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As to the nonlinear and time-varying problems of the energy consumption model, this
paper proposes an adaptive hybrid modeling method. Firstly, the recursive least squares
algorithm with adaptive forgetting factor based on fuzzy algorithm and recursive least
squares algorithm is used to identify the simplifiedmechanism energy consumption model,
which solves the data saturation phenomenon and the weights of the “old and new” data
during the online identification process and guarantees the adaptability of the mechanism
model. Secondly, because there is a deviation between the identified model and the
simplified mechanism energy consumption model, the deviation compensation model of
mechanism model is established through kernel partial least squares algorithm and the
model updating strategy with sliding window, which is used to update the deviation
compensation model, and then the adaptive hybrid model is established by combining
with the mechanism model identified online and updated deviation compensation model.
Finally, the effectiveness, generalization and adaptability of the model are verified by the
actual operating data of a single working condition and variable working conditions. And
comparing with the mechanism model and the data model, The comparison results show
that the adaptive hybrid model has higher calculation accuracy with adaptation.

Keywords: fuzzy algorithm, recursive least squares algorithm, kernel partial least squares algorithm, slidingwindow,
adaptive forgetting factor, adaptive hybrid model

1 INTRODUCTION

As to the nonlinear and time-varying problems of the energy consumption model, in order to obtain
the optimal operating parameters for the maximum energy efficiency, it is necessary to establish an
accurate energy consumption model. However, the mechanism model of energy consumption has
non-linearity and time variation under different working conditions and outdoor temperature, and
even could not completely reflect characteristic of the energy consumption model(Li and
Zaheeruddin, 2019; Foliaco et al., 2020; Tudoroiu et al., 2020). Thus, an effective method is
supposed to research to obtain precise energy consumption model.

At present, the mechanism model based on the physical conception of equipment or physical
characteristics of equipment, such as based on law of thermodynamics, the model structure was
established by means of effective volume method, grid-search method, integral order and step
size(Mazimbo et al., 2019). And in order to obtain the simplified mechanism model, we need use
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identification method to get the parameters of the simplified
mechanism model. In general, the recursive least squares
algorithm with fixed forgetting factor (Shi et al., 2016; Xia
et al., 2018) is widely used to identify the model’s parameters
of the object, due to its simple principle, small computational
complexity and the function of online identification.
Nevertheless, the recursive least squares algorithm with fixed
forgetting factor has poor tracking ability when the working
conditions appears in changing. (Pang and Cui, 2017)
Therefore, it cannot well solve the time-varying problem of
the parameters of the mechanism model.

Differ from the mechanism modeling method, the data modeling
method(Ji et al., 2016; Malbasa et al., 2017;Wu andWang, 2018; Liu,
2019; Moreira et al., 2019; Wu et al., 2019) uses the data to construct
the model of the controlled object. Through the neural network
method(Zhang, 2018), an efficient model for high frequency
electronics and microwave circuits was established. And on the
premise of having enough historical operation data as samples,
through the analysis of support vector machine, data mining
technology (Patnaik et al., 2010) was used to establish the
dynamic Bayesian network model, and the energy consumption
model was created based on the machine learning method (Park
et al., 2019). However, the generalization ability of the data model is
related to the coverage of the samples, but it is difficult to obtain
enough global samples in actual field. If the samples contain local
working conditions, the generalization ability of the data model is
limited and cannot solve the nonlinearity problem of the model
parameters under global situation.

In order to improve the calculation accuracy of model and reduce
the amount of modeling calculation, the hybrid modeling has been
deeply studied and widely used in many fields(Chou et al., 2013; Yao
et al., 2016; Guo and Wang, 2017; Hamilton et al., 2017). A method
combining mechanism analysis with data driven compensation
method was proposed, and a hybrid model of the electrostatic
precipitators (ESP)(Guo et al., 2018) and one data driven hybrid
model (Li et al., 2018) for short-term traffic flow prediction were
established. Nevertheless, the data driven requires a large amount of
global data to train to obtain accurate deviation compensationmodel.
It require high costs. Applying this idea to the Hybird Energy
Consumption Model, using physical and empirical modeling
methods (Jin et al., 2011); (Xu, 2017) But all of the above are
based on the study of single operating conditions. There is a large
error between actual value and calculation value of the model under
variable operating conditions, and it does not have good adaptability.

