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We consider the problem of short- and medium-term electricity demand forecasting by
using past demand and daily weather forecast information. Conventionally, many
researchers have directly applied regression analysis. However, interpreting the effect
of weather on the demand is difficult with the existing methods. In this study, we build a
statistical model that resolves this interpretation issue. A varying coefficient model with
basis expansion is used to capture the nonlinear structure of the weather effect. This
approach results in an interpretable model when the regression coefficients are
nonnegative. To estimate the nonnegative regression coefficients, we employ
nonnegative least squares. Three real data analyses show the practicality of our
proposed statistical modeling. Two of them demonstrate good forecast accuracy and
interpretability of our proposed method. In the third example, we investigate the effect of
COVID-19 on electricity demand. The interpretation would help make strategies for
energy-saving interventions and demand response.

Keywords: basis expansion, nonnegative least squares (NNLS), short-term demand forecasting, varying coefficient
model (VCM), COVID-19

1 INTRODUCTION

Short- and medium-term demand forecasting with high accuracy is essential for decision
making during the trade on electricity markets and operation of power systems.
Conventionally, several researchers have used previous demand, weather, and other factors
as exploratory variables (e.g., Lusis et al., 2017) and directly applied regression analyses to
forecast demand. As methodologies for regression analysis, linear regression (Amral et al.,
2008; Dudek, 2016; Saber and Alam, 2017) and smoothing spline (Engle et al., 1986; Harvey and
Koopman, 1993) have been traditionally used. Recently, several studies have applied functional
data analysis, where the daily curves of electricity demand are expressed as functions (Cabrera
and Schulz, 2017; Vilar et al., 2018). It should be noted that most statistical approaches are
based on probabilistic forecasts, and the distribution of forecast values is helpful for risk
management (Cabrera and Schulz, 2017). On the other hand, machine learning techniques have
attracted attention in recent years, such as support vector machine (SVM); (Chen et al., 2017;
Jiang et al., 2018; Yang et al., 2019); neural networks (He, 2017; Guo et al., 2018b; Kong et al.,
2018; Bedi and Toshniwal, 2019; Wang et al., 2019), gradient boosting (Zhang et al., 2019), and
hybrids of multiple forecasting techniques (Miswan et al., 2016; Liu et al., 2017; de Oliveira and
Cyrino Oliveira, 2018; Haq and Ni, 2019). These techniques capture complex nonlinear
structures; therefore, high forecast accuracies are expected.
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In practice, the time intervals are different among exploratory
variables. For example, assume that the demand is forecasted for a
single day that will occur several days in the future, at 30-min
intervals; this is a common scenario for market transactions in
electricity exchanges (e.g., the day-ahead market in the European
Power Exchange, EPEX). In this example, the electricity demand
would be collected at 30-min intervals using a smart meter,
whereas weather forecast information, such as maximum
temperature and average humidity, would typically be
observed at intervals of one day. In this study, we use past
demand at 30-min or 1-h intervals and daily information (e.g.,
maximum temperature) on the forecast day as exploratory
variables. We note that our proposed model, which will be
described in Section 2, is directly applicable to any time
resolution of data, such as the demand in 1-min intervals and
temperature forecast in 1-h intervals.

From a suppliers’ point of view, it is crucial to produce an
interpretable model to investigate the impact of weather on the
demand. For example, estimating the fluctuations of electric
power caused by weather would help develop strategies for
energy-saving interventions [e.g., (Guo et al., 2018a; Wang
et al., 2018)] and demand response [e.g., (Ruiz-Abellón et al.,
2020)]. To produce an interpretable model, one can directly add
weather forecast information to the exploratory variables in the
regression model (Hong et al., 2010) and investigate the estimator
of regression coefficients. More generally, techniques for
interpreting any type of black-box model, including the deep
neural networks, have been recently proposed, such as the Local
Interpretable Model-agnostic Explanations (LIME; (Ribeiro et al.,
2016)) and SHapley Additive exPlanations (SHAP; (Lundberg
and Lee, 2017)). However, these methods are used for variable
selection, i.e., a set of variables that plays an essential role in the
forecast is selected. Variable selection cannot estimate the
fluctuations in electric power caused by weather.

In contrast to variable selection, decomposition of the
electricity demand at time t, say yt, into two parts is useful for
interpretation:

yt ≈ μt + bt, (1)

where μt and bt are the effects of past demand and weather
forecast information, respectively. Typically, we use demand at
the same time interval of the previous days as exploratory
variables [e.g., (Lusis et al., 2017)], and regression analysis is
separately conducted on each time interval. We then construct
estimators of μt and bt, say μ̂t and b̂t, respectively. The
interpretation is carried out by plotting a curve of b̂t.
However, without elaborate construction and estimation of bt,
we face two issues.

The first issue is that the curve of b̂t often becomes non-
smooth at any time interval (i.e., every 30 min) in our experience.
The non-smooth daily curve of bt is unrealistic because it implies
the impact of daily weather forecast on demand changes non-
smoothly every 30 min. This problem is caused by the fact that the
regression analysis is separately conducted at each time interval.
To address this issue, we should estimate parameters under the
assumption that bt is smooth.

The second issue is related to the parameter estimation
procedure. In many cases, the regression coefficients are
estimated through the least squares method. However, in our
experience, the estimate of regression coefficients related to bt can
be negative, leading to a negative value of b̂t. Since b̂t is the
fluctuations of electric power caused by weather, the
interpretation becomes unclear. To alleviate this problem, we
need to restrict the regression coefficients associated with bt to
nonnegative values.

