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Biomass, bioenergy and negative emission technologies are inherent to the future
design of energy systems. Urban clusters have a growing demand for fuel, heat and
electricity, which is both a challenge and an opportunity for biomass-based
technologies. Their deployment should meet demand, while minimizing
environmental impact and staying cost-competitive. We develop a systematic
approach for the design, evaluation and ranking of biomass-to-X production
strategies under uncertain market conditions. We assemble state-of-the-art and
innovative conversion technologies, based on feedstock, by-products and waste
characteristics. Technical specifications, as well as economic and environmental
aspects are estimated based on literature values and industry experts input.
Embedded into a bi-level mixed-integer linear programming formulation, the
framework identifies and assesses current and promising strategies, while
establishing the most robust and resilient designs. The added value of this
approach is the inclusion of sub-optimal routes which might outperform
competing strategies under different market assumptions. The methodology is
illustrated in the anaerobic digestion of food and green waste biomass used as a
case study in the current Swiss market. By promoting a fair comparison between
alternatives it highlights the benefits of energy integration and poly-generation in the
energy transition, showing how biomass-based technologies can be deployed to
achieve a more sustainable future.

Keywords: multi criteria decision analysis, energy system design, biomass, decision-making, uncertainty analysis,
robust design, decision support, environmental policy

1 INTRODUCTION

The global energy system is changing due to the need of curbing greenhouse gas emissions. The large
majority of European countries have set ambitious goals by defining a carbon-neutral policy by 2050.
Achieving a sustainable future relies not only on the introduction of renewable feedstocks and energy
sources but also on efficient and integrated systems. Energy from biomass is one of the most widely
explored research fields in energy and environmental science. Defined as a carbon-neutral energy
source, biomass can be regarded as a promising energy storage option, compensating for the
progressive phase-out of fossil fuels. In this context, Sepulveda et al. (Nestor, 2021) have recently
highlighted the role of firm low-carbon technologies in balancing future energy systems, decisively
contributing for cost-effective zero-emission systems. The policy-enhanced requirement to generate
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negative CO2 emissions places biomass in the center of renewable
energy use (IRENA, 2016). As of 2018, modern bioenergy 1

roughly represented half of the generated renewable energy
while accounting for only 5% of global final energy
consumption (REN21, 2020). The potential to achieve a higher
share exists: as a versatile feedstock, biomass has a large plethora
of downstream processing options, including the production of
different fuels, on top of heat and electricity.

Future energy strategies plan a massive deployment of
renewable energy, intensifying periods of surplus electricity
(summer) with periods of intense demand (winter). As
pointed out by Candra, Hartmann, and Nelles (Candra et al.,
2018) the greater the share of renewables, the more frequently the
price of electricity will approach zero. For debottlenecking the
offset of demand and supply and its implication on electricity
price, chemical storage can be applied. In periods with surplus
electricity, chemical storage - offered by thermochemical biomass
conversion - benefits from a cheap (or even free) electricity
market, while electricity production is economically
unattractive. We should not be surprised then to find a
growing need for flexible poly-generation systems that can
easily accommodate seasonal fluctuations.

As a broad category, biomass is a limited resource disputed for
food, feed and fuel as recently reviewed by Muscat et al. (2020).
The ongoing debate pertains to the competition for land, water,
labor and capital. Biowaste, however, does not suffer from such
competition. A growing concern with sustainability metrics and
circular economy regards it as a resource, questing for attractive
economic and environmental conversion routes, beyond the
prime safe disposal concern. Urban biowaste, in particular,
represents the organic residue issuing from households,
municipalities, and industries that is separately collected from
other municipal solid waste fractions (Steubing et al., 2010). It
accounts for food waste (FW) residues from either households or
professionals and municipal residues such as garden leftovers and
sweepings, commonly labeled as green waste (GW). In
Switzerland, as pointed out by Burg et al. (2019), urban
biowaste generation has been steadily increasing for the past
20 years. Steubing et al. (2010) noted that from a current
sustainable energy potential of 8.2 PJ, only 5.5 PJ (67%) is
presently used. The study does not mention, however, the
efficiency of the conversion processes. The unused biowaste
potential triggers, besides a clear energy loss, an additional
problem from an environmental perspective due to the natural
partial decomposition of organic fractions into nitrous oxide
(N2O) and methane (CH4).

Burg et al. (2019) went further and estimated the long-term
(up to 2050) potential of wet bioenergy resources in Switzerland
by means of a Monte Carlo simulation. Based on an increasing
trend in consumer patterns and waste generation, side by side
with better management policies and consumer engagement, the
study calls for and validates long-term investment in biomass-to-
energy infrastructure. In particular, anaerobic digestion and
biogas generation are expected to dominate biowaste

management policy by 2050. However, the study does not
explore different digestate (the remainder of anaerobic
digestion) disposal alternatives or biogas downstream
processing but rather assumes their use as a fertilizer and an
energy source, respectively. Moreover, the approach foregoes the
potential risk of soil contamination as highlighted in Nkoa
(2014), and misses the important energy system perspective of
employing biogas as a chemical building block.

Collection and transport of biomass to conversion facilities are
non-negligible factors. Schnorf et al. (2021) studied key biomass
transport chains in Switzerland and identified the cost as the main
barrier to biomass transport, whereas energetic and
environmental benefits largely justify the involved logistics. On
economic grounds, break-even distances range from 36 to
477 km, depending on the feedstock, and requiring between
0.4 and 5% of its embodied energy. The decentralized fashion
of urban biowaste collection, spatially distributed according to
population demographics, sets an average distance between
source nodes and treatment facilities below 30 km - thereby
not jeopardizing the transportation of biomass from an
economic point of view.

Current state-of-the-art technologies for energy production,
such as combined heat and power (CHP), rely heavily on fossil
fuels. The defossilization of the energy sector opens the door to
new technologies, such as heat pumps or geothermal wells, along
with more versatile feedstocks. Urban biowaste, in particular, can
be converted to store energy products by a variety of means, such
as digestion, gasification or liquefaction. As borne out by Celebi
et al. (2019), a combination of technologies is particularly suitable
not only to address high-temperature heat needs but also to boost
system and conversion efficiency. While digestion produces
biogas, the co-generation of digestate can be thermally valued
in either gasification or liquefaction units, producing excess heat
in the medium-to high-temperature range by cooling down
producer gas and liquid products, respectively. Enhanced heat
integration allows further recovery which can be used for
electricity production (via expansion/steam turbine), process
integration with different energy-intensive stages such as
drying or even the integration with other industrial clusters.