To solve the above mentioned problems, the main
contributions of the paper include:

1) To solve the data saturation phenomenon and the weights of
the “old and new” data during the online identification
process, a recursive least squares algorithm with adaptive
forgetting factor, which integrates fuzzy algorithm with
recursive least squares (RLS) algorithm is proposed, It gets
to identify the parameters of the mechanism model and
guarantees the adaptability of the mechanism model.

2) Aiming at the discrepancy between identified model and the
simplified mechanism energy consumption model, the
deviation compensation model of mechanism model is

established through kernel partial least squares algorithm
and the model updating strategy with sliding window,
which is used to update the deviation compensation model.

This paper is organized as follows. We introduce the structure
of the adaptive hybrid model, and establish the mechanism
model, and then the model’s parameters are identified online
by adaptive forgetting factor recursive least squares algorithm
based on fuzzy algorithm and recursive least squares algorithm in
Section 2. In section 3, under getting the mechanism model
online in section 2, we combine kernel partial least squares
algorithm and model updating strategy with sliding window to
establish the adaptive hybrid model. The actual running data is
obtained to verify the effectiveness, generalization and
adaptability of the adaptive hybrid model in Section 4. It is
the concluding part of this paper in Section 5.

2 PROPOSED METHODOLOGY

In this section, the adaptive hybrid energy consumption model is
proposed, and the simplified mechanism model is obtained
online with adaptive forgetting factor through combining with
fuzzy algorithm and recursive least squares algorithm.

The structure of adaptive hybrid model is shown in Figure 1,with
the non-linearity and time variation of the mechanism model of the
energy consumption model, RLS algorithm with adaptive forgetting
factor, which integrates fuzzy algorithm and RLS algorithm, puts
forward to quickly and precisely identify the parameters of the
mechanism online, and it can guarantee the effectiveness of the
mechanism model when the working conditions changes.
Therefore, the k-th output ym(k) of the mechanism model can be
obtained through the above online identification method when the
mechanismmodel input values, α1,α2, . . .,αn, are detected in real time.
However, it exists the deviation with the actual characteristics of the
energy consumption model. A data-driven way, the kernel partial least
squares (KPLS) algorithm, is used to form the deviation compensation
model.Meanwhile, in order to improve the adaptability of the deviation
compensationmodel, the deviation compensationmodel is updated by
sliding window. So the k-th real-time output yd(k) of the deviation
compensationmodel can be gottenwhen themechanismmodel inputs
α1, α2, . . ., αn, the other detected parameters β1, β2, . . ., βn and last step
ê(k − 1), which is deviation between the mechanism model value
ym(k − 1) and the actual measured value yt(k − 1) are input. Through
the above all, the output yh(k) of the adaptive hybrid model is obtained
by ym(k) pluses yd(k).

Among Them:

ym(k) � fm(α1, α2, . . . , αn)
yd(k) � f(α1, α2, . . . , αn, β1, β2, . . . , βn, ê(k − 1)){ (1)

whereα1, α2, . . . , αn, β1, β2, . . . , βn, ê(k − 1)) are the model’s
inputs matrix, ym(k) is the output of mechanism model; yd(k)
is the output of deviation compensation model; ê(k − 1) is the
deviation between the actual measurable value yt(k − 1) and
identified model value ym(k − 1),which is shown in Eq. 2; yh(k) is
the output of the adaptive hybrid model; k is discrete time.
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ê(k − 1) � yt(k − 1) − ym(k − 1) (2)

Therefore, the output of the adaptive hybrid model is:

yh(k) � fm(α1, α2, . . . , αn) + f(β1, β2, . . . , βn, ê(k − 1)) (3)

2.1 The Identification of Mechanism Model
An adaptive forgetting factor RLS algorithm is proposed based on
fuzzy algorithm and RLS algorithm to identify the mechanism
model online, and the structure of this algorithm is shown in
Figure 2. We continuously detects the real-time input value α1,
α2, . . ., αn of model and the energy consumption Y in the process
of online operation, and then we obtain the time series averageW
of the residual and its change rate ΔW between the deviation of
the system dynamic characteristic value and the identified model
value, taking them as the inputs of the fuzzy algorithm. In this
way, we can acquire the adjusted forgetting factor’s value μ in real
time, and bring it into Eq. 4 to get the parameters θ̂(k) online.

