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With the prevalence of building automation and Internet-of-Things technologies, home
energy management has become an active area in recent years. This paper proposes an
integrated, multi-objective Home Energy Management System (HEMS), which optimally
schedules controllable electric household appliances to balance three objectives: 1) home
energy cost; 2) the occupant’s use satisfaction of controllable appliances; and 3) the
occupant’s thermal comfort. In particular, the HEMS models the coupling operational
relationship between the non-thermostatically controlled appliances and the air conditioner
by investigating the impact of heat gains released by the appliances on the indoor
temperature. An advanced multi-objective optimizer is applied to solve the home
energy management model. Simulations are conducted to validate the proposed method.

Keywords: demand response, smart home, building energy, smart grid, demand side management

INTRODUCTION

Modern buildings are characterized by the penetration of renewable energy sources, Internet-of-
Things (IoT) facilities, and building automation technologies. These have been driving buildings
transition from static civil infrastructures to be complex cyber-physical entities that are capable of
actively interacting with external physical systems, e.g., smart grids. In particular, the demand
response (DR) flexibility of buildings (Mathieu et al., 2011), which refers to reducing or shifting
building’s energy consumption subjected to grid-side incentive and/or pricing signals, has been
recognized as an affordable way for accommodating renewable energy and deferring the grid’s
infrastructure investment.

The advances of automation technologies in residential buildings drive the research and
development of home energy management systems (HEMSs) (Inoue et al., 2003). A HEMS is an
expert system that provides decision-making support to the occupant on scheduling and controlling
household energy resources, such as rooftop photovoltaic solar panels and wind turbines,
controllable appliances, energy storage devices, and plug-in electric vehicles. Depending on the
managed objects, HEMSs can have different designs, which have been extensively studied in the
literature. The following are some representative ones: Some research efforts and industrial
demonstrations study the operation strategy for home energy storage devices, mainly including
battery energy storage systems (BESSs) (Zhang et al.,, 2020) and the batteries in plug-in electric
vehicles (known as the “vehicle-to-home” integration (Liu et al., 2013)). These efforts optimize
battery’s charging/discharging power to accommodate the residential renewable energy and provide
energy to the household locally. For example, Iwafune et al. (2015) designed a rule-based controller to
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determine the charging/discharging power of residential BESSs
based on the real-time power output of the rooftop photovoltaic
(PV) solar panel. The Nissan Motor Company Ltd. demonstrated
its “Smart Home of the Future concept” by using a Nissan Leaf
vehicle to supply electricity to a house while operating off the
power grid (Hornyak, 2011). Some literature study the energy
management of air conditioning systems. For example, Jo et al.
(2013) propose a coordinated scheduling method for a home
BESS and an air conditioning system, aiming at minimizing the
household’s energy cost (both electricity cost and gas cost) while
maintaining an acceptable indoor thermal comfort level.
Dorokhova et al. (2020) propose an occupancy-based air
conditioner (AC) control method. It firstly applies machine
learning techniques to infer the room’s occupancy from the
smart meter data profile. Based on the occupancy state and
the building’s heat load, the work designs a rule-based
controller to decide the ON/OFF state and operation mode
(i.e., heating mode or cooling mode) of the AC.

The increasing prevalence of building IoT devices further lays
a foundation to automatically control a wider range of household
appliances besides the AC and energy storage systems. Such
appliance scheduling methodologies have been actively studied
in the literature in recent years. Jindal et al. (2020) propose a
heuristic-based scheduling method which schedules both the
time shiftable and interruptible appliances in a smart home
environment to accommodate the power output of the rooftop
PV solar panel and minimize the home net-load. Zhao et al.
(2013) optimally schedule a residential BESS and a group of
controllable household appliances to maximize the utilities of the
appliances to the occupant while reducing the home’s energy cost
when subjected to a time-varying electricity tariff. (Ozturk et al.
(2013) propose a HEMS, which dynamically schedules appliances
in each dwelling unit based on the power demand of the whole
community which was forecasted and reported to the utility to make
day-ahead grid operation plans. In the authors’ previous work (Luo
et al,, 2018), a coordinated scheduling model is proposed, which
coordinately makes operation plans for an AC, a group of plug-in
time shiftable appliances, and a plug-in EV. The authors also develop
a multi-stage HEMS (Luo et al.,, 2019), which schedules a residential
BESS and multiple controllable appliances in a PV solar power-
penetrated home environment: in the day-ahead forecasting stage,
an artificial neural network-based forecasting system is developed to
predict the PV solar power output; in the day-ahead scheduling
stage, a scheduling model is formulated to determine the BESS’s
charging/discharging plan and the appliances’ operation plans; in
the actual operation stage, a predictive control-based model is
applied to real-time update the charging/discharging actions of
the BESS and the appliances’ operation states.

