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Compared to the step tariff, the real-time pricing (RTP) could be more stimulated for
household consumers to change their electricity consumption behaviors. It can reduce the
reserve capacity, peak load, and of course the electricity bill, which could achieve the
purpose of saving energy. This paper proposes a coordinated optimization algorithm and
data-driven RTP strategy in electricity market. First, the electricity price is divided into two
parts, basic electricity price and fluctuating price. When the electricity consumption is equal
to the average daily electricity consumption, the price is defined as the basic electricity
price, which is the clearing electricity price. The consumer electricity data are analyzed. A
random forest algorithm is adopted to predict the load data. Optimal adjustment
parameters are obtained and the load fluctuation and the fluctuation of the electricity
price are further quantified. Secondly, the appliances are modeled. The operation priority is
established based on the preferences of customers and the Monte Carlo method is used
to form the power load curve. Then, the smart energy planning unit is proposed to optimize
the appliances on/off time and running time of residential electrical appliances. An incentive
mechanism is used to further standardize the temporary electricity consumption. An
improved multiobjective particle swarm optimization (IMOPSO) algorithm is adopted,
which adopts the linear weighted evaluation function method to maximize the
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Abbreviations: T′8,T′11,T′12 ,T′17,T′18,T′20, the actual temperature at 8:00, 11:00, 12:00, 17:00, 18:00, 20:00;Ωi , dataset i with
the similar temperature and precipitation (the temperature difference does not exceed 5°C and the precipitation difference does
not exceed 10 mm at the same time); [XMon , XTue, ..., XSun](X ∈ Ωi), the weekly load dataset in the dataset; Ωi ; ST , All training
sets of the current node; A, the feature set extracted from the current node; T1,T2, the training set according to feature A; yi , the
square deviation of output value; ST , the training set; SE, the test set; E, the forecast error rate; Pr , the load forecast value; Pe, the
actual load value; P0, the average load value; A0, the market clearing price; F, the fluctuation range; PL(t), the load forecasting
curve;W, the price fluctuation; At , the final electricity price at time t; A0, the basic electricity price; Ad , the fluctuating electricity
price; μ μ1, μ2, μ3, the fluctuation coefficients of electricity price; T , the time length; a, the consumer’s application; C, the set of
consumer’s application;Qt

a , the power consumption during the time step t; Sti , the total power consumption of the consumer i in
time step t; k,k ∈ (0, 1), the priority adjustment coefficient; λt ∈ λ, the running state variable of application; δ, the cooling type
operating coefficient; Tt

em, the temperature at time t; Pri , the electricity bill; Pz , the incentive fee; B, the total social welfare; Li , the
consumption of electricity Sti , by consumer i at time t; Ck(xk), the power generation cost at the time of producing electricity xk ;
δ’, the electric elasticity coefficient;m, r, b, and c, the constants; κ1, κ2, the weighting coefficients; f1b, f2b, the optimal solution of
the two objective functions; f b2 , the value of the second objective function when the first objective function is optimal; f b1 , the
value of the second objective function when the second objective function is optimal;∑A

i�1 ∑T
t�1 Δca,t , the time sum when a is on;

Ki , the comfort coefficient.
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consumer’s social welfare while minimizing the electricity bill. The simulation proves that
the stability of the power grid is improved while obtaining the best power strategy.

Keywords: electricity market, pricing strategy, coordination optimization, peak load shifting, machine learning,
random forest algorithm, multiobjective particle swarm optimization with linear weighted evaluation function
method