Biomass gasification is a thermochemical process designed to
obtain value-added products (CH4, H2, CO, CO2), from
potentially low-cost feedstocks, combining high efficiency
(Gassner and Maréchal, 2012) and desirably low investment
and operating costs. Urban biowaste and digestate, oftentimes
readily available, constitute a potentially free feedstock, making
them a viable and promising energy source. Moreover,
gasification is able to handle lignocellulosic rich streams which
anaerobic digestion - the state-of-the art technology for biowaste
- cannot. According to Sikarwar et al. (2016) the three most
common gasifiers - the fixed bed, the fluidized bed and the
entrained flow - contribute to the gasification capacity of
handling a wide range of biomass compositions, making it a
suitable technology to value seasonal-dependent waste fractions.
Gasification comprises several steps prior to the gasifier such as
feedstock drying, pyrolysis and partial combustion. Air is the
most common gasifying media, but oxygen, steam of carbon
monoxide are also used. However, investment costs can be as1excludes biomass used for cooking and heating in inefficient stoves.
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much as three times the one of incineration (Sikarwar et al.,
2016).

Watery feedstocks, among which food waste or digestate, are
better handled by catalytic hydrothermal gasification (CHTG), in
which water is kept at supercritical conditions, prompting
inorganic salts precipitation. It overcomes the need for the
pre-drying step associated with conventional gasification, since
it requires a pumpable (below 20 wt% solids) input material.
CHTG, when compared to conventional gasification, shows
higher overall conversion efficiency and reduced tar formation
(Mian et al., 2015). However, it requires both high-pressure
(above 220 bar) and high-temperature (above 400°c) conditions
which impact the investment cost. Nevertheless, as pointed out by
Sikarwar et al. (2016) the poly-generation concept of biomass
gasification brings flexibility and increased efficiency due to
potential mass and heat integration synergies.

Several authors, among which Granacher (2019), have
addressed gasification and liquefaction technologies for
biomass. Damartzis and Zabaniotou (2011) reviewed and
ranked different biomass-to-biofuels gasification designs based
on economic and environmental performance metrics. Korberg
et al. (2021) highlighted the use of gasification to valorize different
biomass types in a low-carbon future scenario, while Magagula
et al. (2021) simulated and investigated ways to promote energy-
neutral gasification processes. Segurado et al. (2019) reviewed
polygeneration systems coupled with biomass gasification;
although hindered from the economic perspective, biomass
gasification requires more study and would profit from
optimization frameworks that are able to capture different
market realities. Mian et al. (2015) studied hydrothermal
gasification of microalgae in a multi-objective optimization
framework; Gassner and Maréchal developed a thermo-
economic optimization decision-support methodology for
lignocellulosic biomass, whereas Celebi et al. (2019) developed
a similar concept for woody biomass. Castro-Amoedo et al.
(2020) considered both gasification and liquefaction for sewage
sludge. Together these studies provide important insights into the
thermochemical pathways to convert different types of feedstock.
Cheng et al. (2020) reviewed a large number of studies on urban
biowaste and emphasized the need to develop a wide range of
value-added products, promoting a bio-based circular economy,
rather than focusing on the peculiar aspects of anaerobic
digestion and composting.

Research Gaps and Objectives
Biomass treatment technologies are manifold and hold promising
potential. Their combination and potential synergies are of
uttermost importance in a fast and evolving energy system.
The literature is abundant with examples of single conversion
technologies, but rather neglects holistic and integrated
approaches, especially when embedding uncertainty features.

In this work we provide a strategic perspective on how tomove
toward economically and environmentally sound biowaste
conversion systems, by considering a systematic approach.
Developing a methodology to simultaneously assess, compare
and rank system designs, contributes to close the gap in the future
bio-based economy. Indeed, the discussion is of particular

relevance in the context of rapid urbanization, increasing
environmental awareness and regulations, and the interaction
between environment and energy systems. We critically assess, in
an operational context, the economic, environmental and
thermodynamic aspects of solutions. A two-level optimization
framework, using a mixed-integer linear programming (MILP)
model is built to study system designs under different pricing and
market conditions - showing how they can provide benefits to the
local energy ecosystem.

By applying our modeling framework to a cluster of 400,000
people equivalent, this work provides a prime example on the
opportunities arising from the poly-generation of heat, electricity
and fuels in urban biowaste treatment. We expand on the benefits
of anaerobic digestion by showing that, when coupled with biogas
upgrade and digestate treatment units, it opens the door to
inexpensive fuel production, whether in the form of synthetic
natural gas, formic acid or both. Constant biowaste generation
and a non-limiting demand for each final product are assumed.
Different economic assumptions introduce flexibility to handle
volatile resource prices while profiting from changes across the
year, such as carbon-free or zero-marginal cost renewable
electricity production. The insights we derive are applicable to
other biomass-based systems and should contribute to
broadening the discussion on the best strategy for handling
biomass feedstocks and meeting the current and future energy
demand.

The paper is outlined as follows: in Section 2 the methodology
is outlined, starting with the conversion modeling strategy,
followed by the energy integration model and mathematical
formulation, and leading to the evaluation and ranking system.
The specifications of the case study are discussed alongside
modeling options. In Section 3, we apply the methodology to
the case study; system designs are clustered, analyzed, evaluated
and ranked, highlighting the robustness of the procedure, but also
bottlenecks and limitations. Section 4 concludes the work,
arguing on the suitability of the methodology to handle
biomass-based challenges and contribute to the future energy
system.

2 METHODS AND APPLICATION

The optimization of complex integrated energy systems, as
mentioned in Maronese et al. (2015) and Tock and Maréchal
(2015), is very time consuming, underscoring the need to develop
and use amethodology that sets-up simple parameterizedmodels.
Thermodynamic, economic and environmental aspects need to
be considered simultaneously for identifying promising designs
inside an intricate structure without requiring complex solving
strategies. A master-slave partition on a bi-level optimization
methodology (Figure 1) is developed for this purpose. Themaster
level controls multi-objective framework by sending optimization
inputs to the MILP - which works at the slave level - further
retrieving design variables and performance indicators. It is a
variation of the comprehensive Analyse Generate Interpret
Report and React (AGIR) approach, first proposed by
Maréchal and Kalitventzeff (1997). Therein, the Analyse step
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consists in the definition of system boundaries and identification
of possible system units with their corresponding economic and
environmental models. In the Generate step, optimization tools
are used to create a list of system configurations by activating and
sizing units while defining appropriate operating conditions.
Interpret creates meaningful indicators for the associated
values of decision values, whereas Report and React is
responsible for the user interaction part, ultimate responsible
to define, upon proper interpretation, a new AGIR procedure.

2.1 Superstructure
A superstructure is built by aggregating into a single entity all
process models related to the conversion of the feedstock to
different products and by-products. There is no practical limit to
the number of process models to be added, provided they are
suitable to handle the feedstocks and intermediate products.

A superstructure defines the main process steps - setting up
thermodynamic and technically feasible operating conditions -
while accounting for physical and chemical transformations, in
addition to resource needs and heat requirements. Options for
heat recovery and the energy conversion system (utility systems)
are added, such as heat pumps, Rankine cycles and gas boilers. A
similar superstructure concept was developed by Santibañez-
Aguilar et al. (2013), Maronese et al. (2015) and Castro-
Amoedo et al. (2020).