In this study, we develop a statistical model that elaborately
captures the nonlinear structure of daily weather information to
address two challenges, as mentioned earlier. We employ the
varying coefficient model (Hastie and Tibshirani, 1993; Fan and
Zhang, 1999) with basis expansion, where the regression
coefficients associated with weather are assumed to be
different depending on the time intervals. The regression
coefficients are expressed by a nonlinear smooth function with
basis expansion, which allows us to generate a smooth function of
b̂t. Furthermore, the weather effect b̂t is also expressed as a
nonlinear smooth function. To generate nonnegative
regression coefficients, we employ the nonnegative least
squares (NNLS, e.g., Lawson and Hanson, 1995) estimation.
NNLS estimates parameters under the constraint that all
regression coefficients are nonnegative. With the NNLS
estimation, the value of b̂t is always nonnegative; thus, the
interpretation becomes clear.

The usefulness of our proposed method is investigated
through the application to three real datasets. The results for
two of the datasets show that the NNLS can appropriately capture
the fluctuations of electric power caused by weather.
Furthermore, our proposed method yields better forecast
accuracy than the existing machine learning techniques. In the
third example, we investigate our proposed method’s practical
usage when COVID-19 influences the electrical demand (e.g.,
facility closure or recommendation of telework). Our proposed
method is directly applicable in such a situation; in addition to the
daily weather forecast, we use the average number of infections in
the past several days as exploratory variables. The result shows
that our proposed method can adequately capture the effect of
COVID-19 and also improve forecast accuracy.

The remainder of this paper is organized as follows: Section 2
describes our proposed model based on the varying coefficient
model. In Section 3, we present the parameter estimation via
nonnegative least squares. Section 4 presents the analysis of data
from Tokyo Electric Power Company Holdings. In Section 5, we
investigate the impact of COVID-19 on electrical demand
through the analysis of data from one selected research facility
in Japan. Concluding remarks are given in Section 6. Some
technical proofs and additional information of the data
analysis are deferred to the Supplementary Material.

2 PROPOSED MODEL

Short- and medium-term forecasting is often used for trading
electricity in the market. Among various electricity markets, the
day-ahead (or spot) and the intraday markets are popular in
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electricity exchanges, including the European Power Exchange
(EPEX) (https://www.epexspot.com/en/market-data/
dayaheadauction) and Japan Electric Power Exchange (JEPX)
(http://www.jepx.org/english/index.html). In the day-ahead
market, contracts for the delivery of electricity on the
following day are made. In the intraday market, the power will
be delivered several tens of minutes (e.g., 1 h in JEPX) after the
order is closed. In both markets, transactions are typically made
in 30-min intervals; thus, the suppliers must forecast the demand
in 30-min intervals. In this study, we consider the problem of
forecasting demand that can be applied to both day-ahead and
intraday markets.

Let yij be the electricity demand at jth time interval on ith date
(i � 1, . . . , n, j � 1, . . . , J). Typically, J � 48, because we usually
forecast the demand in 30-min intervals. We consider the
following model:

yij � μij + bij + εij, (2)

where μij is the effect of past electricity demand, bij is the effect of
weather, such as temperature and humidity, and εij are error
terms with E[εij] � 0.

Typically, the error variances in the daytime are larger than
those at midnight because of the uncertainty of human behavior
in the daytime. Therefore, it would be reasonable to assume that
V[εij] � σ2j , i.e., the error variances depend on the time interval.
One may assume the correlation of errors for different time
intervals, i.e., Cor(εij, εij′) ≠ 0 for some j ≠ j′; however, the number
of parameters becomes large. For this reason, we consider only
the case where the errors are uncorrelated. Note that the final
implementation of our proposed procedure described later is
independent of the assumption of the correlation structure in
errors.

One can express bij and μij as linear or nonlinear functions of
predictors and conduct the linear regression analysis. With this
procedure, however, we face two issues, as mentioned in the
introduction; thus, we carefully construct appropriate functions
of bij and μij.

2.1 Expression of bij
Weather forecast information is typically observed at intervals of
one day and not 30 min (e.g., the maximum temperature or
average humidity). For this reason, we assume that the weather
forecast information does not depend on j. Let a vector of weather
information be si. We express bij as a function of si. Here, we
assume two structures as follows:

• It is well known that the relationship between weather
variables and consumption is nonlinear. For example, the
relationship between maximum temperature and
consumption is approximated by a quadratic function
(e.g., 30) because air conditioners are used on both hot
and cold days. For this reason, it is assumed that bij is
expressed as some nonlinear function of si.

• Although si does not depend on j, the effect of weather, bij,
may depend on j. For example, consumption in the daytime
is affected by the maximum temperature more than that at

midnight. In this case, the regression coefficients associated
with si change according to the time interval j. However, if
we assume different parameters at each time interval, the
number of parameters can be large, resulting in poor
forecast accuracy. To decrease the number of parameters,
we use the varying coefficient model, in which the
coefficients are expressed as a smooth function of the
time interval.

Under the above considerations, we propose expressing bij as
follows:

bij � ∑
M

m�1
βm(j)gm(si), (3)

where gm(si) (m � 1, . . . ,M) are basis functions given beforehand,
βm(j) are functions of regression coefficients, andM is the number
of basis functions.

We also use the basis expansion for βm(j):

βm(j) � ∑
Q

q�1
cqmhq(j), (4)

where hq(j) (q � 1, . . . , Q) are basis functions given beforehand
and cqm are the elements of the coefficient matrix Γ � (cqm).
Substituting (4) into (3) results in the following:

bij � ∑
M

m�1
∑
Q

q�1
cqmhq(j)gm(si). (5)

Because hq(j) and gm(si) are known functions, the parameters
concerning bij are cqm.

Since the effect of weather is assumed to be smooth according
to both j and si, we use basis functions hq(j) and gm(si), which
produce a smooth function, such as B-spline and the radial basis
function (RBF). Our numerical study adopts the B-spline and
cyclic B-spline functions as basis functions of gm(si) and hq(j),
respectively. For detail, please refer to Section 4.1. The RBF could
be used but it includes a tuning parameter that highly affects the
forecast error, resulting in low forecast accuracy in our
experience.