When designing HEMSs, the occupant’s dwelling satisfaction
is one of the primary considerations. While the occupant’s
satisfaction is a general concept that can be measured in
various aspects, two satisfaction categorizes are commonly
considered in a typical home environment: (i) usage
satisfaction for the household appliances (except for the AC),
which is directly related to the appliances’” operation time and/or
power consumptions; and (ii) indoor thermal comfort, which is
influenced by the indoor air temperature, and the indoor

Household Appliance Scheduling

temperature is affected by the outdoor climate and the AC’s
operation. These two aspects of satisfaction have been addressed
in the state-of-the-art HEMS designs. For the usage satisfaction
for typical time shiftable appliances (i.e., the appliances whose
operation time is deferrable), it is usually reflected in the
constraints that strictly restrict each appliance to operate in an
allowable time range that is pre-specified by the occupant
(Rastegar et al., 2012; Zhao et al,, 2013; Luo et al,, 2019). For
indoor thermal comfort, the most commonly practiced approach
is to control the AC to ensure the indoor temperature within a
pre-specified comfort band (Jo et al., 2013; Dorokhova et al.,
2020). These approaches can be considered to be “rigorous”, as
they use rigid constraints to restrict the appliance’s operation.

Such a rigorous dwelling satisfaction modeling approach shows a
major limitation in accurately representing the occupant’s satisfaction.
For example, if the occupant sets up an allowable time range for a
washing machine (say, 2-8 pm), will the occupant really feel
unsatisfied if the washing machine is scheduled to complete its
task at 801 pm? To overcome the limitation, some research (e.g.
the authors™ previous work (Luo F. J. et al,, 2017)) proposes linear
models to model the relationship between the variation of the
occupant’s satisfaction and the deviation between the schedules of
the appliances determined by the HEMS and the ones desired by the
occupant. But a recent small-scale survey carried out by the authors on
three Australian households indicates that the residents’ satisfaction
on the appliances’ task completion time follows a non-linear pattern.
The residents are asked to provide their subjective satisfaction feeling
on the operation of several major household appliances (washing
machine, dish washer, clothes dryer, and lighting bulbs). Their
feedback is intuitive: if a deferrable appliances’ actual task
completion time (or a bulb’s brightness) is close to the desired
one, the residents feel it is acceptable; however, their dissatisfaction
rapidly increases with the increase of the deviation between the actual
and desired task completion time (or bulb’s brightness). This indicates
that nonlinear models are more desirable for modeling the occupant’s
dwelling satisfaction on appliance operations.

The issue of “rigorous dwelling satisfaction modeling” is also
seen in controlling AC systems to maintain the occupant’s
thermal comfort. The literature usually uses the “temperature
dead band” approach to strictly control the indoor temperature
within a pre-specified comfort range of T* + AT, where T is
the set temperature of the AC system and AT is the temperature
variation band. For example: Gupta et al. (2015) develop a
consensus-control based method to determine the optimal set-
point of the AC system in a building subjected to the diverse set-
point preferences of multiple occupants. An evolutionary
programming method is applied to optimize the chilled water
and supply air temperatures of an AC system to maintain the
indoor temperature below a pre-set temperature point (Fong
et al, 2006). With such a strict temperature band control
approach, it is unreasonable to judge whether the occupant
would feel “comfortable” or “uncomfortable” if the indoor
temperature just temporarily varies out of the pre-specified
comfort band a little bit. Gupta et al. (2018) design an incentive-
based mechanism to enable each occupant in a building to spend
credits to “purchase” his/her personalized thermal comfort
preference in his/her occupancy zone. Despite the fact that this
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approach provides a more flexible way to facilitate the occupant to
compromise thermal comfort and financial cost, it is more suitable
for commercial building environments where spaces are shared by
financially independent occupants rather than residential
environments. For residential energy management, it is still
necessary to develop models that can be more flexible than the
“rigorous representations” to represent the occupant’s satisfaction
variation when subjected to different appliance schedules. Such
satisfaction models would have a direct impact on the
household’s energy cost and thus would affect the design
principle and operational performance of the HEMS.

In addition, there is another limitation that can be identified in
the literature. When determining control strategies for the AC,
the internal heat gain produced in the building environment is
usually considered as a constant parameter (e.g., (Jo et al., 2013)).
However, this approach can hardly be applied to HEMS designs
where the AC is scheduled with other household appliances. This
is because many appliances release heat in their operations.
Different schedules of appliances would lead to different
temporal variations of their heat gain productions, which
would affect the indoor temperature variation and
subsequentially influence the AC’s operation. To the best of
the authors’ knowledge, coordinately scheduling the AC and
other household appliances by considering the appliances’ heat
gains is never considered in the existing HEMS designs.

Based on the above discussion, the main contribution of this
study is to develop a new HEMS that is centered on an integrated
scheduling model for a group of controllable household
appliances. The controllable appliances include an AC,
multiple time shiftable appliances (TSAs), and multiple power
adjustable appliances (PAAs). To overcome the aforementioned
limitations of the existing work, the HEMS incorporates a new
occupant satisfaction representation method, which uses
nonlinear models and adjustable parameters to represent the
occupant’s comfort degree when subject to the operation of the
different categories of appliances. Further, the developed HEMS
links the heat gain produced by the appliances’ operations with
the building’s thermal model to implement integrated scheduling
for the AC and other appliances by simultaneously considering
the household’s energy performance and the occupant’s dwelling
satisfaction. In this study, we deliberately do not consider the
penetration of energy storage systems and renewable power. This
makes the proposed HEMS applicable for many apartment units
where these devices are not available. Meanwhile, the models of
renewable power sources and energy storage systems can be easily
integrated into the proposed HEMS without significant
modifications (e.g., following the modeling methodology in
our previous work (Luo et al., 2018, 2019)).

