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The prediction of wind power plays an indispensable role in maintaining the stability of the
entire power grid. In this paper, a deep learning approach is proposed for the power
prediction of multiple wind turbines. Starting from the time series of wind power, it is
present a two-stage modeling strategy, in which a deep neural network combines
spatiotemporal correlation to simultaneously predict the power of multiple wind
turbines. Specifically, the network is a joint model composed of Long Short-Term
Memory Network (LSTM) and Convolutional Neural Network (CNN). Herein, the LSTM
captures the temporal dependence of the historical power sequence, while the CNN
extracts the spatial features among the data, thereby achieving the power prediction for
multiple wind turbines. The proposed approach is validated by using the wind power data
from an offshore wind farm in China, and the results in comparison with other approaches
shows the high prediction preciseness achieved by the proposed approach.

Keywords: wind farm, wind turbine, convolutional neural network, long short-termmemory network, spatiotemporal
power prediction

INTRODUCTION

With the emphasis on environmental issues, developing clean energy represented by wind energy
and solar energy (Yang et al., 2019a; Yang et al., 2020) is the direction of the energy revolution. In
recent years, the solar energy has been rapidly developed (Yang et al., 2019b). The wind power has
attracted much attention for its richer resources and efficient power generation technology (Liu et al.,
2016). The GlobalWind Energy Development Report 2019 shows that the newly installed capacity of
global wind turbines in 2019 is 60.4 GW. Due to the randomness and uncertainty of the wind, the
large-scale uncontrollable wind power could affect the stability of the power grid, when it is
connected to the grid. The dispatch methods of wind farms are required to satisfy the power demand
of the grid, which are mainly based on the average distribution method (Yang et al., 2021) and the
proportional distribution method (Hazari et al., 2017) at present. However, the topographic effect,
wake effect, turbulence intensity and other influencing factors in large wind farms make the wind
captured by wind turbines vary at different locations (Song et al., 2021a). In order to avoid the
instability of the power grid, for each wind turbine in a wind farm, its power distribution needs to be
determined according to its own operating conditions, which requires the power prediction for each
wind turbine (Song et al., 2021b).

In the past, there are two types of wind power prediction methods, including the physical method
of analyzing the physical quantity to obtain the wind speed data and then converting it into the power
data (Seo et al., 2019), and the statistical method for establishing wind power prediction models by
collecting the historical data through the Supervisory Control and Data Acquisition system of wind
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farms and then fitting curves. When most studies focus on
predicting the total power of the wind farm or a single wind
turbine, few studies aim at the prediction for the power of
multiple wind turbines.

Making use of temporal correlation and spatial correlation
(i.e., spatiotemporal correlation) in a wind farm could be helpful
for multi-location wind power prediction (Jinfu et al., 2019).
Since the wind faced by each wind turbine interacts in time and
space, the power of a wind turbine is closely related to the wind at
its location. In time, there is a certain correlation between the
historical state of the wind at the same spatial point, that is, the
temporal correlation; in space, winds in different spatial positions
at the same time can also affect each other, that is, the spatial
correlation. There could be a certain connection between the
winds in different times and in different spaces, which is referred
to as the spatiotemporal correlation. Nevertheless, it remains a
challenge on how to combine the spatiotemporal correlation to
solve the power prediction of multiple wind turbines in a
wind farm.

In recent years, deep learning methods have been rapidly
developed, and been recently used for the wind energy prediction.
Compared with traditional machine learning methods, deep
learning has better performance in terms of the feature
extraction and model generalization. Among typical deep
learning methods, Long Short-Term Memory Network
(LSTM) shows the excellent performance when dealing with
time series problems (Hochreiter and Schmidhuber, 1997),
while Convolutional Neural Network (CNN) has an
outstanding performance when processing data with spatial
structure (Lecun et al., 2015). To take advantage of the
spatiotemporal correlation, it is proposed a LSTM-CNN joint
model for predicting the wind power of multiple wind turbines in
this study. Specifically, LSTM captures the temporal dependence
between the wind power data of each single wind turbine, and
CNN extracts the spatial correlation between the wind power data
of multiple wind turbines. In this way, the joint model learns the
interaction between the winds in the wind farm and the wind
dynamics with spatiotemporal properties, thus providing the
precise prediction information for the wind turbines in the
wind farm.

