and iForest algorithms. SKmeans is a binary
variable, and SKmeans � 0 addresses the normal data, while
abnormal data is annotated as 1. PGMM is the probability of
outliers for an observation, which is closed to 1, meaning outlier.
PiForest is the anomaly score of the data point.

DATA FILLING PROCESS AND DATA
CLEANING FUNCTION
Gradient Boosting Decision Tree-Based
Filler
As discussed in Problem Descriptions, data filling is an important
part of data cleaning, and it is a regression problem by definition.
For PMU data, it is possible to have missing values for each
feature, which presents as single or continuous types in a dataset.
To tackle different types of missing values, the GBDT model is
trained for each feature of PMU data, respectively. In case of
single missing value occurs in a feature, the GBDT model can

TABLE 1 | The details of outlier detection datasets.

Dataset Points Feature Outliers (%)

Satellite 6,435 36 2036 (32%)
Shuttle 49,097 9 3,511 (7%)
BreastW 683 9 239 (35%)
Http 567,479 3 2,211 (0.4%)

TABLE 2 | The results of the proposed method with outlier detection datasets.

Metrics Datasets

Satellite Shuttle BreastW Http

TP 1,343 3,375 222 2,185
FP 145 145 17 84
TN 4,654 45,440 427 565,203
FN 293 137 17 26
Precision 0.90 0.96 0.93 0.96
Recall 0.82 0.96 0.93 0.99

FIGURE 5 | The testing IEEE 14-bus system.
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easily fill it using the other features as input. By contrast, when
facing the continuous missing values loss of all features, the
topology is the first to be recovered using the last instance. Then,
the variables strongly associated with time—such as active
power—are recovered by the linear regression method. Next,
the other features are retrieved by the GBDT method.

The GBDT is used as a filler and to model an approximation
function f(X) of a specified result Y � {y1, y2, . . . , yn} with a set of
the input variable as X � {x1, x2, . . . , xnsp}. nsp is the length.
During the approximation process, a loss function is usually
adopted to search for the most precise approximation function.
As illustrated in Eq. 12, the most precise model is obtained when
the loss function is minimum. Here, we select the squared error
function as the loss function shown in Eq. 13.

F(x) � arg minf (x)L(y, f (x)) (12)

L(y, f (x)) � [y − f (x)]2 (13)

The optimization can be effectively solved by a gradient descent
algorithm, and the approximation function can be updated using
the results of every iteration, illustrated via Eq. 14. In each iteration,
the GBDT model uses the results in the last iteration and a
classification and regression tree (CART), which is updated as
Eq. 14. Especially in the initial iteration, f0(x) � 0.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f (x) � ∑M
m�1

f m(x)

f m(x) � f m−1(x) + γm ∑J
j�1

cmjI, x∈ RmJ

(14)

where M is the length of iterations. m is the serial number of

iteration. ∑J
j�1

cmjI is the result of the CART. J is the number of leaf

nodes of the CART. The area disjointed by each leaf node is Rm1,
Rm2, . . . , RmJ. cmj is the prediction value of jth area. γmcan be
calculated by Eq. 15, and yi is the actual value of variable y.

γm � arg minγ∑
i�1
L⎛⎝yi, f m−1(xi) + γ∑J

j�1
cmjI,⎞⎠ (15)

By repeating the above interactive steps, the output of GBDT
can be obtained by the final iteration.

The Proposed Processing of Data Cleaning
A flowchart of the proposed strategy is shown in Figure 4. Step 1:
after eliminating duplication and detecting missing values, normalize
the remaining data. Step 2: replace missing values with ‘-2’ and train
PCA-KMeans, GMM, and iForest algorithms by sampling the
normalized data. Step 3: detect the entire data by Eqs. 1–10 and
combine PCA-KMeans, GMM, and iForest to eliminate outliers via a
soft voting approach. Step 4: if any record only contains null values,
using linear regression recovers the time-dependent features of
records and then employing GBDT recovers the entire data. Step
5: otherwise, GBDT is used to recover the entire data.