The quantity and quality of available data shapes the
accuracy of the overall model. Flowsheeting software (e.g.,
Aspen) can be used for a conversion technology or a utility
system, while models not involving thermodynamic
considerations are based on literature values. Each model
defines an interface with the rest of the process, with the
internal mathematical formulation used to describe input/

output relations appearing as a blackbox for the energy
integration and process synthesis model. This feature
allows combining models from different software and
literature sources. The major challenge is the accurate
representation of operating conditions on mass and energy
balances; these balances define material conversion but also
heat (with corresponding temperature levels θk, if applicable) and
power requirements, further used for energy integration. To build a
thermo-environomic representation for the energy integration
optimization problem, an economic model is used to estimate
operating and investment costs, whereas a life cycle assessment one
links material and energy flows with the corresponding life cycle
inventory process. A key attribute of this approach is the embedded
linearity of all features with respect to a reference size - therefore
assuming constant efficiency.

2.2 Energy Integration Model
The total cost of the process is minimized by computing
thermodynamically feasible energy targets. These targets are
achieved by optimizing heat recovery and combining heat,
power and fuel generation while activating different
conversion units - hence defining the least expensive energy
conversion system. The problem is solved using a MILP
(described in Section 2.3).

The energy integration model relies on the definition and
identification of hot and cold stream profiles and respective
minimum approach temperature, which allows to define hot
and cold composite curves. Pinch identification (Linnhoff and
Hindmarsh, 1983; Maréchal and Kalitventzeff, 1998a) and
graphical analysis enable further process suggestions and
improvements regarding conversion technologies and heat
integration. The quality of process integration has a direct

FIGURE 1 | Solution generation procedure; blue and red shapes refer to the master and slave level, respectively. Green shapes are user controlled.
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impact on the process performance, and should be tackled by key
performance indicators.

2.3 Mathematical Formulation
The overall problem follows a MILP formulation, allowing for the
inclusion of the discrete (binary) and continuous behavior of the
system, while ensuring the required robustness. Discrete time
intervals t ∈ T � {1, 2, . . . , tt}, with duration ttop, are employed
to account for time-dependent variables and parameters, capturing
the dynamic nature of the problem. The system is represented
through units belonging to the set U, grouped in 2 subsets:
process units (PU) and utility units (UU). The former represent
units added with a fixed size (Eq. 8), associated with either a demand
and/or a system imperative (e.g., waste collection), while the latter
represent energy technologies and markets used to satisfy process
units - sized between aminimum (fmin

u ) andmaximum (fmax
u ) values

(Eq. 6). Each unit can supply, demand or convert resources (r ∈R)
and heat, within temperature intervals k ∈ K � {1, 2, . . . , nk}.

The MILP objective is the minimization of total cost - Tc (Eq. 1).
Operating expenditures - Opex (Eq. 2) account for fixed (cop, 1u ) and
variable (cop, 2u ) units operating cost, as well as resources import (c −̃r,t)
and export (c +̃r,t) costs, associated with the amount imported (M

−̇
r,t)

and exported (M ̇+
r,t), respectively. Annualized capital expenditures -

Capex (Eq. 3) - consider fixed (c ̃inv, 1u ) and variable (c ̃inv, 2u ) fractions,
annualized with a project lifetime (n ̃) and an interest rate (i ̃). Binary
variables (yu,t, yu) are used for utility selection and continuous
variables (fu,t, fu) for unit sizing (Eq. 7)

The ϵ constraint method is used for multi-objective
optimization, by constraining the environmental impact (Eq.
5). Sobol sampling is used to generate different values of ϵm;
sm,ϵ refers to the entrances on the sampling matrix SM,P; ϵmax and
ϵmin, to upper and lower boundaries coming from single
optimization of the environmental impact, respectively. The
approach works as a grid in the objective domain, with M
market scenarios generation and P uncertain parameters, the
latter identified by a (˜) on the respective definition.

min
fu , yu , fu,t , yu,t

Tc � Opex + Capex (1)

with:

Opex � ∑tt
t�1

∑nu
u�1

( cop,1u yu,t + cop, 2u · fu,t)⎛⎝
+∑nr

r�1
(c̃−r,t ·M ̇−

r,t − c +̃r,t ·M+̇
r,t)) ·

1

M
−̇
biowaste,t

· ttop [$/tbiowaste]
(2)

Capex � ∑nu
u�1

i ̃(1 + i ̃)n ̃
(1 + i ̃)ñ − 1

cinv,1u yu + cinv,2u fu( )/∑tt
t�1

M
−̇
biowaste,t

· ttop [$/tbiowaste] (3)

Impact � ∑tt
t�1

∑nu
u�1

( cimp
u fu,t) +∑nr

r�1
(k−r,t ·M−̇

r,t − k+r,t ·M ̇+
r,t)⎛⎝ ⎞⎠

· 1

M
−̇
biowaste,t

· ttop ≤ ϵm [Env.Impact/tbiowaste] (4)

ϵm � ϵmin + sm,ϵ · (ϵmax − ϵmin), m � 1, . . . ,M (5)

f min
u yu,t ≤ fu,t ≤ f max

u yu,t , ∀u ∈ U, ∀t ∈ T (6)

yu,t ≤ yu, fu,t ≤ fu ∀u ∈ U, ∀t ∈ T (7)

f max
u � f min

u � 1, ∀u ∈ PU (8)

Material and energy flow models contain physical
properties used to define both mass and energy
requirements. ṁ

+
r,u,t and ṁ

−
r,u,t define the reference mass

flowrate of resource r produced and consumed,
respectively, in unit u at time step t. Equation 9
establishes that requirements for each resource are
satisfied by inside production and imports. The resource
consumption interacts with the overall resource balance
and ensures that import, export and production are
balanced, as formulated in Eq. 10. The mass balance is
closed for each resource layer (Eq. 11), with the amount of
resource r per consuming/supplying unit j/i in time step t
(M ̇−

r,j,t/M
+̇
r,j,t) balanced by internal needs and connection

flowrates of resource r between supplying unit i (SU) and
consuming unit j (CU) given by _mr,i,j,t - (Eqs. 12, 13).