The remainder of this paper is organized as follows. In Section
2, the LSTM-CNN power prediction model is explained.
Experimental validation and result analysis are shown in the
Section 3. Finally, Section 4 concludes the paper.

THE PROPOSED LSTM-CNN JOINT
PREDICTION MODEL

The difficulty of conducting the temporal-spatial sequence
prediction, such as “wind turbine power prediction,” is to
simultaneously extract the time dependence and spatial
features hidden in the data. After data preprocessing, the
LSTM-CNN joint prediction model is proposed, which
exploits a two-stage modeling strategy. In the first stage, the
temporal features are extracted by the LSTM sub-model. In the

FIGURE 1 | The LSTM-CNN joint prediction model.

FIGURE 2 | Distribution map of Guishan offshore wind farm in Zhuhai.
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second stage, the spatial correlation from the spatial matrix is
determined by the CNN sub-model. On this basis, the algorithm
training is explained.

Data Preprocessing
Giving that the neural network is very sensitive to the diversity of
the input data, and that the uncertainty of the wind will cause
outliers and noise in the power measurement data, the wind
power data is preprocessed as follows:

S(xi) � xi − μ

σ
(1)

Where, xi represents the wind turbine power data at time i, the
mean μ is calculated as:

μ � 1
N

∑N
i�1

(xi) (2)

And the standard deviation σ is calculated as:

σ �

������������
1
N

∑N
i�1

(xi − μ) 2

√√
(3)

Before establishing the model, the sets of input data and
output data of the model are to be defined: assuming that Xi �
[xi1, xi2, xi3, . . . , xi(n−1), xin] is the power measurement data of
the ith wind turbine arranged in chronological order, taking α as
the length of the sliding window, setting 1 as the step size of the
sliding window, and using the sliding window sliding on the Xi to

obtain the input data with the dimension of 1×α and compose
the data set. Based on the sliding window length α, we take
Si1 � [xi1, xi2, xi3, . . . , xiα] as the first data in the input data set
and Si2 � [xi2, xi3, xi4, . . . , xi(α+1)] as the second data, and so on
we get the processed historical power data of n wind
turbines as the input set. Correspondingly, the output data
set Yi � [xi(α+1), xi(α+2), xi(α+3), . . . . . . , xin] of each wind turbine
can be obtained, and the values at the same moment
of multiple turbines are formed a one-dimensional array
Yp � [x1(α+1), x2(α+1),x3(α+1), . . . , xn(α+1)] , which is the true
value of the model output.

LSTM-CNN Joint Model
LSTM can effectively extract the data temporal dependence,
has excellent performance in prediction on a variety of time
scales, and can be trained by back-propagated through time
algorithm. The CNN has the ability in processing the input in
the form of two-dimensional images, and can meet the need
to simultaneously predict the power of multiple wind
turbines. As shown in Figure 1, the LSTM-CNN joint
modelling is mainly divided into two stages, which are
explained as follows.

In the first stage, the LSTM captures the temporal correlation
in the data that has been preprocessed. Specifically, the processed
power data of n wind turbines goes into n LSTM modules and
each LSTM model is set to β layer. Each LSTM outputs a value.
After concatenating and processing, the corresponding output
values of each turbine are put into a two-dimensional matrix Wp

according to the location of the wind turbines.