2.2 Expression of μij
Since μij is the effect of past consumption, one can assume that μij
is expressed as a linear combination of past consumption
y(i−t−Lα)j, i.e.,

μij � ∑
T

t�1
αjty(i−t−Lα)j +∑

U

u�1
βjuyi(j−u−Lβ), (6)

where T and U are positive integers, which denote how far we
trace back through the data and αjt (t � 1, . . . , T) and βju (u �
1, . . . , U) are positive values given beforehand. The αjt
correspond to the effects of past consumptions for the
same time interval on previous days, while βjt are the
coefficients for different time intervals on the same day.
For the day-ahead market, we assume that βju ≡ 0. Here, Lα
and Lβ are nonnegative integers that describe the lags; these
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values change according to the closing time of transactions.
For example, transactions of the day-ahead market in
the JEPX close at 17:00 on the previous day of the
delivery of electricity. Thus, for instance, when the trade
of the electricity demand is in the 17:30–18:00 interval on
Sep 20th, we cannot use the electricity demand in the same
time interval on Sep 19th due to the trading hours of the
market, resulting in Lα � 1.

The design of T and U depends on the aim of the analysis.
For example, if the analyst should use only the latest demand,
T and U are selected as (T, U) � (1, 1). The usage of only one
latest demand value could often yield unstable forecast value;
in this case, larger T and U would provide better results.
However, too large T and U can result in overfitting. Thus, we
do not generally know the best T and U to achieve the best
forecast accuracy. In our numerical experiments in Sections 4
and 5, all tuning parameters, including T and U, are selected
by cross-validation. In our experience, the cross-validation
generally provides good forecast accuracy.

In practice, however, it is assumed that past consumption also
depends on past weather, such as daily temperature. For example,
suppose that it was exceptionally hot yesterday and it is cooler
today. In this case, it is not desirable to directly use past
consumption as the predictor; it is better to remove the effect

of past temperature from past consumption. In other words, we
can use y(i−t−Lα)j − b(i−t−Lα)j and yi(j−u−Lβ) − bi(j−u−Lβ) instead of
y(i−t−Lα)j, and yi(j−u−Lβ), respectively. As a result, μij is expressed as
follows:

μij � ∑
T

t�1
αjt(y(i−t−Lα)j − b(i−t−Lα)j) +∑

U

u�1
βju(yi(j−u−Lβ) − bi(j−u−Lβ)).

(7)

Substituting (5) into (7) results in the following:

μij � ∑
T

t�1
αjty(i−t−Lα)j −∑

T

t�1
∑
M

m�1
∑
Q

q�1
αjtcqmhq(j)gm(si−t−Lα)

+∑
U

u�1
βjuyi(j−u−Lβ) −∑

U

u�1
∑
M

m�1
∑
Q

q�1
βjucqmhq(j − u − Lβ)gm(si). (8)

The appropriate values of αjt and βju are chosen by several
approaches. A simple method is αjt � 1/T and βju � 1/U, which
implies μij is the sample mean of the past consumption. Another
method is based on the AR(1) structure, i.e., αjt � ρtα and
βju � ρuβ , where ρα and ρβ satisfy ∑T

t�1ρtα � 1 and ∑U
u�1ρuβ � 1,

respectively. Note that ∑T
t�1ρt � ρ(1 − ρT)/(1 − ρ), so ∑T

t�1ρt � 1
is equivalent to ρT+1 − 2ρ + 1 � 0, whose numerical solution is
easily obtained.

FIGURE 1 |Relationship betweenmaximum temperature and demand for different time intervals on Sunday, Monday, andWednesday. The curves are depicted by
fitting the ordinary least squares estimation with the cubic B-spline function.
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2.3 Proposed Model
By combining the expressions of bij in Eq. 5 and μij in Eq. 8, the
model Eq. 2 is expressed as follows:

yij � 1
T
∑
T

t�1
y(i−t−Lα)j −

1
T
∑
T

t�1
∑
M

m�1
∑
Q

q�1
cqmhq(j)gm(si−t−Lα)

+ 1
U

∑
U

u�1
yi(j−u−Lβ) −

1
U

∑
U

u�1
∑
M

m�1
∑
Q

q�1
cqmhq(j − u − Lβ)gm(si)

+ ∑
M

m�1
∑
Q

q�1
cqmhq(j)gm(si) + εij. (9)

The model Eq. 9 is equivalent to the linear regression model

~y � Xγ + ε, (10)

where γ � vec(Γ) and ε � vec(E) with E � (εij). Here, X and ~y are
considered as the design matrix and the response vector,
respectively. The definitions of ~y and X are given in Section S1
in the Supplementary Material.

3 ESTIMATION

3.1 Nonnegative Least Squares
To estimate the regression coefficient vector γ, one can use the
least squares estimation (LSE)

min
γ
‖~y − Xγ‖22.

In our experience, however, the elements of least squares
estimate γ̂ often become negative. In such cases, the estimate
of bij is negative because the basis functions hq(j) and gm(si)
generally take positive values. When bij < 0, one can interpret the
weather effect is negative. Nevertheless, the one-day curve of b̂ij
turns out to be counterintuitive; the effect of weather negatively

increases as the electricity demand increases. In other words, bij is
negatively large at working hours and small at midnight. As a
result, μij becomes extremely large in the working time. We
observe this phenomenon on the analysis of three datasets
presented in this study; one of them is the well-known Global
Energy Forecasting Competition 2014 (GEFCom 2014) data.
Therefore, this phenomenon could occur in other datasets.

A clear interpretation is realized when the weather effect bij is
nonnegative. To achieve this, we employ the nonnegative least squares
(NNLS) estimation, in which we minimize the loss function under a
constraint the regression coefficients are nonnegative:

min
γ
‖~y − Xγ‖22 subject to γ≥ 0. (11)

The optimization problem Eq. 11 is a special case of quadratic
programming with nonnegativity constraints [e.g., (Franc et al., 2005)].
As a result, the NNLS problem becomes a convex optimization
problem. Several efficient algorithms to obtain the solution in Eq.
11 have been proposed in the literature [e.g., (Lawson and Hanson,
1995; Bro and De Jong, 1997; Timotheou, 2016)].