∑nu
u�1

fu,t · ṁ+
r,u,t +M

−̇
r,t −∑nu

u�1
fu,t ·m ̇−

r,u,t ≥ 0, ∀r ∈ R,∀t ∈ T (9)

∑nu
u�1

fu,t ·m+̇
r,u,t +M

−̇
r,t −M

+̇
r,t −∑nu

u�1
fu,t · ṁ−

r,u,t � 0, ∀r ∈ R,∀t ∈ T

(10)

0 � ∑
r

fu,t · (m ̇+
r,u,t − ·ṁ−

r,u,t), ∀u ∈ U,∀t ∈ T (11)

M ̇−
r,j,t +∑ni

i�1
mṙ,i,j,t � fj,t · ṁ−

r,j,t ∀r ∈ R,∀j ∈ CU,∀t ∈ T (12)

M ̇+
r,i,t � fi,t · ṁ+

r,i,t −∑nj
j�1

ṁr,i,j,t ∀r ∈ R,∀i ∈ SU, ∀t ∈ T (13)

The approach developed in Maréchal and Kalitventzeff
(1998b), based on the work of Linnhoff and Hindmarsh
(1983) is used to satisfy the minimum energy requirements.
The energy balance is closed in each temperature interval k (Eq.
14) and residual heat (R

̇
t,k) flows from higher (k) to lower (k − 1)

temperature (θ) levels. Following thermodynamic feasibility,
cascaded heat flows are positive, and values in both the first
and the last interval k are zero (Eq. 15). q

̇
u,t,k is the reference

heat load for unit u in time step t and temperature interval k.
∀k ∈ K with θk+1 ≥ θk

∑nu
u�1

q ̇u,t,k · fu,t + Rṫ,k+1 − Rṫ,k � 0 ∀t ∈ T (14)

Rṫ,k ≥ 0, Ṙt,1 � Rṫ,nk+1 � 0 ∀t ∈ T (15)

The MILP problem is written in AMPL (AMPL et al., 2013)
and solved by IBM ILOG CPLEX Optimization Studio (IBM
ILOGCplex, 2009). Indices, sets, variables and parameters used in
the formulation are resumed in the Nomenclature section.
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2.4 Performance Indicators
Distinct process options are evaluated on thermodynamic,
economic and environmental aspects (Table 1). They are
suitable to compare and rank solutions, allowing for
simultaneous bench-marking with similar studies and
publications. Thermodynamic indicators such as efficiencies
are able to capture the quality and extent of process
integration and heat recovery, but also the efficiency of a
chemical conversion. Electrical (Eq. 16), thermal (Eq. 17),
chemical (Eq. 18) and global (Eq. 19) efficiencies are thus
considered. Δh0 reports to the lower heating value on a dry
basis of the respective products. Economic metrics comprise
financial indicators (Capex, Opex and Tc) but also the pay-
back time (Eq. 20), which evaluates the time needed for
investment recovery. A complexity factor (Eq. 21) accounts
for the number of activated technologies, with lower values
representing simpler systems.

ϵel � M+
elec

Δh0bwm
−̇
bw +M−

elec

(16)

ϵth � M+
heat

Δh0bwṁ
−
bw +M−

elec

(17)

ϵch � Δh0Biocrudeṁ
+
Biocrude + Δh0SNGm

+̇
SNG + Δh0FAm

+̇
FA

Δh0bwṁ
−
bw +M−

elec

(18)

ϵ � Δh0Biocrudeṁ
+
Biocrude + Δh0SNGm

+̇
SNG + Δh0FAm

+̇
FA +M+

elec +M+
heat

Δh0bwm
−̇
bw +M−

elec

(19)

Pbt � ∑nu
u�1 c

inv1
u yu + cinv2u fu
ΔOpex (20)

Cf � ∑nu
u�1 yu, ∀u: yu � 1∑nu

u�1 yu
(21)

2.5 Solution Generation and Clustering
Varying market settings - at the random sequence generator level
- ensures the generation of configurations which, under constant/
nominal market conditions, would not emerge. The procedure is
controlled by the master (multi-objective optimization) level and
executed by the slave MILP model. The former is responsible for
receiving random Sobol parameters and forward them to the

latter that minimizes total cost, while deciding on the existence
and size of each superstructure unit. The master level stores
configurations and repeats the procedure for the M market
scenarios generated.

The generation procedure is neither sensitive to repeated
solutions nor to numerically-close ones. Indeed, solutions exist
with designs close enough to be considered identical in practical
applications. By applying clustering, the number of relevant
solutions is reduced according to a similarity measure. The
number of clusters is decided based upon state-of-the-art
Silhouette (Rousseeuw, 1987) and Elbow (Davies and
Bouldin, 1979) methods, following data normalization, which
removes the mean and scales data to unit variance. The
K-medoids algorithm is used for clustering, relying upon the
set of existing solutions for centroid representation, avoiding
therefore non-realistic centroids as provided by the k-means
algorithm. As clustering is not based on KPIs but rather on
configurations, sub-optimal solutions under current market
conditions are selected, which might then become optimal on
a different set of market values.

2.6 Ranking and Performance Evaluation
The use of a quasi Monte-Carlo (QMC) simulation, making use of
a low-discrepancy Sobol sequence, recomputes performance
indicators for each cluster centroid and for each set of market
conditions. The use of a quasi-random sequence is associated
with higher sampling efficiency, compared to classic pseudo-
random methods (Hou et al., 2019), which justifies its increasing
use in sensitivity and uncertainty analysis. This procedure allows
to bound and rank solutions, but also to produce statistical
insights. For each set of market conditions and for each KPI, a
solution is rewarded with 1 point if it is among the top-three
performances. Scores are then normalized, outlining the design
with the best probabilistic performance globally (defining a total
score) and per KPI - thus promoting a robust, informed and
reliable decision-making procedure. As design problems involve
decisions on a long time-horizon (normally 10–20 years), the
need to account for market variability and unpredictability is
paramount. In that regard, et al. (Moret et al., 2017) highlighted
the relevance of economic scenarios on energy planning systems
and signaled the risk of using a priori selection of uncertain
parameters.

2.7 Main Highlights of the Methodology
Although our method can run with no user intervention, it
would benefit from an interactive user - focusing on providing
thoughtful and subjective insight. Based upon the solutions
ranking, the user evaluates the suitability of each configuration
while taking into account the objective criteria provided by
optimization (user satisfied #2, Figure 1). If satisfied, the
process ends and proceeds for decision. If not, provided the
designs are judged adequate, the user can control and change
the parameters at the QMC simulation step, recomputing
performance indicators and retrieving new results until an
acceptable outcome is reached. On the other hand, if a
reasonable design is not reached (user satisfied #1,
Figure 1), steering market conditions at the master level

TABLE 1 | Key performance indicators.

KPI Description

Opex Operating expenditure [$/tbiowaste]
Capex Investment expenditure [$/tbiowaste]
Tc Total cost [$/tbiowaste]
Impact Environmental impact [kgCO2/tbiowaste]
ϵ Global efficiency [−]
ϵel Electrical efficiency [−]
ϵth Thermal efficiency [−]
ϵch Chemical efficiency [−]
Pbt Pay-back time [y]
Cf Complexity factor [-]
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will generate a new set of configurations. The robustness of the
model allows for minimal involvement, mainly circumscribed
to a phase when a large set of solutions is available. This
reinforces the confidence of non-specialists in optimization
tools and promotes engagement, reducing the likelihood of
missing good solutions.

2.8 Case-Study Application
A biowaste superstructure is depicted in Figure 2, with
connections for different combined heat, power and fuel
strategies. The units in gray require investment, updated to
2019 values using the chemical engineering plant cost index
(CEPCI). Biowaste generation of 3.75 t/h and 4.5 MW
corresponds to 400,000-person equivalent, which is used as the
reference population. The network diagram (Supplementary
Appendix Figure A9) shows both the source nodes and the
biowaste treatment facility. A monthly resolution (twelve time
steps) covering a full year of operation is used to capture the
variation of seasonal parameters and make use of data provided
by the industrial partner.