2.1.1 The Mechanism Model and Forgetting Factor
Recursive Least Squares Algorithm
RLS algorithm is widely used for online identification of model
parameters because of its simple principle, small computational
complexity, low memory consumption, and can be used for
online real-time estimation of parameters. The RLS algorithm
is suitable for the constant unknown parameter system. For the

time-varying problem of the parameters, the RLS has its
limitations. When the system parameters change, the RLS
algorithm will not be able to track this change, which will
reduce the accuracy of the real-time parameters estimation or
even fail. In order to solve the above phenomenon, each new data
is given a weight to improve the algorithm to form a forgetting
factor RLS algorithm. The iterative calculation formula through
using forgetting factor recursive least squares algorithm7 and
combining with the mechanism model is:

θ̂(k) � θ̂(k − 1) +K(k)[ym(k) − ΦT(k)θ̂(k − 1)]

K(k) � P(k − 1)Φ(k)
μ + ΦT(k)P(k − 1)Φ(k)

P(k) � 1
μ
[P(k − 1) − K(k)ΦT(k)P(k − 1)]

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(4)

where ΦT(k) is a covariance matrix; K(k) is a gain matrix; θ̂(k) �
[a0(k), a1(k), a2(k), a3(k), a4(k), a5(k)] is the identification
parameter; μ is forgetting factor.

2.1.2 Residual Preprocessing
In the process of the online identification of the time-varying
system, if the residual difference between the dynamic deviation
value and the identification model value of the system at the time
of the k-time is:

FIGURE 1 | The structure of adaptive hybrid model.
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e(k) � yt(k) − ym(k) (5)

where ym(k) � ΦT(k)θ̂(k − 1), e(k) is the error signal.
The magnitude of the absolute value of the residual reflects the

difference between the system dynamic deviation value and the
identification model value. In the process of parameter online
identification, the bigger the absolute residual value is, at this
time, the smaller the strain of forgetting factor is, so that the
identification result of the RLS algorithm quickly converges to the
vicinity of the actual model parameters. When the absolute
residual value becomes smaller, it is hoped that the forgetting
factor will become larger to suppress noise disturbance to the
influence of the accuracy of parameter identification.

If the forgetting factor is corrected only by the absolute
value of a single residual, there is a large contingency and
error, and the forgetting factor is sensitive to noise
interference in the process of correction. Therefore, the mean
value of a time series of absolute errors is used as the evaluation
functionW of the degree of approximation between the identified
parameters and the actual parameters. At the time of k, the
calculation formula is as follows:

W(k) � 1
l
∑k
i�k−l

|e(i)| (6)

where l is the time series length of the residual.

FIGURE 2 | Model identification of adaptive forgetting factor RLS algorithm.
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FIGURE 3 | Adaptive adjustment of forgetting factor based on Fuzzy Algorithm.

FIGURE 4 | Membership function.

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 7385565

Su et al. Adaptive Hybrid Energy Consumption Model

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


From the above analysis, the correction value of forgetting
factor is negatively correlated with the evaluation function. In
order to accurately describe the relationship between them, this
paper corrects the forgetting factor online and real-time through
the fuzzy algorithm, and the evaluation function is used as an
input of fuzzy algorithm. Meanwhile, the change rate of the
evaluation function ΔW over a period of time can more
accurately reflect the trend of the identification error. Thus,
ΔW can be used as another input of the fuzzy algorithm. The
calculation of the k time is as follows:

ΔW(k) � 1
v
(W(k) −W(k − v)) (7)

where v is the time constant discrete value of the change rate of
the evaluation function.

2.1.3 Adaptive Adjustment of Forgetting Factor Based
on Fuzzy Algorithm
In this paper, the fuzzy algorithm is used to realize the online
correction of the forgetting factor. The mean residuals over a

period of timeW and the residual change rate ΔW are used as the
inputs of the fuzzy algorithm. And then the modified value Δμ is
the output of the fuzzy algorithm. The adaptive adjustment of
forgetting factor is realized, as shown in Figure 3.