We add the ridge penalty (Hoerl and Kennard, 1970) to the
loss function of the NNLS estimation:

min
γ
‖~y − Xγ‖22 + λ‖γ‖22 subject to γ≥ 0, (12)

where λ > 0 is a regularization parameter. In our experience, the ridge
penalization improves the forecast accuracy, and also produces a
smoother function of b̂ij than the unpenalized NNLS, which makes
the interpretation of the weather effect easier.

3.2 Forecast
For the day-ahead forecast, we forecast the demand on the next
day, ŷ(i+1)j, for the given NNLS estimate γ̂ and weather
information si+1. The forecast value ŷ(i+1)j is expressed as follows:

ŷ(i+1)j � μ̂(i+1)j + b̂(i+1)j.

FIGURE 2 | B-spline functions of 3 degree (left panel) and cyclic B-spline functions of 3 degree (right panel) with M � 10.

TABLE 1 | Candidates of tuning parameters for our proposed method.

Q M T α

5 10 5 10 2 4 AR mean

λ

0.0 1.0 × 10−5 1.8 × 10−5 3.4 × 10−5 6.2 × 10−5 1.1 × 10−4 2.1 × 10−4 3.8 × 10−4

7.0 × 10−4 1.3 × 10−3 2.3 × 10−3 4.3 × 10−3 7.8 × 10−3 1.4 × 10−2 2.6 × 10−2 4.8 × 10−2

8.8 × 10−2 1.6 × 10−1 3.0 × 10−1 5.5 × 10−1 1.0
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Here, b̂(i+1)j � ∑M
m�1∑

Q
q�1ĉqmhq(j)gm(si+1) and μ̂(i+1)j �

∑T
t�1αjt(y(i+1−t−Lα)j − b̂(i+1−t−Lα)j). On the intraday forecast, we

may use information about the demand on that day so that μ̂(i+1)j
is expressed as

μ̂(i+1)j � ∑
T

t�1
αjt(y(i+1−t−Lα)j − b̂(i+1−t−Lα)j)

+∑
U

u�1
βju(y(i+1)(j−u−Lβ) − b̂(i+1)(j−u−Lβ)).

Construction of a forecast interval based on Eq. 11 or Eq. 12 is
not easy due to the constraints of the parameter. To derive the
forecast interval, we employ a two-stage procedure; first, we
estimate the parameter via NNLS to extract variables that
correspond to nonzero coefficients. Then, we employ the least
squares estimation based on the variables selected in the first step.
With this procedure, we should derive the forecast interval after
model selection. To achieve this result, the post-selection
inference (Lee and Taylor, 2014; Lee et al., 2016) is employed.
The post-selection inference for the NNLS estimation is detailed
in Section S2 in the Supplementary Material.

4 APPLICATION TO DEMAND DATA FROM
TOKYO ELECTRIC POWER COMPANY
HOLDINGS
The performance of our proposed method is investigated through
the analysis of electricity demand data collected from Tokyo
Electric Power Company Holdings, available at https://www.
tepco.co.jp/en/forecast/html/download-e.html. The dataset
consists of electricity demand from April 1st, 2016, to March
30th, 2020. The demand is shown in MW at 1-h intervals
(i.e., J � 24).

We forecast the demand from April 1st, 2019 to March 30th,
2020 (data in 2016–2018 are only used for training). The training
data consist of all demand data up to the previous day of the
forecast day; for example, when we forecast the demand on
February 4th, 2020, the training data are demand from April
1st, 2016, to February 3rd, 2020. For the sake of simplicity, we
consider the problem of the day-ahead forecast, that is, βju ≡ 0.
Also, we set Lα � 0.

4.1 Basis Functions
We use maximum temperature in Tokyo as the weather variable
si, available at Japan Meteorological Agency (https://www.jma.go.
jp/jma/indexe.html).

Figure 1 shows the relationship between the maximum
temperature and demand. We depict this relationship in
different time intervals for Sunday, Monday, and Wednesday.
The curves are depicted by fitting the ordinary least squares
estimation with the cubic B-spline function (e.g., Hastie et al.,
2008) with equally-spaced knots. The number of basis functions
is M � 5. The B-spline function of k-degree is constructed by
linear combination ofM basis functions withM + 2k knots, say t1,
. . . , tM+2k. For given n data points in increasing order, say x1, . . . ,
xn, we set the knots as t1 ≤ t2 ≤/ ≤ tk � x1 ≤/ ≤ xn � tM+k+1 ≤/
≤ tM+2k. The B-spline function is the density function of a
convolution of uniform random variables (Hastie et al., 2008),
and it is constructed by the following recurrence relation (De
Boor, 1972):

Bj(x; 0) � 1[tj,tj+1)(x),

Bj(x;m) � x − tj
tj+m − tj

Bj,m−1(x) + tj+m+1 − x

tj+m+1 − tj+1
Bj+1,m−1(x),

where 1A(x) is the indicator function, that is, 1A(x) � 1 when x ∈
A and 1A(x) � 0 otherwise. We adopt the cubic B-spline (k � 3).
The left panel of Figure 2 depicts the cubic B-spline function with
M � 10. For all settings, the curve-fitting works well, which
implies the usage of the B-spline function as a basis function g(si)
would be reasonable.