This paper is organized as follows. Modeling of Home Energy
Resources presents the modeling methodology of home energy
resources managed by the HEMS. Modelling of Occupant’s
Dwelling  Satisfaction and Formulation of Home Energy
Management Model present the proposed occupant satisfaction
models and the HEMS, respectively. Solving Approach presents
the solving approach. Simulation Study discusses the numerical
simulation result. Finally, the conclusion is drawn in Conclusion
and Future Work.

Household Appliance Scheduling

MODELING OF HOME ENERGY
RESOURCES

Figure 1 illustrates the operational environment of the HEMS. In
this study, we consider that the HEMS manages three types of
controllable appliances that are typically seen in current home
environments: 1) multiple time shiftable appliances (TSAs, or
known as deferrable appliances), whose power consumptions are
constant, but operation time can be shifted to a certain extent.
Typical appliances in this category include washing machines,
clothes dryers, etc; (b) multiple power adjustable appliances
(PAAs), whose operation time is fixed, depending on the
occupant’s life requirements; but their power consumptions
can be adjusted to a certain extent. Typical appliances in this
category include lights, amplifiers, etc.; and (c) an AC, whose
operation is driven by the indoor air temperature and the
occupant’s thermal comfort preference.

Denoting there are a total of T time slots over the energy
management period and the duration of each time slot is At
(hour), then the models of each type of these home energy
resources are presented as below.

Modeling of Time Shiftable Appliances

Time shiftable appliances represent the appliances whose
operation time can be shifted to an extent. Considering there
are a total of N"** TSAs managed by the HEMS, then the ith TSA
(i = 1: N"7) can be modeled to be with the following properties:

1) Operating power (P, kW). Each TSA is considered to
consume constant operating power in its operation.

2) Task duration (di*), expressed as the number of time slots. It
represents the time needed for the TSA to complete the task.

3) Desired task completion time (£1***). t{**" is expressed as a
time slot index, representing the time when the occupant most
intends to complete the appliance’s operation.

4) Heat gain value (h*?, kW), representing the heat gain released
by the TSA in its operation.

Therefore, each TSA can be modeled as a 4-turple vector:
< Plsa, disa ¢150" pisa > Figure 2 provides an illustrative example
to depict the model representation of a TSA.

Modeling of Power Adjustable Appliances
Considering there are N** power adjustable appliances managed
by the HEMS. For the jth PAA (j = 1: N?%%), it has the following
properties:

1) Operation time. Each PAA is associated with one or multiple
occupant-specified time points when it is requested to run.
The operation time can be represented as a vector
e = (L 10 o 74 ), where M is the total number of

j125j2° Js
operation time points of the Jth PAA; 70 (m = 1: M) is the
time slot index of the mth operation time point of the
jth PAA.

2) Desired power consumption. For each PAA, there is an
occupant-specified desirable power consumption value
at each  operation time point, denoted as
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FIGURE 1 | lllustration of the HEMS.

TSA model
(expressed with physical time)

Operating power: 0.2 kW

Task duration: 30 mins

Desired task completion time: 8 am
Heat gain: 0.01 kW

FIGURE 2 | lllustration of a TSA model (considering that the scheduling period starts from 7:30 am and the duration of each time slot is 10 min).

TSA model
(expressed with time slot)

Operating power: 0.2 kW
Task duration: 3 time slots

Desired task completion time: 49 time slot
Heat gain: 0.01 kW

P;lsr _ [P?)slr) P?’.szr,
desired power consumption for the jth PAA at the time
point of t7m (KW). In practice, the occupant would specify
his/her desired level of the appliance’s certain function (e.g.,
an amplifier’s sound level), and then the HEMS mabps it to the
corresponding power level.

3) Adjustable power range. Each PAA has a lowest power level,
denoted as P?’“’ (kW). In this study, we consider the PAA’s
power to be continuously adjustable. That is, its adjustable
power range at the time point of 7/} is [Plj"“’, P?f,;] .For PAAs
whose power consumption can only be adjusted at discrete
levels, they can be easily integrated into the proposed HEMS
model without significant modifications (i.e., specifying the
value boundary of the decision variables representing the
PAAS’ power consumptions as discrete values instead of
continuous values, see Encoding Scheme).

4) Heat gain value (hﬁ.7 !, kW), representing the heat gain released
by thejth PAA in its operation.

... pdsr ] dsr s >
,Pj’MJ , where Poo I8 the occupant’s

Based on the properties mentioned above, Figure 3 provides
an example to illustrate the model representation of a PAA.

Model of Air Conditioner

The operation of AC is directly related to the room’s thermal
model. This section presents the room’s thermal model and the
AC’s operation model.

Room’s Thermal Model

There are a number of models in the literature that can be used to
model the room’s thermal transition process. In this study, we
follow the building thermal model in Ryder-Cook (2009). This
thermal model has also been used in other literature about AC
energy management (e.g., (Ding et al., 2019)). With this model,
the indoor temperature trajectory of the room is described as:

ind

i loss
= H M

cxpxVromx
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PAA model
(expressed with physical time)

Occupant-desired power consumption:
[0.3,04,0.3,0.5,0.4,0.5] kW

Lowest power consumption: 0.2 kW

Heat gain: 0.015 kW

Operation time: [8 am, 9 am] >

PAA model
(expressed with time slot)

Operation time: [49, 50, 51t 5ot 53th 54t time slot

Occupant-desired power consumption:
[03,04,0.3,0.5,04,0.5] kW

Lowest power consumption: 0.2 kW

Heat gain: 0.015 kW

FIGURE 3 | llustration of a PAA model.

