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The high share of buildings in energy consumption and carbon dioxide emission has led
researchers to seek techniques to reduce energy consumption in this sector. In this study,
considering a hot and arid climate region, thewall’s heat gainwas investigated. To reduce energy
demand, three techniques of adding PCM, combining absorption chiller with a solar system and
dispersing nanoparticleswere usedand the resultswere evaluated transiently. In July, the addition
of PCM to the building’s walls reduced the heat exchange between interior and exterior spaces
up to 21%. To cool the interior spaces, the combination of absorption chiller + fan coil was used
and several flat plate collectors were integrated with it to reduce energy demand. By collecting
energy in solar collectors and using a stratified tank, energy consumption in the generator section
was reduced by 450 kWh. Nanoparticles were used to improve the solar system performance
and it was found that loading ZnO and Al2O3 nanoparticles is useful. Dispersing ZnO into water
increased the energy-saving by 9.5% while the second nanoparticle improved it by 14.5%.
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INTRODUCTION

Buildings contribute a lot to pollution production and energy consumption (Jahangiri et al., 2016;
Mostafaeipour et al., 2020; Kalbasi et al., 2021; Parsa, 2021; Song et al., 2021). Many solutions have
been recommended by various researchers to reduce energy consumption (Ahmadi et al., 2017; Ahmad
et al., 2018; Nwaji et al., 2019; Sarafraz et al., 2019; Azimi Fereidani et al., 2021; Nundy et al., 2021).
Techniques include installing PCM (Ahangari and Maerefat, 2019; Lizana et al., 2019; Ziasistani and
Fazelpour, 2019; Ben Romdhane et al., 2020; Miansari et al., 2020; Saxena et al., 2020), heat recovery (Liu
et al., 2020; Shahsavar Goldanlou et al., 2020), using solar energy (Toghraie et al., 2018; Gagliano et al., 2019;
Parsa et al., 2019; Gholipour et al., 2020; Menni et al., 2020; Parsa et al., 2020; Poon et al., 2020; Gholipour
et al., 2021), other renewables such as wind (Jahangiri et al., 2019; Mostafaeipour et al., 2019; Kalbasi et al.,
2021), geothermal sources (Kang et al., 2013; Palmero-Marrero et al., 2020) and finally using nanofluid
(Kulkarni et al., 2009; Strandberg andDas, 2010;Moradi et al., 2019; Soltani et al., 2020;Mustafa et al., 2021).
Considering the hot and dry climate, Li et al. (2019) by conducting a numerical study examined the effect of
adding RT-27 PCM to awall with 20 cm thickness. Thismaterial undergoes a phase change at 28–30℃ and
has a latent heat of 179,000 J/kg. They added RT-27 to the wall in three thicknesses of 1, 2 and 4 cm and
found that the heat gain through wall (HGTW) diminished by 3737, 7050 and 11971 kJ/July.m2. In other
words, if RT-27 is installed within a 20-cm wall, then it diminished HGTW by 12.06% (for 1 cm RT-27
thickness). If the effect of RT-27 thickness is considered in the numeric calculations, it can be seen that
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HGTW reduced by 3737, 3525, 2992.75 kJ/July.m2 per RT-27
thickness. This means that the RT-27 positive effects are lowered
as the thickness rises. Theymoved the RT-27 installation location and
found that the closer it was to the outside, the better its performance.
Because the calculations showed that HGTWwas lowered by 12.06%
for a location just adjacent to the room space and 13.38% for
installation near the exterior. In a similar study, Nariman et al.
(2020) added PCM of C16 − C18 to a 23-cm wall and calculated
HGTW in July. They also considered the solar intensity over the wall
faced to north, south, east and west directions. Calculations showed
that in the main directions, this material can reduce HGTW
parameter by 11,136 (N), 12,538 (S), 12,991 (E) and
13,907 kJ/July.m2 for west direction. If these values compare with
the base wall heat transfer [i.e., 42,378 (N), 47,652 (S), 49,509 (E) and
49,867 (W) kJ/July.m2] it is found that loading C16 − C18 leads to
26.27% reduction inHGTWfor north-facingwall. For otherwalls, this
figure was 26.31% (S), 26.23% (E) and 26.27% (W). This means that
for evaluation the PCM efficacy on HGTW, the wall direction is not
much important. Li et al. (Ghaffarkhah et al., 2020) investigated the
effects of adding a 1-cm thickness PCM layer adjacent to the inner
space and a 1-cm thickness PCM layer adjacent to the exterior space.
They examined many PCMs composition and found that for hot
summer/mild winter climate (the authors called zone A) the best
effectiveness was related to Enerciel 22 (close to interior space) +
Capric (close to exterior space). Under the best effectiveness, HGTW
was lowered by 26.85% in July. Moreover, an 18.64-percent reduction
(worst conditions) in HGTW was reported for the composition of
Capric + HS-21. The authors repeated the simulation for mild
summer/very cold winter (i.e., zone B) and reported that Enerciel
22 for inner and exterior layers has the best performance (taking into
account 27% HGTW decrease). The minimum PCM efficacy on
HGTW reduction corresponded to S7 for both layers (11.31%). For
warm summer/cold winter (zone C) the authors reported the best and
worst results have corresponded to compositions of Enerciel 22 +
Capric and S7 + S7. The former composition decreased HGTW by
30.5% while using the latter composition led to a 14.5% reduction.
Abu-Hamdeh et al. studied the thermal performance of a wall filled
with PCM A13, with a phase change temperature of 13°C to inspect
that whether adding PCM to the wall is useful in winter. Their results
were performed in the coldest 3months of the year (Dec, Jan and Feb)
and it was observed that in the 1st month, heat loss from the interior
reduced by 11%. In the 2nd and 3rdmonths, this figure ended at 10.6
and 10.2%. To examine the PCM phase change temperature, they
used A8 (Tm � 8°C) and found that this material can lower the heat
loss by 11.1, 11.2 and 10.2% in Dec, Jan and Feb. These results prove
that PCM of A13 can be used in winter as well. Winter analysis
showed that if A13 was used, heat loss would be reduced by 10.7%.
Moreover, they also reported that A8 filled wall has a similar thermal
performance taken into account 10.86% in heat loss. An economic
analysis was also conducted in their study, and considering the price of