INTRODUCTION

Power consumers have coincident peak load, resulting in a large
peak-valley difference. For traditional power supplies, the spare
capacity is relatively large, which increases the operating cost of
the system. In order to reduce the peak-valley difference and
enhance the stability of power supply, optimizationmethods were
proposed from the power generation side and the load side, such
as time-of-use electricity price (TOU) and Demand Response
(DR). The demand side self-adjustment is more economical and
practical than the investment in the power side to meet the peak
demand (Li et al., 2021). To establish a standardized and healthy
electricity market, it is necessary to give full play to the leverage of
electricity prices in the electricity market. In recent years, TOU
has played an increasingly important role in the power industry of
various countries in the world and has also attracted widespread
attention in the academic field (Lampropoulos et al., 2012). After
the implementation of the TOU, the load demand is increased
during the low period and the load demand is reduced during the
peak period, in which way the consumer has an economical
benefit (i.e., low utility bill). So it can change the electricity
consumption behavior of consumers. Currently, the pricing
models mainly include tiered electricity price (TP), real-time
pricing (RTP), day-ahead pricing (DAP), time-of-use pricing
(TOUP), and critical peak pricing (CPP). Zhou B. proposed a
new multiobjective optimal electricity price setting model for
time-of-use electricity price and stepped electricity price, which
can save energy and transfer the load from peak hours to off-peak
hours (Zhou et al., 2018). Mohsenian-Rad A. H. considered
deployment of energy consumption scheduling (ECS)
equipment in smart meters to implement autonomous
demand side management in communities where multiple
buildings share energy (Mohsenian-Rad et al., 2010). This
article mainly studies a source of energy (a generator or step-
down substation transformer) connected to the grid, without
considering regional interconnection issues. From the long-term
implementation of the time-of-use electricity price experience, it
is found that the range of the peak-to-valley price ratio is usually
between two and five times (Li et al., 2015). Based on the game
theory method, a pricing model is proposed to reduce the total
energy consumption cost and the peak-to-average load ratio
(PAR). The use of a smart residential energy management
system (SREMS) is demonstrated at the consumers’ premises
to reduce the total electricity bill by optimally time scheduling the
operation of household appliances. Related topics of home smart
power consumption management unit are being widely studied.
A new intelligent management system to accommodate the
possible optimal decisions for elastic load consumption is
discussed in an informational rich smart electricity grid

(Alamaniotis (2020). How much of the elastic load for that
specific day has been already scheduled? The temporary power
demand of consumer is not considered in this paper. An increase
in distributed small-scale generation and storage in residential
prosumer households, Heinisch et al. (2019). The paper aims at
investigating how residential photovoltaic (PV)-battery systems
are operated in given different assumed incentives. However, this
paper does not propose how to coordinate the battery charging
and discharging strategies in the system case and household cost
optimization.

This article first proposes a new RTP. The final electricity price
consists of clearing price and fluctuating price. The relationship
between load power consumption fluctuation and fluctuating
electricity price is quantified based on a stochastic forest
algorithm. In the second part, a mathematical model of
household electrical equipment is established. A smart energy
planning unit is proposed to optimize the on/off time and
running time of residential electrical appliances. According to
the equipment operation priority set by the consumers, a load
forecasting model is proposed, and the Monte Carlo method is
used to form a load curve. On this basis, incentive mechanisms are
used to further regulate temporary electricity consumption. In the
third part, the improved multiobjective particle swarm
optimization (IMPSO) algorithm is used to optimize the
calculation, so as to maximize the social welfare of consumers
and minimize the cost of electricity. The optimal power
consumption strategy is obtained, which also improves the
stability of power grid. The simulation results show that the
model reduces the consumers’ electricity bill, reduces the peak-
valley difference of the system, and improves the stability of the
system.

ESTABLISHMENT OF ELECTRICITY
PRICING MODEL

Load Forecasting Model Based on
Stochastic Forest Algorithm
The establishment of electricity price mechanism is based on the
stability of power grid. Consumers have a certain regularity in the
behaviors of electricity consumption. The power consumption of
four seasons in a year varies greatly. The power consumption in
summer has increased significantly. If necessary, the energy must
be limited to ensure the reliability of the power supply. Weather
changes also affect the electricity consumption of consumers. The
temperature rises, the cooling power increases significantly, and
the electricity consumption fluctuates in rainy days. Therefore,
load forecasting is related to weather factors, such as temperature
and precipitation. Different weather factors affect the load in
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different ways. In the same season, weather factors affect the load
in different ways. Therefore, the load data are classified by two
indicators of weather temperature and rainfall.