The heat gain Htg“i" is calculated by Eq. 2. It consists of the
heat gains from the following sources at the tth time slot: 1) from
the AC (H{“); (b) from the internal appliances and occupants
(H{?); and (c) from the Sun (H*).

Hfain _ H;zc + H?‘DD + Hiolur (2)
H* = P* x COP, 3)

For air-sourced ACs, COP is mainly related to the indoor and
outdoor temperature difference and can be approximately
expressed as a linear equation:

COP; = -0 x [T = T| + 8 (4)

where 0 and § are the fitted coefficients. In Ryder-Cook (2009), the
heat gain from the appliances and occupants are simplistically
estimated with the product of the room’s area and a coefficient.
Such simplified estimation cannot be applied to the proposed HEMS,
because the power consumption and operation time of the appliances
are scheduled by the HEMS and thus lead to different temporal
internal heat gain distributions to the room. Therefore, in this study
H{ is calculated from the appliances’ schedules:

Ntsa paa

N
Hi™ =) (h xspt)+ Y g(Ph*) + ¢, (5)
J

i=1 j=1

where the function g(-) returns the heat gain value of a PAA
according to the power consumption level of the PAA at that
time. Due to the fact that the relationship between a PAA’s power
consumption and its heat gain depends on the appliance’s
internal mechanical design and usually varies for different
appliance models, it is hard to establish a generic and explicit
form for g(). The output of g(-) should be based on
measurements or the appliance’s manufacture configuration. (;
is the heat gain released by the occupant at time ¢, which is related
to the occupant’s indoor activity level. H{" is calculated as:

H;olur — Pzt’ns x Awindmu (6)
The heat loss of the room is estimated based on the losses through
the building envelope and air leakages (Ryder-Cook, 2009):
HP* = K x AS x (Ti”d - T‘t”“) +CX px VM x (Tﬁ”"’ - Tt””t) Xn
@)
Operation Model of Air Conditioner

The operation of the AC is driven by the indoor temperature and
the occupant’s thermal comfort preference that is presented in

Modelling of Occupant’s Dwelling Satisfaction. The AC has two
states: operation state and standby state. Denoting the AC’s state
attime t as s{ (s{° = land 0 represent the AC in its operating and
standby states at the tth time slot, respectively), the AC’s power
consumption at the tth time slot (denoted as P%°, kW) is then
expressed as:

ifs*=1
if s=0

rate
P = { . ®)

Pstdb

The positive value of P™* indicates the heating mode of the
AC and the negative value indicates cooling mode.

MODELING OF OCCUPANT’S DWELLING
SATISFACTION

Given a schedule of the home energy resources, this study
evaluates the occupant’s dwelling satisfaction in three aspects
as follows.

Modeling of Occupant’s Satisfaction on
Time Shiftable Appliances

For the schedule of the ith TSA (i = 1: N**) that is determined by
the HEMS, we propose to model the occupant’s use
dissatisfaction on it (D{**) as a normalized value:

D

tsa _ i
Di - DM 9)
D= (|(I‘fs“ +di - 1) — 15 x At)ai (10)
D™ = (max (|1 - £7%|, |T - ££**|) x At)™ (11)

where the function max(-) returns the maximum value of the
inputs; a; is the occupant-specified comfort factor for the ith
TSA. It reflects the occupant’s subjective satisfaction of using the
ith TSA. As an example, Figure 4 plots the occupant’s
dissatisfaction degree when a TSA finishes its task on
different time points with two comfort factor values of «;.
The curves show that at the time when the TSA is scheduled
to complete its task close to the desired task completion time,
then the dissatisfaction degree is close to zero. The larger
distance between the scheduled and desired task completion
time points, the larger the dissatisfaction degree is. The
satisfaction factor @; controls the shape of the curve, which
may vary in different occupants, depending on the occupant’s
subjective preference.
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FIGURE 4 | lllustration of the occupant’s varying dissatisfaction degree on the operation of a TSA (settings: T = 144, At = 10 minutes tfsa'* =1pm,
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FIGURE 5 | lllustration of the variation of the occupant’s dissatisfaction degree on a PAA’s operation at one time slot (P,{’ti'n =0.8 and P§°W =0.3).

Modeling of Occupant’s Satisfaction on

Power Adjustable Appliances

For the schedule of the jth PAA (j = 1: N?¢) that is determined
by the HEMS, we propose to model the occupant’s use
dissatisfaction degree on it (Dﬁ»m) as a normalized value:

M;
Y Dj,
DF* = (12)

M;

Yim
(/5]-) -1
ﬁj -1
Pl ~ Pie
1//j,m = Pdsr

run
o

Di = (13)

(14)
low
_ pj

As an example, Figure 5 plots the occupant’s dissatisfaction degree
for a PAA at one time slot subjected to §; = 5and 19, respectively.