gas (3.06 $
106 BTU), the authors showed that if A13 is used, it will take

approximately 20 years for additional costs, to be compensated. This
figure was 19 years for A8 PCM.

In this study, considering the hot and arid climate for Najran
region (17.56°N, 44.22°E), a suitable PCM is selected and then by

performing a transient analysis, the thermal behavior of this
building is investigated. To cool the building in July, an
absorption chiller with several solar collectors is combined to
reduce energy demand. Then, nanofluids of ZnO/wand
Al2O3/wwere added to the water inside the collector to boost
the amount of saving-energy.

PROBLEM DESCRIPTION

In this research, the main goal is to reduce energy demand in
buildings, which is examined using two scenarios. In the first
scenario, by reducing HGTW, the energy usage in HVAC sector
reduces. In the second scenario, an absorption chiller is used to cool
the building. Formeeting the energy usage in the generator section, a
solar collector filled with ZnO/water is used. Figure 1 shows that by
adding PCM to the walls, the thermal resistance of the building rises
and thus HGTW reduces both in winter and summer. Figure 1
shows that an absorption chiller enters the circuit to provide cooling
in summer. In the evaporator, cold water within the temperature of
6-7°C enters the fan coil and returns to the evaporator by taking heat
from the building. An evaporative cooling tower is used to cool the
condenser. In an absorption chiller in the generator section, a hot
water flow can be used to supply thermal energy.

MATHEMATICAL FORMULATION

The governing equations are presented in two parts. In the first part,
due to the PCMphase change inside the wall, the governing equations
are solved in such a way that the temperature distribution inside the
wall can be obtained. To obtain the temperature, it is required to solve
the continuity, momentum and energy equation:
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where ξ � ρL zε
zt + ρL∇.(εV.) is the heat sink for energy equation

to show the effects of phase change, f (u), f (v) and f(w) are sink
terms for momentum equations to make zero velocity in cells
contain solid phase.

f (u) � m
(1 − ε)2
ε3 + 0.001

u (4)

f (v) � m
(1 − ε)2
ε3 + 0.001

v (5)

f (w) � m
(1 − ε)2
ε3 + 0.001

w (6)

The boundary conditions in x-direction as shown in are
written as follows:

−kzT(w)
zx

)
x�w

� hinner(T(w) − Troom) (7)

−kwzTw

zx
)

x�0
� ho(Ta − Tw,o) + (1 − ρ)G(t) (8)

where hinner � 8.6 W
m.K and ho � 25 W

m.K are the convective
coefficients (Li et al., 2019). For other directions (i.e., y and z)
the similar equations should be written. Note that ρ is the
reflection coefficients and G(t) is the radiation over vertical
walls (Figure 2).