The curve shape for 9:00–10:00 is different from that for 15:
00–16:00, which suggests that the regression coefficients must
be different among time intervals. Meanwhile, the curve shapes
for 15:00–16:00 and 18:00–19:00 are similar. In this case, it is
reasonable to assume that the regression coefficients for 15:
00–16:00 are similar to those for 18:00–19:00. The regression
coefficients are assumed to change depending on the time
interval yet to be smooth according to the time interval. To
achieve a smooth function of βm(j), we also use the cubic
B-spline as a basis function of hq(j). As the ordinary B-spline
function cannot produce a smooth curve around the boundary
(i.e., 23:00–0:00 and 0:00–1:00), we employ the cyclic B-spline
function, where the basis functions wrap at the first and last knot
locations. The cyclic B-spline function is implemented in the
cSplineDes function in the mgcv package in R. The right panel
of Figure 2 shows the cyclic B-spline function of degree 3
with M � 10.

We also observe that the curve shapes are different among
each day of the week. Therefore, we construct the statistical
models by day of the week separately; seven statistical models
are constructed. To forecast the demand, we select a model that
matches the day of the week. All national holidays are regarded as

TABLE 2 | Characteristics of our proposed method (NNLS) and the state-of-the-art machine learning techniques in terms of forecast accuracy, interpretation, and
computational speed.

NNLS SVM RF Lasso LGBM LSTM

Accuracy with small n Good Good Good Average Good Poor
Accuracy with large n Good Good Good Average Excellent Excellent
Interpretation Good Poor Poor Average Poor Poor
Speed with small n Fast Fast Fast Fast Fast Fast
Speed with large n Fast Slow Medium Fast Fast Medium

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 7247806

Hirose Interpretable Modeling for Demand Forecasting

https://www.tepco.co.jp/en/forecast/html/download-e.html
https://www.tepco.co.jp/en/forecast/html/download-e.html
https://www.jma.go.jp/jma/indexe.html
https://www.jma.go.jp/jma/indexe.html
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Sunday; therefore, the number of observations on Sunday is larger
than on other weekdays.

4.2 Candidates of Tuning Parameters
We employ our proposed method based on two estimation
procedures: ridge estimation

min
γ

‖~y − Xc‖22 + λ‖c‖22,
and NNLS estimation with the ridge penalty in Eq. 12. We label
these estimation procedures as “LSE” and “NNLS,” respectively.
For both LSE and NNLS, we prepare a wide variety of statistical

models by changing the tuning parameters. Here, we review the
role of each tuning parameter and present their candidates as
follows:

• Q: the number of basis functions in the varying coefficient
model. As Q increases, the electricity fluctuations caused
by weather becomes large in time interval j (j � 1, . . . , J).
As we will show in Section 4.3, the value of Q may
not highly affect the forecast accuracy. Therefore, it
would be sufficient to set the candidates of Q as
Q � 5, 10.

FIGURE 4 | The values, b̂ij and μ̂ij , for NNLS (upper panel) and LSE (lower panel) from October 1st to 14th, 2019.

FIGURE 3 | Impact of regularization parameter λ on the MAPE, investigated for all combinations of (Q, M, T). The dashed line indicates αjt � 1/T and the solid line
corresponds to the AR(1) structure.
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• M: the number of basis functions for the impact of weather
on demand. As M increases, the electricity fluctuations
caused by weather becomes large in temperature si. As
shown in Figure 1, M � 5 would be sufficient to express
the relationship between weather and demand. Therefore,
the candidates of M are M � 5, 10.

• T: the number of past demands for forecasting. In other words,
we use demand in the past T days to forecast demand. In this
numerical analysis, we construct the statisticalmodels by day of
the week separately. Therefore, the forecast is done by using the
past T weeks on the same day of the week. Consequently, it
would be sufficient to set the candidates of T as T � 2, 4.

• λ: regularization parameter for ridge regression. As λ
increases, the regression coefficients become stable. Small
λ prevents the overfitting, but too large λ leads to large bias.
The candidates of λ are 20 sequences from 10–5 to 1.0 on a
log-scale. We note that the log-scale sequence is often used
to set the candidates of the regularization parameters (e.g.,
Friedman et al., 2010). We also set λ � 0 to investigate the
impact of the ridge parameter on the forecast accuracy. As
we will see in Section 4.3, it would be sufficient to set the
above candidates of λ to achieve good accuracy.

In addition to the above candidates of models, we consider two
types of αjt: sample mean of the past demand (i.e., αjt � 1/T) and
AR(1) structure. Details of the AR(1) structure are presented at
the end of Section 2.2. As a result, the total number of candidates
of the models is 336 (� 2 × 2 × 2 × (20 + 1) × 2). These candidates
are summarized in Table 1.

4.3 Impact of Tuning Parameters on
Forecast Accuracy
The forecast accuracy of our proposed method depends on the
tuning parameters presented above. We investigate the impact of
tuning parameters on the mean absolute percentage error
(MAPE) defined as

MAPE � 1
Jn

∑
n

i�1
∑
J

j�1

|yij − ŷij|
yij

. (13)

Figure 3 shows the relationship between regularization
parameter λ and MAPE. The relationships are investigated for
all combinations of (Q, M, T).

The result shows that the AR(1) structure on αjt produces
smaller MAPE than the mean structure (αjt � 1/T) for all
candidates of ridge parameter λ. For AR(1) model, the
performance for T � 4 is better than that for T � 2. We
observe that a large value of λ may result in poor forecast
accuracy; meanwhile, a small amount of λ generally results in
good accuracy. The result for λ � 0 is not displayed here because
the MAPE can be extremely large due to the non-convergence of
parameters; the ridge penalty helps avoid such a non-
convergence. In summary, the AR(1) structure on αjt, T � 4,
and a small value of λ will result in a small MAPE for this dataset.