Indoor Thermal Comfort Model for the

Occupant

Indoor thermal comfort is an important aspect of the occupant’s dwelling
satisfaction. It has a direct relationship with the indoor temperature.
Distinguished from many literature papers that set up a rigorous indoor
temperature band, we propose to evaluate the occupant’s thermal comfort
using the following nonlinear function:

. dsr,lo ind dsr,u
0, if Tsrlow < ind < s

Ténd _ Tdsr,up Y e )
3 up ind set,up
<Tset,up _ Tdsrup |’ if T < Tt <T
D = 1 (15)

Tdsr,low _ Tind Y .
t , if Tset,low < de < Tdsr,low
Tdsrlow _ Tsetlow t

1, otherwise

\

where y is the occupant-specified comfort factor for the AC.
Figure 6 illustrates the variation of the occupant’s thermal
comfort with the settings of y = 2 and 4, respectively.

As mentioned in the introduction section, the proposed
nonlinear satisfaction models (the ones presented in Modelling
of Occupant’s Satisfaction on Time Shiftable Appliances—Indoor
Thermal Comfort model for the Occupant) can better represent the
nonlinear variation of the occupant’s dissatisfaction. The proposed
models also incorporate adjustable satisfaction parameters (a;, 3,
and p) that allow different occupants to shape the nonlinear models
based on their subjective satisfaction requirement.

FORMULATION OF HOME ENERGY
MANAGEMENT MODEL

Based on the home energy resources models and occupant
comfort models presented in Modelling of Home Energy
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FIGURE 6 | lllustration of the variation of the occupant’s discomfort degree on the AC’s operation (T90% = 24, Tdsnup =

28, Tsetlow _ 20, Tsetup — 30).

Resources and Modelling of Occupant’s Dwelling Satisfaction,
this section formulates the home energy management model.
The model is formulated as a 3-objective optimization
problem, in which the HEMS determines the schedules of
the controllable appliances to balance the three aspects of
considerations in a smart home environment: (i) the home
energy cost; (ii) the occupant’s use satisfaction for TSAs and
PAAs; and (iii) the occupant’s indoor thermal comfort.

The decision variables of the home energy management model
include: (i) start operation time of each TSA, i.e. A?S”, i=1: N*%
(ii) power consumpt1on of each PAA at each of its operation time
slots, i.e.,P’ tmn, j=1: NP, m=1: Mj; and (iii) status of the
ACat each time slot, i.e., s¢¢, t = 1: T. The three objectives of the
home energy management model are:

Objective 1—Minimization of the household energy cost:

T
minF; = ) (P} - At - pr,) (16)
t=1
Ntsa NPpaa
meme — Z<Pt5a . tsa) Z Pi?u + P;zc (17)

i-1 j=1

Objective 2—Minimization of the Occupant’s Use

Dissatisfaction for TSAs and PAAs:

NtsayNPpaa
minF, = Z wy - Dy (18)
k=1
b _ [ DE i l<ksN
k= Diu?\]tsa > lf k > Ntsa (19)

Objective 3—Minimization of the Occupant’s Thermal
Discomfort:

T
min F; = ) D (20)

t=1

The home energy management model Egs. 16-20 is subjected
to the following operational constraints:

! paa d.:
P < Pl < Pl (21)

ji t”m

,i=1: N** (22)

Stsa:{l lfftsa<t<ftsa+d:m—1

it 0 otherwise
Ppaa _ 0 lft ¢ trun ] _ 1 Npaa (23)

Constraint (Eq. 21) restricts the adjustable power range of
each PAA at each of its operational time slots. Constraint (Eq. 22)
ensures that each TSA can only be in the “ON” state in its task
execution period. Constraint (Eq. 23) ensures that each PAA does
not consume power except at its operational time slot.

SOLVING APPROACH

The proposed home energy management model (Modelling of
Home Energy Resources—Formulation of Home Energy
Management Model) is a mixed-integer, nonlinear multi-
objective optimization problem over a finite time horizon.
Evolutionary computation has been proved to be an effective
technique for solving multi-objective optimization problems and
obtaining the Pareto Frontier. In this study, we apply the Multi-
Objective Natural Aggregation Algorithm (MONAA) previously
proposed by the authors (Luo et al., 2016) to solve the proposed
model. MONAA roots from the Natural Aggregation Algorithm
(Luo F. etal., 2017)—a swarm-based heuristic algorithm. MONAA
mimics group living animals’ self-aggregation intelligence by
distributing a group of candidate solutions (called “individuals”)
into multiple sub-populations and using a biology-rooted
stochastic migration model to migrate the individuals among
the sub-populations. It also designs heuristic searching rules to
produce mutants of the individuals to search for the global/near
global optimal solution in the high dimensional problem space.
The major reasons of using MONAA to solve the proposed
home energy management model are two-fold: firstly, by
inheriting NAA’s stochastic searching mechanism, MONAA
shows satisfactory performance in finding the Pareto Frontier
of several engineering optimization problems (e.g., Luo F. et al.,
2017; Deng et al., 2020); secondly, the authors have developed a
well-packaged MONAA solver, which can be easily interfaced to
demand side optimization models. The well-defined interfaces
mean the solver can be efficiently and conveniently applied to the
proposed home energy management model. Since the
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model

Set up the appliance operation
models and the room’s thermal

Check constraints and evaluate the
objective function values of the
population

| Occupant
i inputs l

models

Set up the occupant satisfaction

Produce mutants using MONAA’s
heuristic rules

v

Input the electricity tariff data and
the outdoor air temperature profile

Is the maximum
generation time reached?

v

Initialize the generation in MONAA

Output the Pareto frontier

A

Y

MONAA

Initialize the population in

Select a final solution from the
Pareto frontier

FIGURE 7 | Solving workflow for the proposed HEMS.