The actual temperature at 8:00, 11:00, 12:00, 17:00, 18:00, 20:
00 T′8,T′11,T′12,T′17,T′18,T′20 is selected every day, and the
temperature difference does not exceed 5°C and the
precipitation difference does not exceed 10 mm at the same
time. These data will be treated as the same datasetΩi. Load
forecasting model is more accurate than that of Zhao et al.
(1997) as the weather conditions have not been considered.
Load forecasting has been classified based on time and weather
in this paper. The trend of electricity consumption in the same
set is basically the same for a week. The trend of electricity
consumption in a week is basically the same. As shown in
Figures 1, 2, there is a relatively large change in electricity

consumption during weekdays on weekends. Different peak
valley time and different electricity consumption increase the
difficulty of load forecasting. This will lead to large errors when
we use weekend electricity load to forecast Monday load data. Li
et al. (2015) put forward the average error of hourly load
forecasting on weekdays which was only 2.16%. But the
electricity consumption on Sunday is compared with that on
weekdays; the average prediction error of that day is 3.5%. Zhao
et al. (1997) considered that the magnitude of the load value at a
certain time t (t � 1, 2, ..., 24) is mainly related to the load value
in the past day and the load value at that time in the past week.
They established a par forecasting model, which considered the
weekly periodicity of load fluctuation by modifying the daily
cycle par model of short-term load forecasting. Compared with
these papers, the algorithm is simpler and reduces the
calculation scale of intelligent prediction module in this paper.

In random forest algorithm, each tree selects some samples
and some features to avoid overfitting to a certain extent. Each
tree randomly selects samples and randomly selects features, so
that it has good antinoise ability and stable performance. It can
handle very high-dimensional data and does not need to make
feature selection. The decision trees of the random forest
algorithm are independent of each other, the calculation speed
is not affected and the training model is fast. The accuracy of the
training results is high. The Monte Carlo method is used to
generate the residential electricity consumption curve, which is
more accurate and reliable than the historical simulation method.
It also has a small amount of calculation. The traditional
empirical method cannot approximate the real physical
process, and it is difficult to obtain satisfactory results, while
the Monte Carlo method can truly simulate the actual physical
process, so the problem solving is very consistent with the reality,
and very satisfactory results can be obtained. From Figure 1, it
can be seen that the trend of electricity consumption in a week is
basically the same, and the difference between peak and valley in a
single day is about 30%. Mohsenian-Rad A H reckons that an
efficient prediction is likely by looking at the prices on yesterday,

FIGURE 1 | Changes in electricity load data in a week.

FIGURE 2 | The comparison of electricity consumption on weekends
and weekdays.

FIGURE 3 | Load forecast and actual value comparison chart.
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the day before yesterday, and the same day last week. But the
actual Monday load forecast accuracy is greatly affected by the
previous day. From Figure 2, the electricity consumption pattern
is quite different on weekends than on weekdays. As the load
electricity consumption curve presents a certain regularity
according to the week, the week is divided into seven groups,
the load database is established, and the historical data are used to
predict the power consumption of a certain day in the future. The
Pauta criterion (3σ criterion) is selected to process the data. If the
residual error is greater than 3σ, the data are considered abnormal
and discarded. The standard deviation is usually used to replace
the deviation (Qian, 2002).

It can be seen from the above that the weekly load data are
divided into seven groups [XMon, XTue, ..., XSun](X ∈ Ωi); each set
of data is similar day data. The result of random forest algorithm
is a combination of the results in each decision tree, so the key
step of random forest algorithm prediction is the formation of
decision trees and forests. After extracting the training set and its
features through the bootstrap algorithm, the CART algorithm is
selected as the algorithm for generating the regression decision
trees (Rothblum and Sethuraman, 2008; Li et al., 2020).
Therefore, the basis of node splitting is the minimum mean
square error, and the calculation method is shown in Eq. 1.

y � min
A,ST

⎡⎢⎣min ∑
si ∈T1(A,ST)

(yi − c1)2 +min ∑
si ∈T2(A,ST)

(yi − c2)2⎤⎥⎦ (1)

where ST represents all training sets of the current node. A
represents the feature set extracted from the current node.
The training set is divided into subsets T1 and T2 according
to feature A. By traversing the value of a, the sum of the
minimum mean square deviation of output valueyiis
obtained. Finally, all the attributes are traversed to get the
growth information of the node. Repeat the above process
for each generated child node until the termination condition
is reached. The termination condition is set to the minimum
mean square error to reach the threshold.