4.4 Forecast Accuracy
We compare the performance of our proposed method with the
following popular machine learning techniques: random forest
(RF), support vector machine (SVM), Least absolute shrinkage
and selection operator (Lasso), LightGBM (LGBM; (Ke et al.,
2017)), and Long Short Term Memory [LSTM; (Hochreiter and
Schmidhuber, 1997; Van Houdt et al., 2020)]. The RF, SVM,
LGBM, and LSTM involve nonlinear functions, allowing us to
capture complex structures. We use R packages randomForest,
ksvm, glmnet, and lgbm to implement RF, SVM, Lasso, and
LGBM, respectively. The LSTM is implemented by
tensorflow.keras library in python. The LGBM is based on the
gradient boosting decision tree and achieves good forecast
accuracy in various fields of research, including energy (e.g.,
(Ju et al., 2019)). The LSTM is the state-of-the-art technique
for analyzing time series data using artificial neural networks
(ANN). For these machine learning techniques, the forecast is
made by the electricity demand of past T days and maximum
temperature, that is, ŷij � f(si, y(i−1)j, . . . , y(i−T+1)j).

The characteristics of our proposed method and the machine
learning techniques are compared in Table 2.

A detailed description of Table 2 is as follows:

• With small sample sizes, the machine learning methods that
capture nonlinear structure provide good accuracy except
for the LSTM; in general, the ANN can often yield poor
accuracy with small sample sizes (e.g., Tange et al., 2017).
The accuracy of the lasso is not sufficiently but relatively
high because the lasso cannot capture the nonlinear
structure. When the number of observations is large, the
LGBM and LSTM will perform perfectly well because these

TABLE 3 |Monthly MAPE for our proposed methods (NNLS and LSE) and existing machine learning techniques (SVM, RF, Lasso, LGBM, and LSTM) on the dataset from
Tokyo Electric Power Company Holdings from April 2019 to March 2020. The smallest MAPE is written in bold.

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar total

NNLS 4.0 3.7 3.3 3.9 4.5 4.8 3.3 3.2 4.4 4.2 4.7 4.9 4.1
LSE 4.0 3.7 3.3 3.9 4.5 4.8 3.3 3.2 4.4 4.2 4.8 4.9 4.1
SVM 5.2 3.0 2.9 5.4 7.8 6.3 4.1 4.2 5.4 4.8 5.4 5.9 5.0
RF 5.6 3.4 3.6 6.4 7.2 5.9 4.3 4.2 5.5 5.3 5.6 5.9 5.2
Lasso 7.3 3.9 4.0 8.3 8.2 9.2 6.2 4.8 5.6 6.4 7.7 8.0 6.6
LGBM 5.6 3.8 3.4 6.2 7.4 5.8 4.3 4.4 5.4 5.0 5.5 5.9 5.2
LSTM 7.0 7.6 7.3 8.2 7.2 8.2 8.3 6.6 6.2 6.3 5.8 6.7 7.1
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methods capture complex nonlinear structures. However,
the sample sizes of the dataset used in this Section (and also
other Sections) may not be large.

• Our proposed method is interpretable thanks to the
nonlinear regression modeling with basis expansions.
The lasso may also be interpretable, but it only
captures the linear structure. The other machine
learning techniques might not be suitable for

interpretation purposes; please refer to Section 4.5 for
the numerical results.

• The computational speed of our proposed method turns out
to be fast thanks to the efficient NNLS algorithm of Lawson
and Hanson (Lawson and Hanson, 1995). The lasso
algorithm (Friedman et al., 2010) is also extremely fast.
The RF is a little bit slow with large sample sizes due to the
resampling procedure. The LGBM is very fast regardless of

FIGURE 5 | Estimate of the weather effect bij on Tuesday for the proposedmethod and existing methods. For existing methods, the weather effect depends on the
input. We depict the weather effect on October 8th, 2019, and October 15th, 2019, for existing methods; both of these days of week are Tuesday
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sample sizes in our experience. The SVM becomes
extremely slow with large n (e.g., n � 100,000) because
we must compute the Kernel function for each pair of
observations, which requires O(n2) operations.

In practice, we need to select a set of tuning parameters among
candidates. The candidates of the tuning parameters for the
proposed method are presented in Section 4.3. For machine
learning methods, the candidates are detailed in Section S3 in the
Supplementary Material. For all methods, we must select an
appropriate set of tuning parameters. These tuning parameters
are generally selected with cross-validation. In this study, we
choose these tuning parameters to minimize the MAPE in the
past year. The values of tuning parameters are changed
every month.

Table 3 shows the monthly MAPE for our proposed method
and existing methods from April 2019 to March 2020. The result
shows that the proposed method performs better than existing
machine learning techniques in total. The SVM achieves the best
performance in specific months but sometimes provides much
larger MSE than other methods, resulting in worse performance
than our proposed method in total. The RF and LGBM yield
similar performance, and these methods produce larger MAPE
than our proposed method. The lasso cannot capture the
nonlinear relationship between temperature and demand as in
Figure 1, resulting in poor performance in total. The LSTM
provides the worst performance, probably due to the small
number of observations: it is from n � 132 to n � 302. In
general, the ANN does not perform well with such small
sample sizes; (Tange et al., 2017) showed that the ANN

performed worse than SVM for small sample sizes, and several
similar numerical results are found in the literature (Bećirović
and Ćosović, 2016; Dehalwar et al., 2016; Maldonado et al., 2019).
We observe that the NNLS and LSE result in similar values of
MAPE. These similar results are obtained probably due to the
identifiability of the parameter. Our proposed procedure
decomposes yt as yt ≈ μt + bt, and this decomposition is not
unique. Therefore, the NNLS and LSE produce different values of
μ̂t and b̂t but similar values of μ̂t + b̂t.

We also compute the MAPE for well-known Global Energy
Forecasting Competition 2014 (GEFCom 2014) data (Hong and
Fan, 2016), and obtain a similar result as that shown in Table 3.
For detail, please refer to Section S4 in the Supplementary
Material.

4.5 Interpretation
With our proposed method, the estimated model can be
interpreted by decomposing the forecast value by the effects of
temperature and past demand: ŷij � b̂ij + μ̂ij. The values, b̂ij and
μ̂ij, for NNLS and LSE from October 1st to 14th, 2019, are
depicted in Figure 4.