End

optimization algorithm itself is not the primary focus of this
paper, other multi-objective optimizers (such as NSGA-II) can
also be applied to solve the proposed model with little
modifications to the proposed system.

Encoding Scheme

In MONAA, each individual is encoded as a vector with the
dimensionality of N*** + z?f’f“ M + T representing a candidate
home energy management solution. The encoding scheme for
each individual is as follows:

1) The first N™* dimensions represent the starting operation
time slot index of the TSAs, where each dimension represents
that of one TSA;

2) the next Z;\ga M; dimensions represent the power
consumptions of the PAAs, in which every sequential M
dimension represents the power consumptions of one PAA at
each of its operation time slots;

3) the last T dimensions represent the room’s set temperature at
each time slot.

Solving Workflow

The solving workflow is shown in Figure 7. Firstly, the models
of the appliances (TSAs, PAAs, and the AC), the room model,
the occupant satisfaction models, the electricity tariff data, and the
predicted outdoor air temperature profile are inputted into the

system. Then, MONAA initializes a population of individuals and
iteratively produce mutants to perform heuristic searching. After
the maximum generation time is reached, the algorithm outputs a
set of non-dominated individuals (called the Pareto Frontier).
Since the solutions in the Pareto Frontier are non-dominated
with each other, it is unreasonable to say which solutions are
“better”; they just represent different compromises of the three
optimization objectives. Choosing the final solution from the
Pareto Frontier can be completely based on the user’s subjective
preference, or can be generated based on certain criteria. The
latter approach is useful especially when the number of solutions
in the Pareto Frontier is large, which would mean the user would
find it difficult to choose. In Simulation Study of this paper, we
will discuss the final solution that is selected by a compromise-
solution method (Marler and Arora, 2004), shown in Eqs. 24, 25:

(24)

Y-y,

~ ymax _ ymin
Yo Yo

F(y,0) (25)
where Y is the set of non-dominated solutions; Y** and Y™
represent the maximum value and minimum value of the oth
objective among the non-dominated solutions, respectively; y, is
the value of solution y on the oth objective; F; is the utopia point,
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FIGURE 9 | Heat gain released by the occupant.
TABLE 1 | Settings of major parameters in the home environment. Slmulatlon Setup 3 .
We consider a home energy management scenario on a typical
Parameters of occupant cold winter day, where the AC operates in heating mode. The
Desired indoor temperature ((T950w, Torup)) [20°C.28°C] prf)ﬁles of 1-day solar radiation and 01.1tdoor air temperature
Range of set temperature ((T4oW, Tsetup)) [16°C,30°C] (Figure 8) are based on the meteorological data of Zhengzhou

Thermal comfort factor (y)
Parameters of room

The volume of the room (1/°°™)
The initial indoor temperature

Parameters of AC

0.5

(10x 10 x 3m®
10°C

Standby power (PSi) 0.025kW
Operating power (P€) 2kW
The bandwidth of set temperature +/-2°C

which is set as one on all of the three objectives to make all
objective functions as close as possible to the minimum value.

SIMULATION STUDY

This section reports the numerical simulation that is conducted
for validating the proposed HEMS. All the programs are
implemented on Matlab and are executed on a PC with
macOS Catalina, Intel Core i9, with 16 GB memory.

City, China on a day in March 2021, collected from the “Weather”
application on iPhone. The profile of the room’s internal heat
gain due to the occupant’s activity is shown in Figure 9, based on
the data provided in Heat Gain from People, Lights, and
Appliances. The parameters of the room’s thermal model and
AC are set as Table 1.

Six TSAs and two PAAs are simulated for being managed by
the HEMS. The configurations of these appliances are given in
Table 2, note that the heat gain released by the jth power
adjustable appliance at the tth time slot can be calculated by
Eq. 26, where 7, is the heat emission coefficient of the jth
power adjustable appliance. In this experiment, the heat
emission coefficient of these two PAAs are obtained from
Suszanowicz (2017):

ey = g(PiM) =, x PoMA (26)

The home is considered to be charged by a real-time electricity
pricing (RTP) scheme, shown as Figure 10. A 24-h scheduling period is
considered with the duration of each time slot (At) as 10 min.
Therefore, there are a total of 144 time slots, ie, T = 144. The
control parameters of MONAA are set as follows: population
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TABLE 2 | Settings of controllable appliances.

Time shiftable appliances

Household Appliance Scheduling

Power adjustable appliances

Coffee heater  Dish washer
Heat gain 210 W 380 W
Duration 20 min 50 min
Comfort factor 1.5 1.2
Weight 0.5 0.8
Rated power 0.67 kW 0.38 kW
Completion time 8:10 12:30

AHeat emission coefficient of power adjustable appliances.

Oven Kettle Hot plate = Washing machine
20W 21 W 3,170 W 150 W
30 min 20 min 30 min 60 min
2 2 1.8 1.6
0.6 0.5 0.6 0.7
1.2kW 013 kW 4 kW 1 kW
11:40 15:00 18:40 17:00

LED bulb Incandescent light bulb
0.08 W/W*# 0.95 W/W*@
1.1 1.5
0.8 0.6
[0.00 5kW, 0.015 kW] [0.108 kKW, 0.112 kW]
[18:10, 23:10] [18:00, 21:00]
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FIGURE 10 | Profile of the real-time electricity prices.
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TABLE 3 | Objective values under three cases.