Superstructure Modeling
Models are the core of the conversion process description,
allowing to formulate the transformation from feedstock to
final value-added products. Surrogate and blackbox models,
which are simplified representations of complex systems,
originate from literature values, experts input or detailed
simulation models in flowsheet software. Belsim (2018) and
Al-Malah (2016), both simulation software, use compositions
and characteristics of digestate to generate simplified models.
Each model has a reference flow or size (e.g., reference input
digestate) that is linearly scaled considering input/output of mass
and energy flows. Regardless of the size, constant efficiency is
assumed; costs have a linear dependency with unit’s size.
Supplementary Appendix Tables A7 and A8 summarize key
assumptions and input/output values. In particular, temperature-
enthalpy profiles are defined and fixed for each conversion unit,
therefore not subjected to optimization. Supplementary
Appendix Tables A5 and A6 describe environmental and
economic assumptions, respectively. In this section only the
most relevant modeling strategies are presented.

FIGURE 2 | Urban biowaste superstructure with average yearly values. Gray fill units are proposed investments. WS - water scrubbing; Mem - polymeric dry
membranes.
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Our case study limits impact categories to global warming
potential (GWP) using the IPCC 2013 GWP100a impact method.
Its widespread use and bench-marking potential motivated the
choice. However, it might not be the most adequate indicator to
tackle digestate use as a fertilizer or even future concerns with the
use and production of some conversion technologies; impact
categories relative to land, waste or other biological levels could be
considered. Subsidies and gate-fees, which are difficult to
estimate, were also excluded.

Feedstock and Pre-treatment
Anaerobic digesters are able to handle different organic waste
fractions, provided contamination is kept to a minimum. Three
biowaste fractions (s ∈ S) are considered: green waste (GW), food
waste (FW) and whey. GW is ground and sieved to guarantee a
maximum particle size of 10 cm, and FW is ground and mixed
with water - ensuring a pumpable sludge prior to digester inlet.
Whey does not undergo any pre-treatment prior to its use.

Digester
The digester is modeled as a semi-continuous reactor, working on
the thermophilic range (55°c), with a variable residence time.
Biowaste quantities and composition (Figure 3A) reflect
seasonality, which impacts the digester residence time, while
external temperature influences digester heat demand
(Figure 3B). Following the approach of Wellinger, Murphy
et al. (2013) and Castro-Amoedo (2019), biogas generation is
modeled as a first-order kinetic reaction (Eq. 22).

Biogass,t � Ms,t · TSs,t · VSs,t · BMPs,t · (1 − e−ks,t ·trt )
CH4 f raction

(22)

Ms,t, TSs,t, VSs,t, BMPs,t and ks,t represent respectively the mass,
total solids, volatile solids, bio-methane potential and the kinetic
parameter of feedstock s in time-step t. trt represents the residence
time per time-step t and CH4 fraction corresponds on average to

0.5344. All parameters have been reconciled by mean square error
minimization using real data from 2019 (Supplementary
Appendix Figure A10). The values are in line with those
reported by Holliger et al. (2017) for the same treatment facility.

Biogas and CO2 Upgrade
Biogas can be used on a conventional boiler to co-generate heat
and electricity or in separation units which are able to split its
main components - CH4 and CO2 - for additional upgrading.
Pressure Swing adsorption (PSA), monoethanolamine (MEA),
Water scrubbing and polymeric dry membranes were considered
according to their suitability for biogas upgrading, as discussed by
Allegue and Hinge (2012) and Wien Institute of Chem (2012).
These technologies were not the object of detailed flowsheet
simulation, but properties described by Murphy et al. (2013),
Kohl and Nielsen (1997), Huertas et al. (2011) and Urban (2009)
were used and summarized accordingly. Production of SNG
requires at least 96% CH4 fraction (Celebi et al., 2019), with
the level of H2S below 5 ppm, to avoid corrosion and potential
oxidation to sulfur dioxide, a highly environmentally impactful
gas (Allegue and Hinge, 2012).

Different C1-chemicals can be obtained by promoting CO2-
based upgrading routes:

• Formic acid: produced according to the process described in
Jens et al. (2019) comprising the reaction of CO2 and H2 at
50°c and 94 bar, with subsequent by-products removed by
distillation. A reactive distillation column at 200 mbar and
180°c produces formic acid with adequate market purity.

• Methane: The Sabatier reaction which combines CO2 and
H2 as described in Suciu et al. (2019).

• Methanol: Adiabatic reactor as described in Rihko-
Struckmann et al. (2010) working at 220°c and 50 bar,
followed by a flash unit and a distillation column for
methanol purification.

FIGURE 3 | Seasonal effect on: (A) biowaste quantities and composition identified by total production and sub-biowaste type; (B) external temperature and
digester heat demand.
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Digestate
The digestate, a carbon- and oxygen-rich sludge, is mainly
composed of undigested volatile fractions and lignocellulosic
components, and contains approximately 50% of the biowaste
inlet energy. Four different conversion pathways are considered:

• Catalytic hydrothermal gasification (CHTG): the main steps
involved are feedstock preparation (hydrolysis), salt
separation, fixed bed catalytic reaction, water absorption
tower and membrane upgrade. The modeling follows the
description of Mian et al. (2015) and is adapted to digestate
characteristics.

• Gasification: comprises air drying and optional torrefaction
and pyrolysis which reduces the amount of heat needed for
gasification. Circulated fluidized bed and entrained flow
reactors with both indirect- and direct-heat were considered
for the intermediate syngas production. The modeling
approach described in Gassner and Maréchal (2012) and
Celebi et al. (2019) was used. Depending on the gasifier
technology, different compositions of syngas are to be
expected; a gas processing step, comprising a water-gas
shift reactor finely tunes the composition for downstream
fuel generation coupled with CO2 separation units. Final
specification is fuel dependent. Di-methyl ether (DME)
should be produced with 99.88 vol%, at 25°c and 1 bar;
Fischer-Tropsch (FT) fuel at 25°c and 1 bar; Methanol
(MeOH) with 99.4 vol%, at 25°c and 1 bar, and substitute
natural gas (SNG) at 96%, 25°c and 50 bar. Thermal profiles
are described in Supplementary Appendix Table A8.

• Hydrothermal liquefaction (HTL): Liquefaction has a
filtration preparation step to ensure a cake with 20 wt%
solids followed by a reactor, which operates at 340°c and
220 bar. A three-phase separation stage originates biocrude,
a CO2-rich gaseous stream and a solid residue (biochar)
routed to thermal valorisation. The values and structure
used are adapted from Castro-Amoedo et al. (2020) and
Biller et al. (2018) to the digestate characteristics.

• Discard/Fertilizer: State-of-the-art digestate disposal
comprising screening, mechanical water removal step and
air drying, with a fraction thermo-valorized and the
remaining disposed as fertilizer.