Although the forecast accuracy of the LSE estimation is similar
to that of the NNLS estimation, as shown in Table 3, the results
of the decomposition ŷij � b̂ij + μ̂ij for these two methods are
unalike in terms of values. The LSE often results in negative
values of b̂ij, and then μ̂ij becomes substantially larger than the
actual demand. In particular, the value of b̂ij at working hours
is negatively larger than that at midnight; on the other hand,
the electricity is used primarily during working hours. As a
result, the behavior of b̂ij is counterintuitive; b̂ij becomes

FIGURE 6 | Relationship between the number of daily infections and demand (upper panels), and between the average number of infections in the past 14 days
and demand (lower panels). We depict these plots on working days. The curve fitting is done by polynomial regression with cubic function.
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negatively larger as ŷij increases. Thus, interpreting the effect
of weather turns out to be difficult with LSE. This issue occurs
because there are no restrictions on the sign of b̂ij. We observe
a similar behavior of b̂ij on other datasets, including
GEFCom 2014.

In contrast, the effect of weather is appropriately captured by
the NNLS estimation. Indeed, in many cases, the value of b̂ij at
working hours is positively larger than that at midnight. The
constraint on nonnegativeness of γ significantly improves the
interpretation of the weather effect while still maintaining
excellent forecast accuracy.

To further investigate the effect of temperature, we depict
b̂ij on Tuesday when maximum temperatures are 5°C (cold
day), 20°C (cool day), and 35°C (hot day), which is shown in
Figure 5. For existing methods, it is difficult to depict b̂ij
because these methods do not assume the existence of b̂ij. For
existing methods, instead of b̂ij, the weather effect is
calculated depending on the input: we forecast the demand
with specific temperature (5°C, 20°C, and 35°C) and average
annual temperature (21.7°C in this case), and subtract the
forecast value with average annual temperature from that with
a specific temperature. We depict the weather effect on
October 8th, 2019, and October 15th, 2019, for existing
methods; both of these days are Tuesday.

The results of our proposed procedure show that b̂ij is highly
dependent on the temperature: the weather effect may be
substantial for cold and hot days due to air conditioner use.
For NNLS, the weather effect is always positive, which allows
clear interpretation compared with LSE. Both NNLS and LSE
result in smooth curves due to the smooth basis function of the
regression coefficients. We observe that the weather effect is
stable unless M is large and λ is excessively small.

The existing machine learningmethods, RF, SVM, LGBM, and
LSTM, are unstable and highly depend on the input. With the
Lasso, the impact of temperature is almost zero, which implies
that the weather effect cannot be captured. Our proposed method
results in smoother curves than existing methods thanks to the
B-spline basis expansion of regression coefficients in Eq. 4. As a
result, our proposed method is more suitable for interpreting the
weather effect than existing methods.

5 APPLICATION TO DATA FROM ONE
SELECTED RESEARCH FACILITY IN JAPAN

In the second real data example, we apply our proposed method
to the demand data from one selected research facility in Japan.
The raw data cannot be published due to confidentiality. This

FIGURE 7 | Actual demand and forecast values from April 1st, 2020 to April 20th, 2020.

FIGURE 8 | b̂ij for temperature (dotted line) and COVID-19 (dashed line).
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dataset consists of demand from January 1st, 2017 to May 30th,
2020. At certain times, demand is either not observed or include
outliers due to electricity meter failures or blackouts. The daily
data that contain such missing values and outliers are removed,
resulting in 1,164 days of complete data. The demand is shown in
kW at 1-h intervals (J � 24).

We observe that COVID-19 greatly influences the usage of this
research facility’s electricity pattern due to the recommendation
of telework. In present times, it is essential to forecast the demand
for this extraordinary situation. To this end, our proposed
method is directly applicable to the input of daily data related
to COVID-19, and we focus our attention on the forecast
accuracy in March, April, and May 2020.

5.1 Input of COVID-19 Information
In Japan, the most frequently-used daily information about
COVID-19 is the daily number of infections, available at
https://www3.nhk.or.jp/news/special/coronavirus/data-all/.
However, this variable turns out to be relatively unstable. In order
to use more stable information about COVID-19, we may use the
moving average of the number of infections; that is, the average
number of infections in the past several days.

The research facility used in this study promotes the staff to
work from home to prevent the spread of COVID-19. We expect
that the electricity usage of the research facility decreases as the
number of infected people of the COVID-19 increases; therefore,
the COVID-19 information may affect the forecast results. Figure 6
shows the relationship between the number of daily infections and
demand, and between the average number of infections in the past
14 days and demand. We depict these plots on working days. The
curve fitting is done by polynomial regression with cubic function.
The B-spline may not be suitable in this case due to the limited
number of observations.

The number of daily infections includes outliers; thus resulting
in unstable curve fitting. For example, when the number of
infections is relatively large, the demand increases as the
number of infections increases. This phenomenon is
counterintuitive because this facility encourages working at
home as much as possible to prevent infections. On the other
hand, the average number of infections in the past 14 days is
negatively correlated with the demand, and the curve fitting of the
cubic function works well. For this reason, we use the average
number of infections in the past 14 days as daily information
about COVID-19. As a result, the daily variable si becomes a two-
dimensional vector that consists of the maximum temperature
and the average number of infections in the past 14 days. We use
the cubic B-spline function as a basis function of maximum

temperature, and the cubic function as a basis function of the
average number of infections in the past 14 days.

5.2 Forecast Accuracy
In the previous real data example, we construct the statistical
models by day of the week separately. However, in this case, the
number of observations affected by COVID-19 is excessively
small. Thus, only two statistical models are constructed based on
working days (from Monday to Friday) and holidays (Saturday,
Sunday, and national holidays). We consider the problem of the
day-ahead forecast fromMarch 1st, 2020 to May 30th, 2020 (data
in 2017–2019 are only used for training). The training data
consist of all demand data up to the previous day of the
forecast day.