FIGURE 3 | Two-hour power prediction results for wind turbines: (A) #17; (B) #19; (C) #23; (D) #25.
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In the second stage, the CNN is used to extract the spatial
correlation stored in thematrixWp. Starting from the input layer of
CNN, the spatial features in the matrix Wp are captured by the
convolution kernel to obtain a new feature map. The CNN will
gradually extract the spatial information of the spatial power
matrix after multiple convolution-pooling layer structures and
output a one-dimensional vector in the final output layer as the
actual output of the model. In this study, Rectified Linear Unit
(ReLU) is selected as the activation function of the convolutional
layer. As an unsaturated nonlinear function that can accelerate the
convergence rate during training, ReLU can significantly improve
the performance of CNN. The definition of ReLU is as follows:

g(x) � { x, x ≥ 0
0, x < 0} (4)

Algorithm Training
After establishing the joint model, a single loss function is used
for end-to-end training. Because the power prediction can be
regarded as a regression problem, the prediction goal is to
minimize the error differentials between the model’s output
sequence and the true value. Therefore, the mean squared
error (MSE) is selected as the loss function for model training,
and its definition as follows:

FIGURE 4 | Prediction results for the four wind turbines under different prediction steps: (A) step � 1; (B) step � 2; (C) step � 3; (D) step � 4.
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L � 1
N

∑N
i�1

(Yp − Ŷp)2

(5)

Where, L is the loss function,N is the total number of samples, Ŷp

and Yp are the predicted and true values, respectively.
The back-propagation rule and stochastic gradient descendant

algorithm are adopted to train the entire network. The algorithms
can automatically learn the rules of the network parameters to
optimize the entire network, so that the output of the model can be
closer to the true value. The error differential propagation starts
from the last fully connected layer of the model through,
i.e., propagating in the inverse time direction. Subsequently, the
propagated error differentials pass through the entire CNN to the
LSTM, and then backward propagate to the input layer of the entire
model. In this way, the parameters of the model are iteratively
updated according to the error differentials, and finally the optimal
parameters are learned. In this process, the parameters of the entire
model are supervised by the gradient-based training method. The
prediction model integrates the learned spatiotemporal
information and finally achieves the purpose of power
prediction using the spatiotemporal correlation.

EXPERIMENTAL VALIDATIONS

Data Description
In this experiment, the SCADA data of 34 wind turbines at
Guishan offshore wind farm in China within 1 wk of November
2019 was collected and used. The distribution of the wind farm is
shown in Figure 2. All wind turbine models are exactly the same,
and the time resolution of the data is 1 min. The single data set for
the experiment contains a total of 20,160 frames. The data set is
divided into three mutually exclusive subsets: training set, test set,
and verification set. The training set and the test set account for
the first 60 and 20% of the data set, respectively. The last 20% of
the data set is used to evaluate the model’s generalization ability.
In order to achieve better results for the model, eight wind
turbines with the closing distribution position in the wind
farm are selected as the research objects, which are # 17, # 18,
# 19, # 20, # 23, # 24, # 25, # 26, respectively.

Model Parameter Setting
First of all, a truncated normal distribution is used when
initializing network parameters. Meanwhile, the Adam
algorithm is selected as the optimization function of the
model, of which the learning rate is set to 0.01, and the
iteration is 100 times.

In the model, the length of the sliding window to obtain the
input sequence (i.e., α) directly affects the effect of LSTM on the
temporal correlation extraction of historical sequence data. If α is
too small, the time features included in the input sequence are
insufficient, which affect the prediction accuracy of the model. If
α is too large, it makes the structure of the model complicated and
training more difficult. Considering the above two aspects
comprehensively, and through a large number of experimental
tests, α is finally selected to be 20.

Then, the number of LSTMmodels is set to 8, which is the same
as the quantity of the selected wind turbines. In order to extract the
temporal features, the number of LSTM layers β is set to 2. In the
merge processing module of the joint model, the output data of
#17, #18, #19, #20 are put on the first row of Wp, and the output
data of #23, #24, #25, #26 on the second row. By doing so, a two-
dimensional spatial matrix Wp is obtained. Since Wp is just a
matrix of (2, 4) shape, the contained features are not complicated,
so only one convolution layer C1 is used in the CNN model.