Firstly, using the similar daily data, it is divided into two parts:
S � {ST , SE}, training set ST and test set SE. By using the bootstrap
resampling method, one training set with the same sample size is
selected from the training set ST and repeated K times, the
training sets 3 can be obtained [S1, S2, ..., SK], and each
training set can generate the corresponding decision trees.
Using training set [S1, S2, ..., SK], the corresponding CART
decision trees are generated, and the minimum mean square
value is calculated to obtain the optimal segmentation criterion.
Train each decision tree until the termination condition is
reached. The test set data are brought in for training, the root,
node, weight, and other pieces of information of the decision trees
are saved, and the test set data are used for testing.

The forecast error rate E can be expressed as

E � Pr − Pe

Pr
× 100% (2)

where Pr is the load forecast value; Pe is the actual load value.
Load forecast and actual value comparison could be found in
Figure 3. Historical data estimates that the minimum error on

Monday is 2.3% and the maximum error rate is 7.8%. The
minimum error of other times is 1.5%, and the maximum
error rate is 7.5%.

Establishment of Price Fluctuation Model
The equal area method is used to analyze the load forecasting
curve and the average load value of the next day is obtain as P0.

∫
T

0

PL(t) · dt � T · P0 (3)

The electricity price consists of two parts, basic electricity price and
electricity fluctuating price. The basic electricity price A0 is determined
by the average daily electricity consumption P0. If the load value of the
moment is P0, the electricity price is equal to the basic electricity price
A0; the electricity pricefluctuation value is 0. ThePL(t) − P0 determines
the actual electricity price fluctuation range. The amplitude of electricity
price fluctuations is affected by the electricity price fluctuation range F
and the next day’s load forecast curvePL(t). Electricity price fluctuation
range F refers to the maximum fluctuation range of electricity price
defined by the government to ensure that the electricity price is within
the normal fluctuation range, generally (-15%; 10%). Set the variable
electricitypricefluctuationvalueW,W ∈ (0, |PL(t) − P0|max). Thefinal
electricity price At at time t consists of two parts: the basic electricity
price A0 and the fluctuating electricity priceAd . The electricity
fluctuating price Ad is the power function of the load fluctuation
valueAi. The greater the deviation of actual power consumption
from the daily average load, the greater the peak-valley difference
and the greater the reserve capacity. To ensure the economy of
power generation, the electricity price should be appropriately
increased to ensure that the load is transferred to a time period with
a lower electricity price and reduce the burden on the system. The

FIGURE 4 | Comparison chart of real-time electricity price and tiered
electricity price.
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fluctuation coefficients are μ1, μ2, and μ3, respectively. Among them,
μ1 < μ2 < μ3when the load curve exceeds the average load valuemore; in
order to ensure that the peak-to-valley difference is relatively small, the
electricity price should be relatively more expensive, so as to ensure that
users transfer to electricity when the electricity price is lower.

Ad � min {W, F} (4)

W � [A1 . . .Ai . . .An]
At � A0 + Ad � A0 + μ · aAi

μ �
⎧⎪⎨⎪⎩

μ1, 0<A<Aα

μ2,Aα ≤A≤Aβ, (μ1 < μ2 < μ3)
μ3,Aβ <A<Ac

In order to avoid the unnecessary frequent fluctuation of
electricity price, we ignore the situation that the fluctuation of
electricity price is less than 5%. In the concept of IBR pricing, the
marginal price increases with the total consumption (Reiss and
White, 2005). Beyond the specific threshold of the total
residential load per unit time, the electricity price will increase
to a higher value. In Figure 4, it can be seen that TOU electricity
price changes frequently. Compared with the step tariff, the
change can highlight the regulation effect on hourly electricity
consumption. The electricity price is relatively low in the early
morning and at night, and the electricity price rises significantly
in the morning and evening and the ladder rate changes largely.
The larger price difference is conducive to the transfer of peak
load, but it also makes it difficult for consumers to control the
power consumption time. Therefore, it is necessary to use
intelligent energy planning unit to manage the opening and
closing time of household appliances.