NUMERICAL SIMULATION

Experimental Settings
In this simulation, the detailed experimental evaluation is
presented with Spark 2.4.0, Kafka 0.10.1.0, Hadoop 2.4.7 under
Ubuntu 16.04 operation system. Three scenarios are presented to
demonstrate the feasibility of the proposed process. The outlier

TABLE 3 | The noises injection of simulated scenarios.

Abnormal type Anomalies calculation in each feature Abnormal/Data points

Noise 5% 1.p.u *105% + G(x) 569/4,000
Noise 10% 1.p.u *105% + G(x) 1,091/4,000
Noise 15% 1.p.u *105% + G(x) 1,529/4,000

FIGURE 6 | The segment of synthetic noise-5% PMU data.

TABLE 4 | The outlier detection results in simulated scenarios.

Algorithm Metrics Abnormal rate

5% 10% 15%

Proposed FEA TP 564 1,077 1,510
FP 16 14 21
TN 3,415 2,895 2,397
FN 5 14 19

Precision 0.972 0.987 0.986
Recall 0.991 0.987 0.987

DBSCAN TP 568 1,090 1,529
FP 6 15 0
TN 3,425 2,856 2,430
FN 1 38 41

Precision 0.989 0.986 1
Recall 0.998 0.966 0.974

LOF TP 550 1,047 1,484
FP 19 44 45
TN 3,412 2,891 2,455
FN 19 18 16

Precision 0.97 0.960 0.970
Recall 0.97 0.983 0.989
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identification function of the proposed approach is firstly
evaluated by an industrial dataset from the reference (Liu
et al., 2008), considering precision and recall metrics.
Secondly, the outlier detection function is examined using

simulated PMU data and real PMU data. Finally, the mean
absolute error and the root mean squared error are employed
to evaluate the precision of the proposed approach in recovering
data compared with the linear regression algorithm and the
decision tree approach.

Outlier Detection of the Public Industrial
Dataset
The proposed algorithm (FEA) is recommended in this scenario for
detecting real-world datasets from outlier detection datasets and
generating a score. Considering Satellite, Shuttle, Breastw, and Http
datasets (Liu et al., 2008) illustrated in Table 1, a confusion matrix,
which includes false positive (Fp), false negative (Fn), true positive (Tp),
and true negative (Tn), is used to validate the performance of the
proposed algorithm. Following that, we can use Eqs. 18, 19 to measure
the recall and precision ratios for further discussion.

FIGURE 7 | (A) The distribution of normal and abnormal data in noise-5% (B) The range of proposed FEA and DBSCAN.

FIGURE 8 | (A) The distribution of noise-5% data with a range of different detectors (B) The range of proposed FEA and GMM, KMeans and iForest.

FIGURE 9 | A feature of real-world PMU data.

TABLE 5 | The outlier detection results in real-world scenarios.

Algorithm Metrics

TP FP TN FN Precision Recall

FEA 1,077 10 33,811 46 0.991 0.959
DBSCAN 1,082 71 33,769 22 0.982 0.964
LOF 1,102 51 33,740 51 0.956 0.956

TABLE 6 | The data recovery results in real-world scenarios.

Algorithm Metrics

MAE RMSE R2-score

FEA-GBDT 0.354 0.463 0.910
Decision tree 0.366 0.483 0.904
Linear regression 0.378 0.476 0.900
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recall � Tp

Tp + TN
(18)

precision � Tp

Tp + FP
(19)

The number of outliers detected as outliers is TP, and the
number of normal data detected as normal data is TN. At the same
time, FP stands for the number of normal data points that have
been identified as outliers. The number of outliers detected as
normal data is given by FN.

As shown in Table 2, the proposed FEA can achieve good
performance while cleaning all types of data with large and highly
polluted information, although this recall is about 82% for Satellite.