In solar collectors, the main parameter is the heat gain (HG)
which is obtained from the following equation:

HG � (FR(ατ) − cl
Ti − Ta

I(t) − c2[Ti − Ta

I(t) ]
2

) × Ac
collector area

× I(t)
(9)

where I(t) denote the radiation over the collector, Ta is the
ambient temperature. The details of Eq. 9 are described in
(Mustafa et al., 2021). The variations of Ta and I(t) are
illustrated in Figure 3 and Figure 4.

RESULTS

PCM Efficacy on Heat Gain Through Wall
PCMs are substances that can store energy and then release it.
The process of storing/releasing energy depends on the phase
change temperature range (Tm). Therefore, if PCM is chosen
without considering Tm, it may not be useful for the building.
The appropriate temperature is selected according to the
geographical conditions of the building. Figure 3 showed
that in July, the temperature fluctuates with 25–40°C, so the
PCM has chosen so that its Tm should be in this range. In this
study, RT-27 (Table 1) is used. Now, to evaluate the proper
functioning of PCM, its effect on HGTW should be
examined. Note that heat transfer to the room depends on
several parameters. In summer, the occupancy parameter can
drastically change the sensible/latent loads of the room. If the
number of people increases or the time of their presence or
even their level of activity changes, both parameters of
sensible/latent loads change quite obviously. PCM inside
the wall does not affect this parameter. Electrical
equipment along with lighting also has a great impact on
the building’s heating. PCM does not affect these two
parameters either. However, the variations in the amount
of thermal energy entering the room are illustrated in
Figure 5.

FIGURE 1 | PCM-based building integrated with a nanofluid filled solar system.
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In this study, considering that the building is an office, so
the schedule was chosen in such a way that between 8 a.m and
8 p.m, parameters of occupancy, lighting and equipment
affect.

The only parameter that is affected by the presence of PCM is
HGTW. The variations in HGTW for simple building and
building + RT-27 are illustrated in Figure 6.

The amount of thermal energy entering the building interior
through the wall depends on the number of thermal layers of the
wall as well as thermal resistance of the layers. Less thermal
conductivity is more desirable for layers because thermal energy
faces more barriers to entering the interior space. However, as
shown in Figure 6, for a building that uses RT-27 inside walls/
ceiling, less thermal energy is exchanged which is very acceptable.

FIGURE 2 | The variations in G(t) for various directions.

FIGURE 3 | The variations in Ta (17.56°N, 44.22°E). FIGURE 4 | The variations in.I(t)
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Although Figure 6 proved that RT-27, as a thermal barrier,
reduces the thermal energy, but the amount of thermal energy
reduction is more important. In the previous section, it was
mentioned that PCM does not affect the thermal energy
caused by occupancy, lighting and equipment and only

TABLE 1 | Properties of the construction materials and studied PCMs (ASHRAEAmerican Society of Heating and Engineers, 2016; Tian et al., 2020a).

Material Thermal conductivity

[ W
m.K]

Melting temperature
[K]

Specific heat

[ kJ
kg.K]

Density [kg
m3] Phase change

enthalpy [kJkg]

Concrete 1.4 — 880 2,300 —

Built-up roofing 0.17 — 1,460 1,100 —

Plaster 0.22 — 1,085 1,680 —

RT-27 0.23 301.15–303.15 2,400 870 179
0.18 1,800 760

FIGURE 5 | The variations in the various heat transfer mechanism.

FIGURE 6 | Heat gain for simple building and building filled with RT-27.

FIGURE 7 | PCM efficacy on building energy usage in two conditions.
(A): wall heat gain, (B): total heat gain.
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changes HGTW. Figure 7A reports the effect of RT-27 on
HGTW and it is clear that this parameter decreased by 22.06%.

If the total entering thermal energy to the building is
examined, it can be seen that the amount of reduction is
changed from 22.06 to 11.44%.

The incoming thermal energy rises the building temperature
over time. An air conditioning unit must be used to regulate the
temperature. In this study, as shown in Figure 1, the system of fan
coil + absorption chiller is used to cool the building. Absorption
chillers have low electrical power consumption and instead require
a lot of thermal energy. In this study, chilled water is produced at
6.6°C. Chilled water enters the building through the fan coil and
absorbs the room’s thermal energy to cool it. The mass flow rate of
the chilled water depends on the total amount of room thermal
energy and obtained from _mchilled � total heat gian

4.18×T . If a temperature
difference of T � 5.5℃ is considered, the chilled water flow rate in
the evaporator will change as shown in Figure 8.