In the adaptive correction process of the forgetting factor of the
fuzzy algorithm, the value ofW,ΔW andΔμ are fuzzed, and the fuzzy
domains ofW is [−10,10], and the fuzzy domains of ΔW is [−2,2]. In
the recursive least squares algorithm, the forgetting factor is usually
0.9 ≤ μ ≤ 1, so the fuzzy domain of Δμ is [−0.1, 0.1]. In addition, the
input of the fuzzy control rules and the linguistic variables of the
premise constitute the fuzzy input space, and the linguistic variables
of the conclusion form the fuzzy output space. Therefore, theW,ΔW
and modified value Δμ are segmented by a fuzzy method, and their
fuzzy sets are obtained as follows (Jiang et al., 2020):

The fuzzy set ofW is {NB,NS,ZO,PS,PB}; The fuzzy set of ΔW
is {NB,NS,ZO,PS,PB}; The fuzzy set of Δμ is
{NB,NM,NS,ZO,PS,PM,PB}.

According to the tentative method, selecting the Gaussian
function as the membership function of theW,ΔW, andmodified
value Δμ, and their membership functions are shown in
Figures 4A,B,C

In the fuzzy algorithm, the fuzzy control rule is an important part
of it and can be represented by the fuzzy rule table. The fuzzy rule
base is a linguistic expression form based on expert knowledge or
long-term accumulated experience and human intuitive reasoning.
When both W and ΔW are poslarge, the deviation between the
predicted value and the actual value is large, at this time,Δμ is selected
to be neglarge.WhenW is poslarge andΔW is neglarge, the deviation
between the predicted value and the actual value is large, but gradually
decreases, Δμ is negsmall. When both W and ΔW are neglarge, the
identification parameter value is very close to the actual parameter
value, Δμ is poslarge. When W is neglarge, ΔW is negsmall, the
expected correction value Δμ is possmall. Based on the above
knowledge, the fuzzy control rules of Table 1 can be established.

From the fuzzy rules established inTable 1, the fuzzy rule table
of 5 × 5 in Table 2 can be obtained.

According to the fuzzy rule table formulated in Table 2, the
forgetting factor’s correction value Δμ is calculated by Mamdani
fuzzy inference and Centroid defuzzification. According to the
forgetting factor’s correction value Δμ obtained in real time, the
forgetting factor is corrected to:

μ � μ0 + Δμ (8)

where μ0 is the initial value of the forgetting factor.
According to the estimated parameter convergence theorem(Li

et al., 2018), when the input is persistently exciting of order N, it can
make the lim

k→∞
E θ̂(k){ } � 0, so it can make θ̂(k) be convergent.

Consequently, the output ym(k) � ΦT(k)θ̂(k) � fm(α1, α2, . . . , αn)
of the mechanism model can online be gotten by the adaptive
forgetting factor RLS algorithm under different working conditions.

3 ESTABLISHMENT OF ADAPTIVE HYBRID
ENERGY CONSUMPTION MODEL

In this section, the deviation consumptionmodel of the simplified
mechanism model is got by kernel partial least squares algorithm,

TABLE 1 | Fuzzy control rule table.

Fuzzy control rule

IF (W is NB) and (ΔW is NB) then (Δμ is PB)
IF (W is NB) and (ΔW is NS) then (Δμ is PB)
IF (W is NB) and (ΔW is ZO) then (Δμ is PM)
IF (W is NB) and (ΔW is PS) then (Δμ is PM)
IF (W is NB) and (ΔW is PB) then (Δμ is PS)
IF (W is NS) and (ΔW is NB) then (Δμ is PM)
IF (W is NS) and (ΔW is NS) then (Δμ is PS)
IF (W is NS) and (ΔW is ZO) then (Δμ is PS)
IF (W is NS) and (ΔW is PS) then (Δμ is ZO)
IF (W is NS) and (ΔW is PB) then (Δμ is ZO)
IF (W is ZO) and (ΔW is NB) then (Δμ is PS)
IF (W is ZO) and (ΔW is NS) then (Δμ is PS)
IF (W is ZO) and (ΔW is ZO) then (Δμ is ZO)
IF (W is ZO) and (ΔW is PS) then (Δμ is ZO)
IF (W is ZO) and (ΔW is PB) then (Δμ is NS)
IF (W is PS) and (ΔW is NB) then (Δμ is ZO)
IF (W is PS) and (ΔW is NS) then (Δμ is NS)
IF (W is PS) and (ΔW is ZO) then (Δμ is NS)
IF (W is PS) and (ΔW is PS) then (Δμ is NM)
IF (W is PS) and (ΔW is PB) then (Δμ is NM)
IF (W is PB) and (ΔW is NB) then (Δμ is NS)
IF (W is PB) and (ΔW is NS) then (Δμ is NM)
IF (W is PB) and (ΔW is ZO) then (Δμ is NM)
IF (W is PB) and (ΔW is PS) then (Δμ is NB)
IF (W is PB) and (ΔW is PB) then (Δμ is NB)