Outlier Detection of Synthetic PMU Dataset
Using PMU operational data, the proposed method and other
methods are compared in this subsection. In PSCAD/EMTDC,
simulation data is produced using a model IEEE 14-bus network
system with PMUs installed on bus-2,6,9, as shown in Figure 5.
The length of operation data of PMU is 4,000 points with a
sampling rate of 40 frames per second. The data is polluted by
outliers and missing values using a Gaussian-distributed random
function as z � G(x). Table 3 shows that each PMU data has 5
percent -15 percent noise and 5 percent -15 percent missing
values injected into it. As an example, if a data point has a voltage
feature of 35kV, the noise is calculated as 35*105% + G(x). As
illustrated in Figure 6, one segment of the synthetic data is added
by a noise-5% PMU data.

Changing the ratios of white noises and null values, the
proposed FEA can maintain an expected performance, as
shown in Table 4. For instance, considering the dataset with
15% noise, DBSCAN and FEA have similar results. As illustrated
in Figure 7A, the normal and abnormal data are used to predict
the outliers. As shown in Figure 7B, DBSCAN has a little larger
cover of normal data than FEA does, which means that DBSCAN
can achieve slightly better precision than FEA.

Following that, Figure 8A illustrates the range of sub-detectors
used in our ensemble method. The details indicate that the KMeans
range is the largest but includes some abnormal data, indicating that
this method detects more outliers than normal data (FN), as shown
in Figure 8B iForest has a smaller range than KMeans but perfectly
covers all normal data. GMM has a narrow range and may predict
more normal data as outliers (FP). By combining the advantages of
each sub-detector, the FEA can achieve a normal range size while
maintaining a high level of outlier detection performance.

Outlier Detection of Real-World PMU
Dataset
For performance estimation, real-world PMU data from a specific
region in southwest China is used, and domain experts label
outliers and missing values in the dataset. FEA can detect
outliers and missing values, as shown in Figure 9. As presented
in Table 5, the FEA can efficiently clean data with a precision of
99.1 percent and a recall of 95.9 percent. The good performances in
real-world PMUdata again verify the proposed FEA’s effectiveness.

Data Recovery of Real-World PMU Dataset
The linear regression, decision tree, and GBDT algorithms are
introduced in this sub-section to complete the regression training
process and fill null values with real-world PMU data. The root
squared measurement error (RSME), mean absolute error
(MAE), and R2-score are respectively calculated to evaluate the
performance of the proposed approach in Eqs. 20–22.

MAE � 1
N

∑N
i�1

∣∣∣∣yi − h(xi)
∣∣∣∣ (20)

RSME �

���������������
1
N

∑N
i�1

(yi − h(xi))2√√
(21)

R2 � 1 −∑N
i�1 (yi − h(xi))2∑N
i�1 (yi − yi)2 (22)

where N is the size of data, yi is data point, H(xi) is the prediction
with the input xi, and yi is the average of data.

As illustrated in Table 6, the performance of the proposed
FEA-GBDT is superior to that of the other algorithms because of
lower MAE and RMSE and larger R2-score.

CONCLUSION

This paper proposes a modular ensemble-based cleaning approach
for PMUs to achieve outlier detection and data filling using big data
technologies. The proposed approach considers and aggregates the
advantages of different methods such as KMeans, GMM, and iForest
for outlier identification, allowing it to perform better. Missing values
due to system error are also investigated and retrieved using the
proposed process. Notably, computational results show that the
proposed approach can effectively process outliers, is resilient to a
high percentage of bad data, and performs well with a large dataset.
The proposed method achieves accurate prediction as compared to
DBSCAN and LOF algorithms. The proposed approach, in
particular, can handle large datasets deployed on Hadoop and
Spark systems. When data filling is taken into account, our model
produces a lowermean absolute error and root squaredmeasurement
error and R2-score. Furthermore, our algorithm results show that
using big data technology, a single detector’s poor performance and
low efficiency can be replaced by a high-efficiency ensemble
approach. PMUs’ outlier detection and data filling functions have
the potential to clean and use data in real-time for fault detection, data
processing, and prediction.

Some factors, such as communication infrastructure and
system maintenance, may have an impact on the proposed
algorithm’s efficiency. As a result, our future work will focus
on taking into account the aforementioned considerations and
refining the proposed approach in these scenarios.
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