Electric Application Model
After receiving the TOU price, the smart energy planning unit
performs energy management planning. It selects a reasonable
power consumption time based on consumers’ demand and plans
the time lengthT . The unit controls the on and off time of the
interruptible load, and the duration of the interruptible load is
determined by the electricity price. The duration of
uninterruptible load power consumption cannot be adjusted,
The duration of uninterruptible load power consumption
cannot be adjusted.

Sti � ∑A
a�1

k · λt · Qt
a (5A)

Qt
amin ≤Q

t
a ≤Q

t
amax (5B)

Qt
a < Sta (5C)

where the consumer’s application is a (a ∈ C), the power
consumption during the time step t is Qt

a, and the total power
consumption of the consumer i is Sti in time step t. The priority
adjustment coefficient k is k ∈ (0, 1). The larger the value, the later
the adjustment sequence. When k � 1, the application cannot be
interrupted and can only stop after the end of the operating cycle.
For example, electric vehicles can be charged to full charge at
intervals according to regulation requirements, but in order to
ensure convenience, consumers actively choose electric vehicles

as uninterruptible, with priority adjustment coefficient k � 1.
When the application running state variable is λt ∈ λ and
when Qt

a > 0, there is λt � 1; otherwise, λt � 0.
It can be seen from (5) that once the uninterruptible load starts

to run, it will run uninterrupted until the task is completed to
avoid any energy loss.

∃φt
a ≠ 0

0< ∑t2
t�t1

φt
a <T (6)

0≤
∣∣∣∣T t

em − δTemmax − (1 − δ)Temmin

∣∣∣∣≤H (7)

For electrical appliances with temperature restrictions, ensure
that the temperature is within a reasonable range. For the cooling
type operating coefficient δ � 1, the heating type δ � 0.

The Smart Energy Planning Unit
As shown in Figure 5, the smart energy planning unit obtains
electricity price information through the local area network and
sends instructions and receives messages through the home area
network (HAN) (Hu, 2020). The information interaction
network realizes the information interaction between smart
modules and household appliances. The unit can capture the
consumers’ electricity consumption rules and upload the forecast
value of the next day’s electricity demand to the grid through the
regional network in advance. A two-way information
transmission channel is formed, contributing to the company’s
power generation planning.

THE OBJECTIVE FUNCTION AND
CONSTRAINTS

Goal 1. Optimize the electricity price model within the preset
agreed conditions. The optimal electricity usage plan of the
electricity customer within the day is obtained so that the
electricity bill value generated on the day is the smallest. The
optimization function of the electricity price model is

f1 � min Pri � min∑T
t�0

At · Sta − Pz (8)

Pz � λ1λ2 ·∑mT

t�0
Stm · At

m (9)

Due to the uncertainty of customer electricity usage rules. To
ensure the reliability of power supply, it is necessary to establish
an incentive mechanism for customers’ energy management.
For customers who continuously implement the electricity
consumption plan for consecutive m days, the preferential
state variable λ2 � 1, The preferential incentive electricity fee
is λ1 times the electricity fee, and λ1 is called the preferential
ratio.