We investigate how the input of COVID-19 information
improves the forecast accuracy. The NNLS does not produce
negative regression coefficients but we observe that the electricity
usage decreases as the average number of infections in the past
14 days increases, as shown in Figure 6. Thus, the electricity
fluctuation caused by COVID-19, say bcovid19ij , should be negative.
As the basis function, we use the cubic function of negative
number of infections in the past 14 days; that is,
bcovid19ij � β1(j)(−scovid19i )3 + β2(j)(−scovid19i )2 + β3(j)(−scovid19i ),
where scovid19i is the number of infections in the past 14 days.

Figure 7 shows the forecast values with our proposed method
using NNLS and the actual demand. We depict two forecast
values: one uses the information about COVID-19 and the other
does not. The result shows that the usage of the COVID-19 data
slightly improves the accuracy; for example, on the 10th and 13th.

Figure 8 shows b̂ij of both temperature and COVID-19. The
results show that after April 10th, the negative effect of COVID-
19 is observed. The government declared a state of emergency on
April 7th, and following this, the usage pattern of the electricity
changed. The change in electricity pattern on the 8th and 9th may
not be captured due to excessively small sample sizes related to
the number of infections. However, after the 9th, the effect of
COVID-19 is captured. (insert Figure 8 here).

Table 4 shows MAPE for our proposed method and existing
methods on March, April, and May 2020. We also compare the
performance of two estimation procedures: one uses the
information about COVID-19 and the other does not. In
March, the result shows that the proposed method performs
the best and Lasso yields the worst performance. This is because
the effect of temperature can be appropriately captured as shown
in the previous example. The effect of COVID-19 is not crucial in
March because the performance becomes worse when the
COVID-19 information is included.

TABLE 4 |Monthly MAPE for our proposed methods (NNLS and LSE) and existing machine learning techniques (SVM, RF, Lasso, LGBM, and LSTM) on the dataset from
one selected research facility in March, April, and May 2020. The smallest MAPE is written in bold.

Including COVID-19 information Not including COVID-19 information

NNLS SVM RF Lasso LGBM LSTM NNLS SVM RF Lasso LGBM LSTM

Mar 3.5 5.6 4.0 4.3 3.9 24.9 3.4 3.8 3.9 4.1 4.2 16.1
Apr 4.0 5.0 4.3 3.9 6.0 69.2 5.2 5.3 6.5 6.0 7.7 33.3
May 3.1 3.1 3.4 2.9 3.4 48.4 3.5 3.2 3.5 3.4 3.4 28.8
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In April and May, the information about COVID-19
significantly improves the performance for almost all methods.
In particular, our proposedmethod and Lasso both produce small
MAPE values, and interestingly, Lasso performs slightly better
than our proposed method. There are two reasons to explain the
superiority of Lasso. First, the relationship between the number of
infections and the demand is approximated by a linear function,
as shown in Figure 6. Second, the temperature effect is not crucial
because the temperature does not change much in April andMay.
The nonlinear machine learning techniques, that is, SVM, RF,
LGBM, and LSTM yield large MAPE in April, probably due to the
small number of observations related to COVID-19; these
techniques result in overfitting. In particular, LSTM produces
much worseMAPE than othermethods. Such poor results may be
due to the instability of the electricity demand; the neural
networks can be highly sensitive to noise [e.g., (Goodfellow
et al., 2014)]. Indeed, we observe that the electricity demand
of this dataset turns out to be unstable compared with the datasets
from Tokyo electric power company holdings and Global Energy
Forecasting Competition 2014. To improve the accuracy of the
LSTM, we need to change the input/output by incorporating
much more information of the data (e.g., not daily but hourly
weather and hourly COVID-19 data).

6 CONCLUDING REMARKS

We have constructed a statistical model for forecasting future
electricity demand. To capture the nonlinear effect of weather
information, we employed the varying coefficient model. With
the ordinary least squares estimation (LSE), the estimate of bij,
say b̂ij, became negative because some of the elements of regression
coefficients γ̂ were negative. The negative weather effect led to the
difficulty in the interpretation of the weather effect. To address this
issue, we employed the NNLS estimation; this estimation is
performed under the constraint that all of the elements of γ̂ are
nonnegative. The practicality is illustrated through three real data
examples. Two of these examples showed that our method
performed better than the existing machine learning techniques.
In the third example, our proposedmethod adequately captured the
impact of COVID-19. Estimating the fluctuations of electric power
caused by weather and COVID-19 would help make strategies for
energy-saving interventions and demand response.

The proposed method is carried out under the assumption that
the errors are uncorrelated. In practice, however, the errors among
near time intervals may be correlated. As a future research topic, it
would be interesting to assume a correlation among time intervals
and estimate a regression model that includes the correlation
parameter. Another important point is to incorporate the
weather effects other than temperature and humidity; we may
use cloud cover (Apadula et al., 2012), rainfall, and wind speed
(Chapagain and Kittipiyakul, 2018). However, incorporating too
many variables can often result in low forecast accuracy due to
overfitting (Xie et al., 2016). The selection of an appropriate

combination of variables is essential but beyond the scope of
this study; we would like to take this as a future research topic.

Recently, demand response has been becoming one of the most
important topics in the research field of energy. In particular, the
machine learning techniques have been recently used for residential
demand response (Zhou et al., 2016; Pallonetto et al., 2019; Afzalan
and Jazizadeh, 2020). These techniques are based on the
deterministic approaches. On the other hand, our proposed
statistical model will lead to the demand response by the
probabilistic approach (Schachter and Mancarella, 2015; Alipour
et al., 2017). The probabilistic approach will allow the decision
based on the probabilistic risk evaluation. Such demand response
would be essential in practice, and we would like to work on this
topic in the future.
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