Utilities
The utilities section consists of additional technologies that allow
closing the energy balance. The co-generation solid oxide fuel
cell-gas turbine (SOFC-GT) is modeled according to Facchinetti
et al. (2011) and Suciu et al. (2019) whereas the co-generation
solid oxide electrolysis cell (SOEC) and the alkaline electrolyser
(AEC) are adapted from Wang et al. (2018) and Suciu et al.
(2019). Celebi et al. (2019) used a steam boiler fired by natural gas
as a representative proxy of the European boiler family. The same
consideration and modeling approach is taken in this work.
Steam, produced in a Rankine cycle, is the industrial heat
carrier per excellence due to good heat transfer properties, as
well as preferable prices and high safety. The generation level is
set at high pressure (50 bar) and distributed according to different
pressure levels, chosen according to the temperature-enthalpy

profiles. A superstructure approach as described in Wallerand
et al. (2018), is used for heat pumps with pressure levels chosen to
fit the temperature requirements of digester and district heating
network. Neither the refrigeration fluid (ammonia) nor the
pressure levels are subject to optimization.

2.9 Market Conditions
Distinct configurations are expected under different market
conditions and economic assumptions. Resource prices, such
as electricity, SNG and heat, have a seasonality trend which is
particularly relevant for energy systems design. Figure 4 shows
the monthly average resource prices obtained from industry and
local providers for 2019 - used as the representative year -
alongside the electricity grid carbon intensity for Switzerland,
obtained using the tool described in Kantor and Santecchia
(2019). The use of heating oil, heat pumps, electricity and
natural gas contribute to the price of heat according to their
share, retrieved from the Ecoinvent database (Wernet et al.,
2016).

Motivated by growing electricity demand and renewable
energy penetration, uncertainty associated with energy
systems is considered to be on the high-level. Therefore a
50% variation on the seasonal trend is considered (Table 2).
Prices for different fuels are the average between 2016 and
2019 (Comtrade Comtrade, 2021), and a medium-level
uncertainty (30%) is considered. We further assume that
Fischer-Tropsch fuels can replace diesel and therefore show
a similar market cost, while biocrude, due to the need of a pre-
processing step, replaces crude oil on a 50% basis. Kim et al.
(2013) considered three levels of investment cost uncertainty
linked with biomass-to-fuels technology maturity and
complexity; the medium range value of 30% is here taken.
The interest rate is employed to discount investment and
assess project profitability, taking an average value of 0.08,
which should reflect the risk and premium associated with
investment. Due to a low level of maturity associated with
some technologies, 50% variation is used.

FIGURE 4 | Seasonal effect on electricity, heat and SNG price and
electricity environmental impact for the reference year 2019.
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The ranking and evaluation phase (Section 2.6) counts, in
addition to all the parameters from the generation phase,
with three additional taxation-based parameters: 1) a CO2 tax
which allows to translate into monetary units a solution’s
environmental impact; 2) a premium on SNG that is common
practice in Europe to promote the upgrade of biogas to grid-
level quality and 3) an additional waste tax, that could be used
to help financing greener solutions. The values were chosen
based upon the generation phase: for each solution and
market condition the value of the three taxes were
computed to break-even with the solution with the lowest
total cost. The values are within acceptable market ranges and
prospect policies.

3 RESULTS AND DISCUSSION

The continuous generation of biowaste and the ongoing pressure
on natural resources urges for flexible energy systems, whereas
increasing complexity claims for comprehensive approaches. Our
two-stage approach embraces the challenge and attempts to
provide useful insight and quantitative decision support,
leaving subjective duties to the user. An urban biowaste case-
study validates the pertinence of the methodology. The MILP
formulation comprises 74,650 variables (3,978 binary) and 47,873
constraints. The mipgap was set to 0.01% and the solving time is
23 min on a 8-Core Xeon 2.4 GHz processor with 16.0 Gb of
RAM. The MILP is solved 1,000 (M � 1,000) times for different
generation parameters (p � 11) combination.

3.1 Solutions Clustering and Solution
Identification
The original solutions were sorted based on thirty-seven
dimensions in the feature space, which correspond to the
used MILP decision variables. Based upon the Silhouette and
Elbow methods - Supplementary Appendix Figure A11 - 10
clusters are chosen to conveniently represent the set of 197

unique solutions. The optimization procedure, as described
in our methodology, is used to generate a database of
solutions built on different market assumptions, instead of
relying on a fixed (and highly uncertain) set of market values.
Solutions are characterized by their intrinsic aspects: energy
flows (Figure 5A), technology activation (Figure 5B) and
efficiencies (Figure 5C), rather than by performance
indicators.

Investment foreshadows a shift from biogas as a fuel to its use
as a chemical building block. Indeed, configurations with
moderate investments rely on importing electricity - profiting
from periods with low costs and excess supply - to maximize the
production of formic acid. Higher investments also entail the co-
production of SNG. This trend is further supported by an
increasingly complex technology mix (b): formic acid
production and electrolysis are the first investments, whereas
for higher values, gasification technologies and biogas
purification units are activated; the use of heat pumps is
activated for the highest values of investment, which are
simultaneously associated with the highest global efficiency.
The shift toward fuel production is notorious for a wide range
of investment, corroborated by a large chemical contribution to
the global efficiency (c).

Figure 6 depicts the grand composite curve of two
configurations: without investment (corresponding to the
current scenario) and with the largest average one (141 $/tbw).
In the former, biogas is used as a fuel to drive a Rankine cycle
which supplies both the internal digester needs and a district
heating system, whereas the use of gasification units coupled with
heat pumps on the latter changes the heat integration
configuration. The system is better integrated with low
temperature heat supplied by heat pumps, biogas upgrade, and
digestate headed toward gasification units, further enhancing heat
recovery and integration, while simultaneously producing SNG.

Solutions are further evaluated by economic criteria which use
the same parameters distribution (although not mandatory) of
the generation stage, accrued by a tax on CO2 emissions, a
premium on SNG, and a waste tax.

TABLE 2 | Market considerations and parameter uncertainty range; * diesel price; ** half of crude oil price. Uniform distribution are assumed for all parameters.

Generation-parameter Unit Nominal value Variation (%)

Price electricity [$/kWh] Seasonal 50
Price SNG [$/kWh] Seasonal 50
Price heat [$/kWh] Seasonal 50
Price DME [$/t] 830 30
Price FA [$/t] 650 30
Price MeOH [$/t] 400 30
Price FT-fuel [$/t] 1,060(*) 30
Price biocrude [$/t] 400(**) 30
Carbon electric grid [kgCO2 −eq/kWh] Seasonal 50
Investment cost [$] Technology dependent 30
Interest rate [-] 0.08 50

Ranking-parameter Unit Range

CO2 tax [$/tCO2 [0–1,000]
SNG premium [$/MWhSNG] [0–340]
Waste tax [$/cap.year] [0–24]
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FIGURE 5 | System configurations, highlighting (A) energy flows, (B) technology activation and (C) efficiencies as a function of Capex: central value represents the
average, whereas sub- and superscript represent the 95% CI.