Goal 2. Due to the particularity of electric energy, the total
social welfare should be maximized while ensuring the
minimum electricity bill for consumers. The implementation
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of real-time electricity prices will inevitably have a profound
impact on consumers’ electricity consumption behavior and the
safe operation and management of the power grid. The social
welfare maximization model is a model established from the
perspective of the whole society as a whole, which fully reflects
the interests of both supply and demand. The optimization
problem is based on the basic model of the real-time electricity
price pricing strategy that the government determines the
electricity price or determines the guide price. The
electricity price under the social welfare model will not
exceed the fluctuation range required by the government to
protect people’s livelihood.

f2 � maxB � max∑T
t�0
(Li(Sti , δti) − Ck(mk)) (10)

where Li is the consumption of electricity Sti by consumer i at time
t. Ck(xk)is the power generation cost at the time of producing
electricity xk. Under the condition of satisfying the two basic
assumptions of economics (Van L, 2015),

Li �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δ′S −m
2
S2 0≤ S≤

δ′
m

δ′
2m

S≥
δ′
m

(11)

Ck � rx2 + bx + c (12)

where δ′,m are constant, δ′ is the electric elasticity coefficient,
and r, b, and c are all constants.

Constraints are shown in (5B)-(7).
When social welfare and electricity bill reach the optimal

solution, respectively, their corresponding electricity
consumption planning curves are different, which cannot
make them reach the maximum value at the same time.

Therefore, the multiobjective function is solved by linear
weighted evaluation function method.

The multiobjective function obtained by linear weighting is
expressed as

F(x) � κ1f1 + κ2f2 (13)

where κ1 and κ2 are weighting coefficients, and the calculation
method is as follows:

κ1 � f b2 − f2b
(f b1 − f1b) + (f b2 − f2b) (14)

κ2 � f b1 − f1b
(f b1 − f1b) + (f b2 − f2b) (15)

where f1b and f2b are the optimal solution of the two objective
functions, f b2 is the value of the second objective function when
the first objective function is optimal, and f b1 is the value of the
second objective function when the second objective function is
optimal.

In this paper, the multiobjective particle swarm optimization
algorithm is adopted to optimization. The calculation steps are
shown in Figure 6.

EXAMPLES AND RESULTS

In this paper, the provincial load data of a certain area in
Northeast China for the past three years are used to learn. The
primary industry in this region currently accounts for 1.8% of the
society, and the secondary industry is about 71.8% of the
electricity consumption in the Northeast power grid. This
shows that the northeast region has a relatively high degree of
industrialization. The electricity consumption of the tertiary

FIGURE 5 | Schematic diagram of the smart energy planning unit.
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industry in Northeast China is about 14.5%. The part of urban and
rural residents is about 11.9%. With the improvement of living
standards, electricity consumption is still increasing. The electricity
price data of PJM Dayton in 2019 are as the reference value of
clearing electricity price to obtain the actual electricity price. In this
paper, the Monte Carlo method is used to generate residential
electricity consumption curve. About the parameter setting of
electric application, the lower limit of the set temperature is 22°C,
and the upper limit is 27°C. The optimum temperature is 25°C, and
the scheduling period is T � 24h. According to the daily load data of
a provincial power grid, it can be seen that the peak hours of
electricity consumption are around 6:30–8 am and about 5:30 pm to
9 pm. The power valley period is between two and four in the
morning, and the maximum daily load peak-valley difference at the
provincial level is about 0.4 × 104kW. P0 � 2.424 × 104kW is
calculated from Eq. 6.

Assume that the number of consumers’ appliances changes
within 2–13, which are divided into fixed on-off equipment
including lighting (p � 0.05 kWh) and induction cooker (about

1 kWh). Flexible control equipment includes humidifier
(p � 0.05 kWh), oven (P � 1 kWh), and water dispenser
(p � 0.6 kWh). From Figure 7, it can be seen that the real-
time electricity price system has a certain effect on shifting the
peak electricity load, and the peak electricity consumption of
single-user residents has reduced about 40.13%.

To compare the impact of real-time electricity prices on
consumers’ electricity consumption behaviors and the impact
on electricity bills, the following two scenarios are set up.

Scene 1. Consider only the perspective of consumers, without
considering the social welfare. The consumers’ comfort index is
proposed to quantify the consumers’ comfort level as Eq. 16,
which reflects user satisfaction with electricity.

Scene 2. On the premise of ensuring social welfare, consider
the economics and comfort of electricity customers.