TABLE 2 | Fuzzy control rule table.

Δμ W

NB NS ZO PS PB

ΔW NB PB PM PS ZO NS
NS PB PS PS NS NM
ZO PM PS ZO NS NM
PS PM ZO ZO NS NB
PB PS ZO NS NM NB
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and using model updating strategy with sliding window to update
the deviation compensation model. And combining with the
online identified model which has been obtained with the
adaptive forgetting factor RLS algorithm in section 2, the
adaptive hybrid energy consumption model is established.

3.1 Deviation Compensation Model
Through the section 2, the real-time output ym(k) of the
simplified mechanism model can be obtained. However, in the
process of mechanism modeling, the mechanism model is
deviated from the actual characteristics. In addition, in the
case of production process or external disturbances, it will
cause errors between the actual model and the simplified
mechanism model.

Therefore, the kernel partial least squares algorithm is used to
establish the deviation compensation model of the simplified
mechanism model. it makes the calculated deviation yd(k) be the
output of the deviation compensation model.

If the variable X ∈ Rn×p, Y ∈ Rn×q, and p is the number of
independent variable, q is the number of dependent variable, n is
the number of observed samples, the nonlinear mapping from the
original input space {xj}pj�1 to the feature space H is recorded as
Φ : xj ∈ Rn → Φ(xj) ∈ H (Jiang et al., 2020).

In the mapping space, the weight vector ω1 and c1 of X are
determined according to the mapped sample matrices Φ and Y.
Under the constraint of ωT

1ω1 � 1, cT1 c1 � 1, finding the
maximum value of ωT

1ΦTYc1.

J1 � max
ω1‖ ‖� c1‖ ‖�1

Cov(Φω1, Yc1) � max
ω1‖ ‖� c1‖ ‖�1

1
n
(ωT

1ΦTYc1) (9)

The lagrangian function is established for the above.

L(ω1,Φ, Y, c1) � ωT
1ΦTYc1 − η1(ωT

1ω1 − 1) − η2(cT1 c1 − 1) (10)

η1, η2 are the Lagrangian multiplier, and the partial derivatives
of L(ω1, Φ, Y, c1) to ω1, c1, η1, η2 are respectively divided into 0.

zL

zω1
� ΦTYc1 − 2η1ω1 � 0

zL

zc1
� ωT

1ΦTY − 2η2c1 � 0

zL

zη1
� −(ωT

1ω1 − 1) � 0

zL

zη2
� −(cT1 c1 − 1) � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Therefore

ΦT
0F0F

T
0Φ0ω1 � λ1ω1 (12)

where “0” is the original data, ω1 is the eigenvector λ1 corresponding
to the largest eigenvalue of ΦT

0F0FT
0Φ0. And on the basis of

introducing the kernel matrix KΦ
0 � ΦT

0Φ0, multiply both sides of
the Eq. 12 by Φ0, and substituting t1 � Φ0ω1 to obtain

KΦ
0 F0F

T
0 t1 � λ1t1 (13)

Then the kernel matrix is

KΦ � ΦΦT �
K1,1 / K1,n

« 1 «
Kn,1 / Kn,n

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (14)

where Kα,β is the selected kernel function.
In this paper, the kernel matrix is used Gaussian kernel

function to gotten. its expression is:

Kα,β � ∑p
j�1

exp
− xj(α) − xj(β)
���� ����2

2σ2
⎡⎢⎣ ⎤⎥⎦ (15)

where σ is the width of the Gaussian kernel function, x is the data
sample, α, β is the the data sequence.