Lastly, the convolution kernels’ number of the convolutional layer
is set to 32. Each convolution kernel is a two-dimensional matrix
with a height and width of 2. The edge of the input image is filled
with a size of 1, and the input is convolved with a step size of 1. The
first layer of convolutional layer C1 outputs a convolutional image of
size (2, 4, 32), which is used as the input of the pooling layer P1. In
this study, the maximum pooling method is selected, that is, the P1
layer is theMax Pooling layer, the pooling core size of P1 is set to 2 ×
2, and the step size is 2. When the output of C1 reaches P1, P1
outputs a result of shape (1, 2, 32). Subsequently, pass it to the fully
connected layers F1 and F2. The F1 input dimension is set to 1 * 2 *
32 � 64, the output dimension is set to 100, and the F2 input
dimension and output dimension are set to 100 and 8, respectively.

Experimental Results
In order to verify the comprehensive performance of the
established model, three algorithms are selected and developed
for comparison, including Support Vector Machine (SVM), LSTM
and CNN. The three models have been trained separately, and the
models having the best performance are saved. The data of four
wind turbines, # 17, # 19, # 23 and # 25, are selected to discuss, and
the predicted wind power of the four models are obtained.

The predicted value and the real values of the 2 h are plotted in
Figure 3. As seen from Figure 3, the prediction curve of the LSTM-
CNN joint model is closer to the true value than the other three
prediction algorithms. To be specific, the LSTM effectively extracts the
time correlation, and it also has good prediction performance. By
comparison, the CNN and SVM perform poorly. The reason is that,
when facing the problem of power prediction of multiple wind
turbines, the CNN can effectively capture the spatial features of the
data, but it does not take the temporal correlation into account.
Similarly, the LSTM has excellent performance when facing timing
prediction problems, but ignores the spatial features. Since the SVM
only uses the global spatial and temporal information in the data, its
prediction preciseness is noticeably lower than the three counterparts.

To further evaluate the performance of different prediction
methods, the widely used performance indicators are used and
calculated: root mean squared error (RMSE) and mean absolute
error (MAE), and MSE. The data of the last 2 h in the prediction
data obtained from the test set is selected and divided into four
steps to evaluate the four models. That is, let k be the number of
steps, and obtain 30-min prediction data at each step to compare
with the comparison algorithm. The results of performance
indicators are shown in Figure 4, from which the observations
can be summarized as two aspects. On the one side, with the
increase of the prediction step, the prediction effect of each model
all decreases. Specifically, the SVM declines fastest, followed by
CNN, LSTM, and the last comes the LSTM -CNN joint model.
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On the other side, for the four prediction models, the MSE,
RMSE, and MAE of the LSTM-CNN joint model are lower than
the other three models, and the LSTM-CNN joint model has the
best performance when facing the problem of prediction for
power of multiple wind turbines at different locations.

To sum up, the proposed LSTM-CNN joint model making full
use of high-level spatiotemporal features, is capable of
simultaneously predicting the power of multiple wind turbines
in terms of its two-stage structure. The input data of LSTM is a one-
dimensional array of a specific length and multiple LSTMs are
simultaneously operated to complete the extraction of the temporal
features of the wind turbines in different locations, so that the
temporal correlation in the time series can be fully extracted. After
extracting time features by LSTM, a spatial power matrix is
concatenated, in which the spatial features are captured by
CNN, and thus the prediction task is successfully fulfilled.

CONCLUSION

The proposed prediction model is based on the modeling idea of
“capturing temporal dependence first and then extracting spatial
features.” Composed of LSTM and CNN, the model was trained
end-to-end by a unified loss function. The trained model can extract
high-level spatiotemporal features from the historical power data of
wind turbines, so as to achieve the purpose of simultaneously
predicting the power of wind turbines at different locations. The
measured data of an offshore wind farm in China was used for
simulation experiments and the real values were compared with the
predicted values of themodel. The comparison results showed that the

proposed method has more excellent performance than the existing
prediction methods, such as LSTM, CNN, and SVM. With the
proposed model, it is possible to precisely predict the wind power
of multiple wind turbine within a wind farm with the regular layout.
On this basis, it can be performed the accurate power scheduling,
which is the future research direction.
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