Household Appliance Scheduling

Energy cost ($) Appliance use dissatisfaction Indoor thermal discomfort Total energy consumption
value value (kWh)
Case 1 9.28 1.89 27.52 34.14
Case 2 10.60 0.73 11.61 36.77
Case 3 13.87 0.00 3.08 45.35
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e
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FIGURE 12 | Total power consumption profiles under the three cases.
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FIGURE 13 | Planned schedule of TSAs under Case 1 and Case 2 (lines: optimized completion time of each TSA by MONAA; blocks: user-specified completion
time of each TSA).

size—500; maximum generation time—1,000; number of
shelters—4; shelter capacity—125; scaling factor—1.0; located
crossover factor—0.9; movement amplification—1.2; generalized

crossover factor—0.1. These settings are based on the authors’ trials
of NAA and MONAA on benchmark functions and other
engineering problems (e.g., Luo et al, 2016; Luo et al, 2018;

Frontiers in Energy Research | www.frontiersin.org 11 September 2021 | Volume 9 | Article 724189


https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Zhao et al.

Household Appliance Scheduling

A 002 L s s s s s T — T —T—
—Case 1
0.015
]
5 001
2
o
=%
0.005
0 . .
6pm 7pm 8pm 9pm 10pm 11pm
Hour Index
LED Bulb
B 0114 —
—Case 1
012
z
5 0.11 - o
2
o
N
0.108 - ]
0.106 ———— e e o :
6pm Tpm 8pm 9pm
Hour Index
Incandescent Light Bulb
FIGURE 14 | Power consumptions of the PAAs under two cases.

TABLE 4 | Appliance use dissatisfaction values.

Appliance use discomfort values

Total discomfort value

Coffee heater Dish washer Oven Kettle Hot plate Washing machine LED bulb Incandescent light bulb (weighted)
Case 1 0.063 0.013 0.338 0.138 0.829 0.759 0.398 0.376 1.885
Case 2 0.143 0.091 0.088  0.000 0.024 0.006 0.439 0.268 0.728
Case 3 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000

Luo et al,, 2019), which show a good searching performance on the
majority of the trials.

Result and Discussion

Following Solving Approach, the MONAA is applied to solve the
proposed HEMS. The execution time of the optimization depends on
various factors, including the pre-specified maximum generation
time and population size, the pre-specified control interval, the
number of TSAs, the number and configuration of PAAs, and
the hardware configuration of the processor that executes the
optimization. With the simulation settings reported in this paper,
a total of 15 min is spent on performing the optimization, which is
acceptable for an ex-ante appliance scheduling task. The Pareto

Frontier consisting of 112 non-dominated solutions is obtained,
where each solution represents a home energy management
scheme. Figure 11 shows these non-dominated solutions as well
as their projections on each 2-objective space.

Figure 11 generally shows that the proposed HEMS effectively
generates diverse solutions to achieve different compromises
among the three energy management objectives. To
demonstrate the home energy management effect with more
detail, we select two specific cases from the generated Pareto
Frontier and compare the two cases with another benchmark case:

1) Case 1—the home energy management solution with lowest
energy cost, denoted by the red spot in Figure 11.

Frontiers in Energy Research | www.frontiersin.org

12 September 2021 | Volume 9 | Article 724189


https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Zhao et al.

Household Appliance Scheduling

FIGURE 15 | Indoor thermal environment and AC operation status.
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2) Case 2—the home energy management solution chosen
from the Pareto Frontier using the compromise-solution
method (Solving Approach), denoted by the green spot in
Figure 11.

3) Case 3—the benchmark case without energy management.
That is, each TSA completes its task at the desired time slot;
each PAA operates at the desired power level; the AC operates
in a natural heating cycling mode: when the indoor
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temperature achieves T%"/°¥, the AC is turned on to heat up
the room until the indoor temperature reaches T*"* at that
time, the AC is turned off to cool down the room until the
indoor temperature reaches T¢s"o%,

Table 3 shows the objective values under the three cases. It can
be seen that the home energy management solution in Case 1 can
produce approximately $1.30 and $4.50 cost savings comparing
with Cases 2 and 3 at the expense of a higher dissatisfaction level
to the occupant. For the case without energy management (Case
3), it produces little dissatisfaction to the occupant, but also leads
to a very large energy cost ($13.87). Figure 12 shows the
corresponding profiles of the home’s total power consumption
under the three cases. Obviously, in the case without energy
management measures (Cases 3), more energy is consumed in the
peak (at noontime) and moderate electricity price hours. In Cases
2 and 3, not only are the power consumptions in these hours less
than Case 3, but the total energy consumption over the day is also
reduced. This is mainly because of the reduced AC operation in
Cases 1 and 2, as further discussed in the rest of this section.

Figure 13 visualizes the schedule for TSAs with and without
energy management. The arrows in the figure denote shifting of the
appliances’” operation time from the occupant’s desired completion
time to the optimized completion time. The optimized results of the
LED bulb and incandescent light bulb under Case 1 and Case 2 are
shown in Figure 14A,B, respectively, where the green block
represents the power range of the LED bulb. While in Case 3, the
power of the LED bulb is 0.015 kW and the power of the incandescent
light bulb is 0.112 kW. Detailed appliance use discomfort values of
these controllable appliances (calculated following Modelling of
Occupant’s Dwelling Satisfaction) are listed in Table 4.