After obtaining the first kernel principal component t1, and
the centralized kernel residual matrix KΦ

i can be expressed as

KΦ
i � DiK

Φ
i−1Di (16)

where Di � In − titTi /(tTi ti).
The residual matrix Fi of the centralized dependent variable

data matrix is

Fi � (I − tit
T
i /t

T
i ti)Fi−1 (17)

So the remaining kernel principal components are obtained:

KΦ
i−1Fi−1FT

i−1ti � λiti (18)

Similarly, the kernel principal component ui can be obtained
according to the independent variable data matrix E0. And the
matrix ti, ui are composed of T, U.

Therefore, the output of the KPLS algorithm can be
expressed as:

Ŷ � KΦU(TTKΦU)−1TTY (19)

Through the above mentioned, the deviation compensation
model of mechanism model is established by kernel partial least
squares algorithm.

However, with the changes inworking conditions andmechanism
model parameters, the nonlinear relationship between the deviation
of mechanism model and its inputs are constantly changing. So this
paper uses the model updating strategy with sliding window to
update the kernel matrix of the deviation compensation model in
real time, and improve the prediction accuracy of the model. The
sliding window updating strategy is to set a fixed-length sample as a
training sample, and to make the window slide forward with the
acquisition of the new sample, thereby implementing the update of
the model. The purpose of the deviation compensation model

FIGURE 5 | The updating process of the deviation compensationmodel.
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updating is to update the elements in the kernel matrix to adapt the
adaptability of themodel when operating conditions change. It is only
necessary to change the position of some elements and calculate a
small number of new elements during the updating process without
having to perform a lot of double counting.

The updating process of the deviation compensation model is
shown in Figure 5. Consuming the window length to be g,then the
kernel is Kg×g, and the sliding length is q. So when the sliding
window slides forward, the new input and output data are got to
form the updated samples. The updated input samples are
recorded as X* and the updated output samples are recorded as
Y*. Firstly, the kernel matrix is renewed by the updated samples X*
and Y* through the kernel function. The kernel matrix updating
process is as follows: to begin with, deleting the matrix elements
corresponding to the discarded q samples, then changing the
position of the reserved elements, and finally calculating the
corresponding elements of the q new samples and adding them
to the kernel matrix to complete the updating of the model.

1) Deleting old samples

For the variable x ∈ Rg, the expression of the kernel matrix
KΦ

g×g is:

Kg×g �
Φ x1, x1( ) Φ x1, x2( ) / Φ x1, xg( )
Φ x2, x1( ) Φ x2, x2( ) / Φ x2, xg( )

« « 1 «
Φ xg, x1( ) Φ xg, x2( ) / Φ xg, xg( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (20)

For the current running state of the modeled object, the first q
group samples are old sample points with no value, and the
elements containing x1 ∼ xq in the kernel matrix should be
deleted. After deleting the corresponding elements, the kernel
matrix is recorded as KΦ

(g−q)×(g−q).

KΦ
(g−q)×(g−q) �

Φ xq+1, xq+1( ) Φ xq+1, xq+2( ) / Φ xq+1, xg( )
Φ xq+2, xq+1( ) Φ xq+2, xq+2( ) / Φ xq+2, xg( )

« « 1 «
Φ xg, xq+1( ) Φ xg, xq+2( ) / Φ xg, xg( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

2) Adding new samples

After deleting the old samples, in order to maintain the order
of the kernel matrix, it is necessary to add the same number of
new samples. Since the updating model adopts the timing update
strategy, the newly added matrix elements need to consider the
sample timing, and the kernel matrix after adding the new
elements is recorded as KΦ*

g×g.

KΦ*

g×g �
Φ xq+1, xq+1( ) Φ xq+1, xq+2( ) / Φ xq+1, xq+g( )
Φ xq+2, xq+1( ) Φ xq+2, xq+2( ) / Φ xq+2, xq+g( )

« « 1 «
Φ xq+g, xq+1( ) Φ xq+g, xq+2( ) / Φ xq+g, xq+g( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (22)

Secondly, the new score vector T* andU* can be gained by Eqs
9–18 according to the updated samples X* and Y*.

Finally, the output yd(k) of the adaptive deviation
compensation model through the KPLS algorithm and the
model updating strategy with sliding window is:

yd(k) � KΦ*

g×gU
* (T*)TKΦ*

g×gU
*[ )−1(T*)TY* (23)

where yd(k) is the output of the adaptive deviation
compensation model.