FIGURE 6 |Grand composite curves (GCC) of (A) reference case (no investment) and (B)maximum average investment. GCC are a graphical representation of the
heat cascade, showing the excess heat availability at each temperature interval. RC - Rankine cycle, HP - heat pumps, DHN - district heating network, FA - formic acid
production.
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3.2 Market Conditions and Ranking
Market conditions are used for solution generation but are also part
of performance indicator calculation. The use of different market
conditions renders solutions more or less attractive, depending on
the list of performance indicators and priorities. Figure 7 shows
Opex, Tc and Impact as a function of Capex, resulting from a QMC
simulation. Increasing investment entails on average, as expected, a
reduction in operating cost; however, for the low range of
investments (below 26 $/tbw), the environmental impact follows
an increasing trend. This can be explained by a shift toward
electricity import and a low quantity of added-value chemical
production, which is nevertheless enough to justify a significant
average decrease in total cost performance. Filled markers identify
two relevant solutions for decision-makers and practitioners: the
solution with average minimum total cost (blue, diamond) and the
solution with average minimum environmental impact (green,
square). The wide confidence interval range depicts overlapping
situations in which other solutions might have lower total cost and
environmental impact. A robust approach is thus warranted to rank
and choose among solutions.

The use of traditional Pareto trade-off analysis hinders the
comparison between more than three KPIs, constraining the
amount of information that can be obtained. Table 3 expands on
the graphical information by including all the considered KPIs: the
central position corresponds to the average value and the 95%
confidence interval is represented by the sub- and superscript
values; values are sorted by increasing Capex and negative values
correspond to profit (or negative emissions) situations.

The reference configuration, entailing zero investment, is the most
penalizing design in average economic terms. Increasing investment,
even as little as 5 $/tbw, promotes a 10% average reduction reduction in
total cost, associated with the added-value of formic acid production.
However, the impact substitution credit is not enough to either cover
the burden associated with production or the electricity imports. Only
for higher investments (greater than 26 $/tbw), and thus increased

formic acid production, does the system convert itself into a net
negative emission system; for these set of solutions not only
environmental impact but also costs reach their average minimum.
If we take a closer look, environmental impact is consistently negative
above 26 $/tbw, which is a remarkable result: properly managed, urban
biowaste constitutes a net CO2 sink, asserting its relevance in the
prospective environmental policies. Solutions’ pay-back time (except
the largest investment) does not surpass 3 years, which stands low
compared with typical lifetime of engineering projects.

As a thermodynamic KPI, global efficiency only reaches higher than
the reference value for the highest investments which are associated
with SNGco-production and alsowith a greater number of units,which
can be understood as a need for more process equipment, workers and
safety measures. In all the intermediate investments, despite a more
complex system, the shift toward value-added chemicals does not
encompass a more efficient system.

Decision-making based on averages is commonplace in
engineering applications. However, using averages forestalls deeper
analyses and relations. The use of confidence intervals instead, protects
against uncertainty to a much higher degree, which is paramount in
energy systems. For example, depending on market conditions the
reference solution can be either an environmental burden or a net
emissions sink. Other solutions and KPIs show a similar dichotomy.

The use of a ranking system allows arguing then on a probabilistic
base, conditioned to the set of market parameters (Table 4). Based
upon the parameters distribution, each configuration is ranked
according to the probability of belonging to the three best
alternatives for the set of KPIs - which are ultimately a user-
defined choice. Due to the absence of investment, the reference
solution outperforms all the others in Capex, pay-back time and
complexity factor, although statistically underperforming in other
economic and environmental impact categories. On the other end of
the spectrum, solutions with the highest investment perform
statistically better on Impact, Opex, total cost, and global
efficiency, albeit with an increased complexity degree.

Some caveats on the interpretation are warranted: the number
and type of KPIs, their weighting on the total score and the assumed
parameters distribution, all of which play a significant role in ranking
and evaluation. For instance, a different set of priorities is likely to
radically change the decision: based only onmathematical objectives
(ranking P1, blue), the solution with the average investment of

FIGURE 7 | Pareto trade-off. Vertical lines represent the 95% confidence
interval (CI) in total cost (Tc), operating cost (Opex) and environmental impact
(impact). Horizontal dashed lines represent the 95% CI on capital
expenditures (Capex). Filled markers portray solutions with the average
lowest values. Trend lines are for visual support only.

TABLE 3 |Quasi Monte-Carlo simulation results (10,000) per solution and per KPI.
The central value represents the mean; sub- and superscript account for the
upper and lower range of the 95% CI.

Capex Tc Opex Impact Pbt Global eff Cf

[$/tbw] [$/tbw] [$/tbw] [kgCO2eq/tbw] [y] [-] [-]

000 14828317 14828317 1259−36 000 26.3 0.05
56.33.5 134341−67 129335−71 298299298 1.02.70 19.2 0.23
79.15.0 65245−107 58237−114 210240180 1.83.20 16.8 0.23
89.85.4 35200−121 28192−130 158193122 1.262.00.2 16.8 0.32
202514 −26126−172 −46106−192 11013387 0.91.50.5 19.3 0.32
263319 −209−31−407 −235−56−431 −212−133−291 0.60.90.3 21.6 0.27
324123 −203−30−391 −236−63−423 −190−115−265 0.71.10.4 21.8 0.36
344424 −202−27−391 −236−61−424 −195−121−269 0.71.10.4 24.4 0.41
627944 −13081−346 −19115−407 −195−78−312 1.62.80.9 39.8 0.41
141180100 −23244−302 −163102−435 −217−64−369 13.8141.9 53.8 0.36
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26 $/tbw outperforms in approximately one quarter of all market
scenarios. The inclusion of other user indicators (P2), under the
assumption of uniformweights, sharply decreases the interest of that
design while promoting the reference one, which performs
statistically better in 19% of the cases. The solution with an
average investment of 20 $/tbw is never amid the top-three
configurations in any KPI, which perfectly showcases the
decouple of solution generation and ranking. Decision-maker

intervention and subjective analysis is crucial for fine tuning and
analysis.

The user has available a large set of parameters that are
ultimately responsible for solution ranking and might serve as
guidelines in policy-making. Figure 8 shows solutions (identified
by their average investment) that achieve the lowest total cost for
each market configuration. Only 1,000 points and four parameters
are shown for the sake of clarity and simplicity. The right side

TABLE 4 | Solutions probabilistic ranking (normalized) ranged by increasing capex and pertaining to two ranking systems: P1, containing only MILP objectives; P2 adding
thermodynamic and configuration indicators. Highlighted scores achieve the highest global performance assuming uniform weights.