It can be seen that the optimized completion time of TSAs and
the power consumptions of PAAs are different with the ones
originally desired by the occupant, due to the consideration of
reducing the home energy cost. Particularly, in Case 1 that
produces the least home energy cost, it can be seen that a
majority of the TSAs (e.g., washing machine and hot plate)
are scheduled to operate at midnight, and this also yields
significant dwelling dissatisfaction to the occupant. In contrast,
the appliance schedules in Case 2 produce a larger energy cost but
a lower dissatisfaction level than Case 1.

Figure 15 shows the resulted indoor thermal environments
under the three cases. It can be seen that in the natural heating
cycling mode (Case 3), the AC keeps running almost the whole
late evening and midnight time due to the low outdoor air
temperature; as a result, the indoor temperature is kept
around 24 Celsius to maintain the maximum thermal comfort
level to the occupant. Without performing energy management
when subjected to the time-varying electricity tariff, the energy
cost due to the AC’s operation is $12.19. For Cases 1 and 2,
compared with Case 3, the AC’s operation time is reduced in the
peak electricity price hours (i.e., 11am-1pm and 8-10 pm),
leading to a lower energy cost for AC operation ($8.46 in Case
1 and $9.28 in Case 2, respectively). For the exchange of the
reduced energy cost, the indoor temperature under Cases 1 and 2
deviate from the comfort temperature range more frequently,
leading to a lower thermal comfort degree for the occupant.

Household Appliance Scheduling

Figure 15 also shows that the internal heat gain distribution of
the room has an impact on the AC’s operation. Taking Case 3 as
an example, when there is high internal heat gain released by the
appliances and the occupant (around 6-7 pm, mainly because of
the operation of the hot plate), the room is warmed, meaning the
AC can be turned off temporarily even though the outdoor
temperature at that time is low. A similar phenomenon is also
observed in Cases 1 and 2. Such an impact indicates that heat
gain-aware coordinated scheduling of AC and other appliances
would be meaningful for optimizing the energy performance of a
home, which is less investigated in the existing literature.

CONCLUSION AND FUTURE WORK

This paper studies the home energy management problem when
subjected to a real-time electricity price environment. Flexible
satisfaction and comfort models are established, which use
adjustable parameters to reflect individual occupants’ appliance
usage and thermal comfort preferences. Based on these models, a
new multi-objective home energy management model is established.
Numerical simulations demonstrate that when comparing the
existing literature, the proposed system can model the home
energy management process in a more realistic manner in terms
of balancing the different considerations in a home environment and
accounting for the impact of the room’s internal heat gain on the
AC’s operation.

The HEMS proposed in this paper is expected to enhance
automation and energy efficiency in the residential sector. Future
work can be conducted in two directions. Firstly, the authors are
planning a user survey and field testing to collect data to fit the
parameters in the theoretical satisfaction models proposed in this
paper. Secondly, the HEMS proposed in this paper can be expanded
to integrate renewable energy sources and energy storage systems.
More sophisticated thermal models can also be integrated into the
proposed home energy framework without significant modifications.
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NOMENCLATURE

Parameters

T Number of time slots over the energy management period
At Duration of each time slot (hour)

N'® Number of time shiftable appliances

Pfsa Operating power of the ith time shiftable appliance (kW)
dfsa Task duration of the ith time shiftable appliance

tfsa’* Desired task completion time of the ith time shiftable appliance
hfsa Heat gain of the ith time shiftable appliance

NP Number of the power adjustable appliances

t;”" Operation time of the jth power adjustable appliance

M j The total number of operation time slot of the jth power adjustable
appliance

psr Occupant-desired power consumption of the jth power adjustable
appliance (kW)

Pljow The lowest power level of the jth power adjustable appliance (kW)
h‘; " Heat gain of thejth power adjustable appliance

¢ The heat capacity of air

p The density of air

V709" The volume of the room (m?)

T The indoor temperature ("C)

T The outdoor temperature (‘C)

(; The heat gain released by the occupant at the tth time slot

Pim The coefficient of heat absorbed from the Sun at the tth time slot

AWIndow e area of the window (m?)

Household Appliance Scheduling

P"%¢ The rated power of the air conditioner (AC) when it is under the
operating state (kW)

Pstdb The power of the AC when it is under the standby state (kW)
P?C The real power of the AC at the tth time slot (kW)
«; The occupant-specified comfort factor for the ith time shiftable appliance

B f The occupant-specified comfort factor for the jth power adjustable
appliance

Y The occupant-specified comfort factor for the AC
T4sm10W The desired lowest indoor temperature ("C)
TP The desired highest indoor temperature (°C)
T5eb0% The lowest temperature the user can tolerate (°C)
TSeb¥P The highest temperature the user can tolerate (°C)
P Electricity price at the tth time slot

K Heat transfer coefficient

AS The surface area of the building envelope (m?)

7 The air exchange times

Wy Weight of the kth controllable appliance

Variables

S{¢ The state of the AC at the tth time slot, s* = 0 and 1 represent the standby
and operating state, respectively

?itsa The start time of the ith time shiftable appliance
PP) ?a The real power of the jth power adjustable appliance at thetth time
slot (kW)

Slfsa

it The state of the ith time shiftable appliance at the tth time slot
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