3.2 The Achieving Step of the Adaptive
Hybrid Energy Consumption Model
Through the content introduced above, the recursive least squares
algorithm with adaptive forgetting factor, kernel partial least
squares algorithm and the model updating strategy with
sliding window are used to established the adaptive hybrid
model. And the modeling steps are as follows:

1) Obtaining the running real-time/ historical data, and
excluding outliers.

2) Establishing the mechanism model, and identifying the model
parameters θ̂(k) online through the RLS algorithm with
adaptive forgetting factor introduced in section 2;

3) Calculating the output ym(k) of the identified mechanism
model at k-time, and calculating the deviation between the
actual model and identified model at this time;

4) Sliding the sliding window to update the data to update the
kernel matrix;

5) Calculating the output yh(k) of the deviation compensation
model at k time by using real-time and historical data;

6) Superimposing the output of the deviation compensation
model and the mechanism model to obtain the output
yh(k) � ym(k) + yd(k) of the adaptive hybrid model.

4 EXPERIMENT VERIFICATION

In this section, we use the field operation data of a signal
centrifugal chiller to verify the accuracy, generalization and
adaptability of the adaptive hybrid model proposed in
this paper.

The simplified energy consumption model (Bozorgian, 2020)
can be expressed as follows.

ym(k) � Qnom · COPnom · PLRadj(k) · a0(k) + a1(k) · TCHWS(k) + a2(k) · T2
CHWS(k){

+a3(k) · TCWS(k) + a4(k) · T2
CWS(k) + a5(k) · TCHWS(k) · TCWS(k)}

(24)

where ym is the energy consumption; Qnom is the rated
refrigeration capacity, it is 2813 kW in this paper; COPnom
is the rated refrigeration efficiency, it is 6.86 in this paper;
PLRadj is load rate; TCHWS is the supply water temperature;
TCWS is the supply water temperature of cooling water; ai(k) is
the model parameter to be identified, i � 0, 1, 2, 3, 4, 5.

According to the analysis in the previous section, combined
with the chiller model, from formula , we can get ΦT(k) and X, Y
are as follow: ΦT(k) � 2813*6.86*PLRadj(k)*[1, TCHWS(k),
T2
CHWS(k), TCWS(k), T2

CWS(k), TCHWS(k) · TCWS(k)], X � [PLRadj,
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TCHWS, TCWS, PCHWS,mCW,mCHW, PCWS, e], Y � [e]. so p � 8, q �
1. And assuming E0�X, F0�Y.

In this paper, the field operation data of a signal chiller in a data
center are taken as samples, and the operation status of the chiller at a
26–27°C wet bulb temperature is taken as working condition 1, the
operation status of the chiller at a 25–26°C wet bulb temperature is
taken as working condition 2, and the operation status of the chiller at
a 24–25°C wet bulb temperature is taken as working condition
3.Under this premise, the energy consumption of the chiller
model is different at different circumstance temperature ranges,
and the parameters of the corresponding model change, which
means that the model is time-varying. In addition, the time series
length of residual is set to l� 7, and the time constant discrete value of
change rate of the evaluation function is v � 14. Finally, the adaptive
hybrid dynamic energy consumption model is verified by the sample

data under single working condition (working condition 2), to make
the working condition data non-repetitive, working conditions 1 and
3 are chosen to study the calculation accuracy comparison of different
models under variable conditions. The root mean square error
(RMSE) and mean absolute percentage error (MAPE) are used to
evaluate the accuracy of the model.

4.1 Comparison of Calculation Accuracy of
Different Models Under Single Working
Condition
Under working condition 2, there are 1087 sets of actual data, and
965 sets of global data are selected as training data, and 122 sets of
global data are used as test data. Respectively, through
mechanism model, data model (Kernel Partial Least Squares

FIGURE 6 | Training and test results of mechanism model under single working condition (working condition 2).

FIGURE 7 | Training and test results of KPLS model under single working condition (working condition 2).
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model) and adaptive hybrid model to compare the model
accuracy. The training and test effects of mechanism model is
shown as Figure 6, the effects of KPLS model is shown as
Figure 7, and the effects of adaptive hybrid model is shown as
Figure 8.calculation accuracy of different models under signal
working condition (working condition 2) is shown in Table 3.