Eq. 8 is optimized by particle swarm algorithm (Venter and
Jaroslaw, 2003), and the upper limit of F fluctuation is 70.3 $/MWh.
The average single-day electricity bill of consumers decreased by
13.81%. In order to ensure the comfort of consumers (Ding et al.,
2005), they can temporarily change their electricity consumption
plan at the expense of discounts on electricity charges.

Ki �
∑
i�1

A ∑T
t�1

Δca,t
T

(16)

where ∑A
i�1 ∑T

t�1 Δca,t represents the time sum when the electrical
appliance a is on and is inconsistent with the switch state under
the target work plan. Consumers’ electricity comfort level under
TP comfort coefficient Ki � 1.

It can be seen from Table 1 that the average consumers’
weekly electricity bill is $36.85, and the average comfort index is
0.74. In this scenario, the consumers’ real-time electricity price
and step tariff orders daily electricity consumption is shown in
Figure 7. It can be seen that the consumers’ electricity
consumption pattern has changed, and part of the load

FIGURE 6 |Block diagram of multi-objective particle swarm optimization
optimization.

FIGURE 7 | Comparison of daily electricity consumption between
consumers’ real-time electricity price and step tariff.
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TABLE 1 | A week’s average electricity bill and comfort index table.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Average electricity bill ($) 5.07 5.04 5.20 4.89 5.95 5.83 5.23

comfort coefficient Ki 0.77 0.68 0.73 0.74 0.62 0.79 0.85

FIGURE 8 | The social welfare representation diagram of the day in scene 1.

FIGURE 9 | Comparison of social welfare between scene 1 and scene 2.
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during peak period shifted to valley period. Under the premise of
not disturbing consumers, the working hours of some electrical
appliances are transferred to the load in the afternoon and
evening hours (such as dishwashers generally start to work
after meals (Dadashi-Rad et al., 2020). In order to ensure the
effect of peak shaving and valley filling, the dishwasher is
transferred to the load 2 hours after meals). It can be seen
from Figure 8 that there is no plan for social welfare in this
situation. The social welfare at this time is not very high, and the
social welfare value on that day is $467,956.

Considering scenario (2), the social welfare comparison chart
is shown in Figure 9. The power distribution diagram under
scenario (2) is shown in Figure 10. It can be seen that there is
basically no change in part of the electricity load, and the
operation basically does not change due to changes in
electricity prices. The second type of electricity load is more
flexible, and adjusting this type of load is the main means to
ensure the economy on the basis of real-time electricity prices.
The third type of load has the smallest K . The second and third
types of loads are the main means to ensure the economy of
electricity consumption.

The smart energy planning unit could report the
consumers’ electricity consumption behaviors through the
regional network, which plays a corrective role in the grid
load forecast. It enhances the accuracy of load forecasting for
residential users. The change of parameters also has a certain
impact on the optimization results. The larger the preferential

ratio parameter, the weaker the consumers’ willingness to
temporarily electricity consumption and the better the
peak-shaving and valley-filling effect.

When the parameter λ1 changes from 0.01 to 0.03, the
consumers give up the comfort level in order to save
electricity bills. When it rises to 0.03, the temporary electricity
consumption reaches the minimum value, and the consumers’
electricity bill economy reaches saturation.

CONCLUSION

This paper proposes a RTP strategy. The random forest algorithm
is used to forecast the load, and the fluctuation range of electricity
price is determined by the fluctuation range of load. The sum of
the basic electricity price and fluctuating price forms the final
price. The smart energy planning unit captures the electricity
price information and effectively plans the electricity
consumption behavior of consumers. The optimization goal is
to maximize the economy of electricity consumption and the total
social welfare. The linear weighted evaluation function method is
used to optimize multiobjective. Upload the consumers’
electricity data to complete the two-way data transmission.
The State Grid should strengthen the understanding of
consumers’ electricity consumption. Taking a single day as an
example, the number of electrical appliances for this consumer is
13. The simulation results show that the user’s weekly electricity
comfort and electricity price parameters show a trend of first
growth and then stability, and the reasonable setting of
parameters plays an important role in the user’s electricity
comfort.
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