Solutions (average capex) 0 5 7 8 20 26 32 34 62 141

Capex 33.3% 33.0% 33.3% − − − − − − −
Tc − − − − − 33.0% 31.6% 32.7% 1.8% 0.7%

Opex − − − − − 27.7% 25.9% 31.4% 6.7% 8.3%

Impact − − − − − 33.3% 11.4% 16.7% 16.6% 21.9%

Pay-back time 33.3% 21.0% 17.7% 13.3% − 14.5% − − − 0.1%

Global eff 33.0% − − − − − − − 33.0% 33.0%

Complexity factor 33.0% 33.0% 33.0% − − − − − − −
Total score (P1) 8.3% 8.3% 8.3% 0.0% 0.0% 23.5% 17.2% 20.2% 6.3% 7.7%

Total score (P2) 18.9% 12.4% 12.0% 1.9% 0.0% 15.5% 9.8% 11.5% 8.3% 9.1%

FIGURE 8 | Solutions achieving the lowest total cost for different parameters combination. Symbols represent design configurations labeled according to their
average capex ($/tbw).
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underlines the role of the CO2 tax as the main driver in total cost.
For values above 300 /tCO2 and regardless of other parameters, the
solution with an average investment of 26 $/tbw is systematically
preferred (but for lower values of SNG premium and waste tax,
whereupon it competes with high investment designs), translated
by an investment in catalytic hydrothermal gasification for
digestate upgrade, and the production of formic acid after
biogas upgrade. For more modest carbon tax values the solution
of 32 $/tbw is preferred for high SNG incentives and waste taxes,
whereas the solution with 34 $/tbw dominates in the lower range.
Both solutions promote gasification, with the latter combining both
dry and hydrothermal options. The left side of the figure, despite
less trend informative, reinforces the predominant role of carbon
taxation. Nonetheless, solutions with low average investment are
associated with higher electricity price, waste tax and SNG
premium, while high investment options dominate markets with
low costs of electricity and waste tax.

4 CONCLUSION

Sustainable development goals comprise the gradual replacement
of fossil fuels, progressive deployment of renewable energy and
negative CO2 emissions. Biomass is able to address all of these
dimensions, thus its critical role in the energy transition. In this
work we propose a two-stage optimization approach for the
design of robust energy systems, applied to an anaerobic
digestion plant which is, according to Burg et al. (2019), the
present and future dominant conversion technology for urban
biowaste treatment in Switzerland.

The applied methodology addresses the challenge of biogas
separation and upgrading, while dealing with complex and
difficult to digest lignocellulosic fractions. Biogenic CO2 and
surplus electricity periods promote fuel synthesis, contributing to
close the gap between electricity supply and demand, and therefore
improving the system resilience. We show that greater diversity,
which is represented by activating different technologies, reduces
costs, emissions and promotes efficiency. The use of heat pumps -
activated on the high-range of investment - associated with heat
integration strategies, greatly contributes for a far superior system
with increased efficiency. Synergies are explored and translated into
user-defined metrics, showcasing the added-benefit to the local
energy ecosystem.

The main advantage of our approach lies in the use of different
market conditions for solution generation and clustering,
avoiding the bias toward configurations that marginally
outperform under prevailing market conditions. Indeed, the
uncertainty associated with existing energy systems asks for
frameworks that allow a systematic analysis of market settings
- enabling the emergence of sub-optimal designs. As performance
indicators are not the driver for solution generation, but are
rather used for ranking and evaluation, their number can be easily
adapted to account for user preferences or multi-stakeholders

positions. The robustness of the approach is highlighted in the use
of an approach for design ranking and evaluation. Moderate
investment solutions (between 26 and 34 $/tbw) are more robust,
as they statistically achieve lower values of total cost and lower
environmental impacts, by combining gasification units (dry and
hydrothermal options) with biogas separation and CO2 upgrade
to formic acid.

Policy-makers could also benefit from our approach. Feed-in tariffs,
institutional incentives for substitute natural gas production, a CO2 tax
or a consumer waste tax can be calculated from this work. The
developed methodology is thus appropriate to handle exogenous
uncertainty embedded in a multi-period framework, with systematic
generation, evaluation and ranking of system configurations. With our
approach, we believe and hope to contribute for an interdisciplinary
effort to address the clean energy transition in which cutting-edge
biomass-based models are paramount.
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NOMENCLATURE

u ∈ U Units U � {Gasification, CHTG,HTL,PSA, MEA, . . . }Utility Units
UU � U \PU

u ∈ PU Process Units PU � {urbanbiowaste generation}

u ∈ U Units U � {Gasification, CHTG,HTL,PSA, MEA, . . . }Utility Units
UU � U \PU

i ∈ SU Supply Units SU � {Gasification, CHTG,HTL,PSA, MEA, . . . }

j ∈ CU Consuming Units CU � {Gasification, CHTG,HTL,PSA, MEA, . . . }

r ∈ R Resources R � {electricity, cooling water,SNG,biocrude,FA, . . . }

k ∈ K Temperature intervals K � {1 . . . nk}

t ∈ T Time steps T � {1 . . . tt}

fu/fu,t Sizing factor of unit u/in time step t [-]

yu/yu,t Binary variable to use or not unit u/in time step t [-]

gi,j Binary variable connecting producing unit i to consuming unit j [-]

mṙ,i,j,t Flowrates of resource r between supplying unit i and consumer unit j
in time step t [kg/h] or [m3/h] or [kW]

M ̇+
r,t Exported quantity of resource r in time step t [kg/h] or [m3/h] or [kW]

M ̇−
r,t Imported quantity of resource r in time step t [kg/h] or [m3/h] or [kW]

R ̇t,k Residual heat in the temperature interval k in time step t [kW]

topt Operating time per time step t [h/time step]

f min
u /f max

u Minimum/Maximum size of unit u [−]
c−r,t/c

+
r,t Reference cost of importing/exporting resource r at time step t

[$/Ref. flow]

copu Specific operating cost of unit u [$/Ref. flow]

cinv, 1u /cinv,2u Specific fixed/variable investment cost of unit u [$]/[$/Ref. flow]

cimp, 1
u /cimp,2

u Specific fixed/variable environmental impact of unit u
[Impact]/[Impact/Ref. flow]

k−r,t/k
+
r,t Reference environmental impact of importing/exporting resource r

at time step t [Env. Impact/Ref. flow]

m ̇+
r,u,t/m ̇−

r,u,t Reference mass flowrate of produced/consumed resource r in
unit u at time step t [kg/h] or [m3/h] or [kW]

_qu,t,k Reference heat load of unit u in time step t and temperature
interval k [kW]

m ̇L
r,i,j,t/m ̇U

r,i,j,t Minimum and maximum transport limits of
resource r between origin i and destination j at time step t [Flow]

n/i Investment lifetime/Investment interest rate [years]/[-]

bw biowaste

SNG substitute Natural gas

FA formic acid

DME di-methyl ether

MeOH methanol

FT fischer-Tropsch fuel

WW wastewater

AEC alkaline Electrolysis cell

FW food waste

GW green waste

Opex operational expenditures

Capex capital expenditures

Tc total cost

Cf complexity factor

Pbt pay-back time

KPI key performance indicator

QMC quasi Monte-Carlo

MEA monoethanolamine

PSA pressure swing adsorption

HTL hydrothermal liquefaction

CHTG catalytic hydrothermal gasification

DHN district heating network

RC rankine cycle

HP heat pump(s)
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