The power exchanged in the evaporator is determined by the
total heat gain. Energy consumption in the absorber is also
determined according to COP value. Neglecting the energy
consumption in the pumps, the energy consumption in the
condenser can be obtained. The changes in energy
consumption are shown in Figure 9.

A cooling tower is needed to dissipate energy in the condenser.
Of course, the wet-bulb ambient temperature should always be
taken into account in the calculations to ensure the accuracy of
the results. The cooling tower outlet water temperature should be
greater than the ambient wet-bulb temperature. Figure 10 shows
that this criterion meets in this study.

Another important parameter is to check the actual power of
the chiller, which is usually expressed in terms of refrigeration
ton. By selecting a chiller with a nominal refrigeration ton of 40,
the actual power of the chiller changes as shown in Figure 11. The
parameter of “f” is a variable that indicates how the actual power
of the chiller is changing relative to the nominal power. Given the

appropriate range of f parameter, a 40 ton of refrigeration is
acceptable.

Effects of Nanofluid
Nanoparticles are materials that can improve the thermophysical
properties if well dispersed in the fluid and provided they are
stable (Esfahani et al., 2018; Keyvani et al., 2018; Asadi et al., 2019;
Ranjbarzadeh et al., 2019; Li et al., 2020; Wei et al., 2020).
Nanofluids have been studied in many studies (Jahangir et al.,
2018; Mahdavi et al., 2019a; Mahdavi et al., 2019b; Giwa et al.,

FIGURE 8 | Chilled water mass flow rate variations.
FIGURE 9 | The variations in power usage in evaporator, generator and
condenser units.

FIGURE 10 | The variations in cooling tower outlet water temperature
and wet bulb temperature.
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2020a; Giwa et al., 2020b; Tian et al., 2020b; Yan et al., 2020). In
this section, the results of two nanoparticles of ZnO and Al2O3

were used to evaluate the effect of nanoparticles. In a study by
Arıkan et al. (2018) it was shown that the efficiency increases in
the presence of nanoparticles. In the presence of ZnO the
efficiency increases but to a lesser extent than that of Al2O3.
Figure 12 shows that both nanoparticles can increase the rate of
heat absorption by improving efficiency.

Using a solar system reduces energy consumption in the
absorption chiller. Since the generator section requires a lot of
thermal energy, a part of which can be provided by the solar
system. Figure 13 shows the amount of energy-saving by using
the solar system over time. Note that in this case, the inside of the
collector is filled with water. The oscillation of the amount of
saving energy is attributed to the solar energy oscillation.

To examine the effect of ZnO/Al2O3 the amount of energy-
saving must be evaluated in July. In Figure 14, the energy-saving
for the three fluids are compared. In the first case, there is water
inside the collector and calculations indicate that the energy-
saving is equal to 428 kWh. By adding ZnO, this parameter is
improved by 9.2%. According to Figure 12, higher efficiencies for

FIGURE 11 | The actual capacity and nominal capacity of the chiller.

FIGURE 12 | The efficiency of the solar collector.

FIGURE 13 | Heat gain in the solar collector.
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Al2O3 are expected to have a greater effect on saving energy.
Figure 14 confirms this claim, nanoparticles of Al2O3 improved
energy-saving by 14.5%

CONCLUSION

In this study, the thermal behavior of a building impregnated with
PCM was investigated. In July, with a temperature range of
25–40°C, PCM of RT-27 was added to the walls. An
absorption chiller + fan coil system was utilized to cool the
building. Nanofluid-filled collectors were used to provide
thermal energy in the absorption chiller. The most important
results were as follows:

• The PCM acted like a heat sink when installed in the wall and
reduced the heat transfer through the walls by 22.06%. Taking
into account the heat gains of occupancy, lighting and equipment,
it was found that the total heat gain decreased by 11.44%.

• The combination of solar collector and absorption chiller
reduced energy demand by 428 kWh.

• The energy-saving was affected by the addition of ZnO and
Al2O3 nanoparticles. In the case of ZnO nanoparticles, the
energy-saving was improved by 9.5%. For Al2O3 the energy-
saving was amended by 14.5%.
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