It can be concluded from Figures 6, 7, 8 that the adaptive hybrid
model has higher fitting accuracy and better generalization ability,
and can track the energy consumption change in time. FromTable 3,
we can see that the accuracy of themechanismmodel is poor, because
the mechanism model ignores some factors that affect the power
consumption of water chillers, resulting in larger errors in the
mechanism model. The data (KPLS) model has a higher
Accuracy, but the prediction accuracy of the model is low, the

model has over-fitting phenomenon and thus affects the
prediction accuracy of the model. Comparing with the
mechanism model and the data model, the root mean square
error of the adaptive hybrid model is reduced by 87.6 and 88.2%
respectively, and the average absolute percentage error is reduced by
89.9 and 90.2% respectively. The model has higher accuracy.

4.2 Comparison of Calculation Accuracy of
Different Models Under Variable Working
Conditions
This paper further verifies the prediction accuracy, generalization
and adaptability of the adaptive hybrid model under variable
working conditions by using the actual data of centrifugal chiller

FIGURE 8 | Training and test results of adaptive hybrid model under single working condition (working condition 2).

FIGURE 9 | The accuracy of mechanism model under multiple working conditions (working condition 1 and working condition 3).
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under working conditions 1 and 3. There are 954 sets of actual
data in working condition 1 and all of them are used as training
data. There are 590 sets of actual data in working condition 3 and
all of them are used as test data. The accuracy of mechanism
model under variable working conditions is shown as Figure 9.
The accuracy of data (KPLS) model under variable working
conditions is shown as Figure 10. The faccuracy of adaptive
hybrid model under variable working conditions is shown as
Figure 11.the calculation accuracy of different models under
multiple working conditions is shown in Table 4.

From the Figure 10, it can be concluded that the calculation
accuracy of data (KPLS) model has a large deviation under
variable working conditions, because the dynamic
characteristics of chillers will change when the external

temperature changes, while the training samples contain
limited working data. When the data contain the number of
new working conditions, data (KPLS) model will occur to lose
effectiveness, which seriously affects the accuracy of the model.
However, the adaptive hybridmodel has better generalization and
adaptability when the working condition changes from working
condition 1 to working condition 3. The root mean square error is
reduced by 61.8 and 77.2% respectively compared with the
mechanism model and the data model, and the average
absolute percentage error is reduced by 85.4 and 92.6%
respectively compared with the mechanism model and the
data model.

From the analysis of the above results, it can be seen that the
adaptive hybrid model not only guarantees high fitting accuracy,

FIGURE 10 | The accuracy of KPLS model under multiple working conditions (working condition 1 and working condition 3).

FIGURE 11 | The accuracy of adaptive hybrid model under multiple working conditions (working condition 1 and working condition 3).
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but also has high generalization ability and adaptability.
Compared with the mechanism model, the adaptive hybrid
model accurately describes the dynamic characteristics of the
centrifugal chiller, avoiding the negative impact of the lack of
input variables on the accuracy of the model. Compared with the
data model, the accuracy of the adaptive hybrid model is not
affected by the coverage of training samples, and it also avoids the
over-fitting phenomenon. In addition, the adaptive hybrid model
also has high adaptability to variable working conditions.

5 CONCLUSION

In order to describe the dynamic characteristics of objects better
and more accurately, an adaptive hybrid modeling method is
proposed in this paper. To begin with, the mechanism model of
the object is established by mechanism analysis, and to quickly
and accurately identify the parameters of time-varying model
online, a recursive least squares algorithm with adaptive
forgetting factor is proposed in combination with fuzzy
algorithm and recursive least squares algorithm, which
ensures the validity of the parameters of the model. Secondly,
the deviation compensation model of the object’s mechanism
model is established by using the kernel partial least squares
algorithm, and the model updating strategy with sliding window
is used to modify the deviation compensation model, so as to
construct the adaptive hybrid model of the object. Finally, the
field running data of centrifugal chillers under signal and
variable working conditions verifies that the adaptive hybrid
model can not only quickly and accurately identify the model

parameters online, but also has good validity, generalization and
adaptability. At the same time, comparing with the mechanism
and data model, the adaptive hybrid model also has higher
accuracy.
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