1' frontiers

in Energy Research

ORIGINAL RESEARCH
published: 03 November 2021
doi: 10.3389/fenrg.2021.744974

OPEN ACCESS

Edited by:
Xingxing Zhang,
Dalarna University, Sweden

Reviewed by:

Yilin Song,

Tianjin University, China

Yunsong Han,

Harbin Institute of Technology, China
Shuangcheng Yu,

Northwestern University,

United States

*Correspondence:

Longwei Zhang
longweizhang17100@outlook.com
Z_lw@sjzu.edu.cn

Specialty section:

This article was submitted to
Sustainable Energy Systems and
Policies,

a section of the journal

Frontiers in Energy Research

Received: 21 July 2021
Accepted: 13 October 2021
Published: 03 November 2021

Citation:

Zhang L, Wang C, Chen Y and Zhang L
(2021) Muilti-Objective Optimization
Method for the Shape of Large-Space
Buildings Dominated by Solar Energy
Gain in the Early Design Stage.

Front. Energy Res. 9:744974.

doi: 10.3389/fenrg.2021.744974

®

Check for
updates

Multi-Objective Optimization Method
for the Shape of Large-Space
Buildings Dominated by Solar Energy
Gain in the Early Design Stage

Longwei Zhang *, Chao Wang, Yu Chen and Lingling Zhang

School of Architecture and Urban Planning, Shenyang Jianzhu University, Shenyang, China

Large-space buildings feature a sizable interface for receiving solar radiation, and
optimizing their shape in the early design stage can effectively increase their solar
energy harvest while considering both energy efficiency and space utilization. A large-
space building shape optimization method was developed based on the “modeling-
calculation-optimization” process to transform the “black box” mode in traditional design
into a “white box” mode. First, a two-level node control system containing core space
variables and envelope variables is employed to construct a parametric model of the shape
of a large-space building. Second, three key indicators, i.e., annual solar radiation, surface
coefficient, and space efficiency, are used to representatively quantify the performance in
terms of sunlight capture, energy efficiency, and space utilization. Finally, a multi-objective
genetic algorithm is applied to iteratively optimize the building shape, and the Pareto
Frontier formed by the optimization results provides the designer with sufficient alternatives
and can be used to assess the performance of different shapes. Further comparative
analysis of the optimization results can reveal the typical shape characteristics of the
optimized solutions and potentially determine the key variables affecting building
performance. In a case study of six large-space buildings with typical shapes, the solar
radiation of the optimized building shape solutions was 13.58-39.74% higher than that of
reference buildings 1 and 3; compared with reference buildings 2 and 4, the optimized
solutions also achieved an optimal balance of the three key indicators. The results show
that the optimization method can effectively improve the comprehensive performance of
buildings.

Keywords: large-space building, building shape, multi-objective optimization, solar radiation, surface coefficient,
space efficiency

INTRODUCTION

Due to climate change and a shortage of fossil fuels, clean energy, particularly solar energy, is
increasingly used in buildings. Today, a major direction of sustainable building is designing buildings
to obtain abundant solar energy, which can be converted into electricity or heat (Baljit et al., 2016;
Barone et al., 2020; Liu et al., 2021; Maghrabie et al., 2021; Yu et al., 2021). Large-space buildings are
of high research value thanks to their inherent advantages in capturing solar energy.
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FIGURE 1 | The traditional black box design model.

Large-space buildings usually refer to buildings with interior
heights greater than 10 m that are partially used by occupants,
including exhibition halls, stadiums, theaters, commercial
buildings, terminals, and railway stations (Heiselberg et al,
1998; Rohdin and Moshfegh, 2007; Li et al., 2009; Gil-Lopez
etal,,2017; Liu et al., 2018; Liu et al., 2020). Large-space buildings
generally entail high costs and immense energy consumption, but
they have great potential for capturing solar energy. First, the
enormous roof areas of these buildings are natural interfaces for
receiving solar radiation and can collect a large amount of solar
energy. Second, large-space buildings usually have smooth shapes
that do not change abruptly; therefore, solar irradiation is evenly
distributed on the building surface, which reduces the potential
for self-shading (Zhang et al., 2012). Third, large-space buildings
are typically surrounded by open space and are not easily blocked
by other buildings, ensuring the duration and quality of solar
irradiation at the irradiated interface. Therefore, an effective
approach for enhancing the sustainable performance and
ecological value of large-space buildings is to improve their
ability to collect sunlight by taking full advantage of these
characteristics through building design (Ratti et al., 2005).

Shape is an important factor that affects the ability of a
building to capture sunlight. A suitable shape can efficiently
receive solar energy through a reasonable solar interface,
creating conditions for enhancing the photovoltaic power
generation potential and natural lighting. The prototype of a
building shape is usually formed in the early design stage, during
which shape optimization with the goal of receiving solar energy
can enhance the solar gain potential of the building, creating
favorable conditions for subsequent designs and maximizing the
optimization and economic effects (Nault et al., 2015; Harter
et al., 2020).

The early building design stage, which determines the
direction of the design, is a process in which the designer
generates an initial building concept based on the design task
by comprehensively considering design conditions and
performance objectives and incorporating subjective intention
(Negendahl, 2015; Singh et al., 2020). This stage consists of three
tasks: 1) generating as many alternative concepts as possible as
potential options, 2) evaluating various aspects of the
performance of the concepts using quantifiable indicators, and
3) continuously selecting and iteratively optimizing the concepts

to make progressive improvements (Ascione et al., 2015). This
process ensures that concepts with better performance enter the
subsequent detailed design stage (Negendahl and Nielsen, 2015).
The process described above is a “black box” in terms of
traditional design models: the information is input into the
mind of the designer to generate and select building concepts,
and the design result is output directly (Harding et al., 2012), as
shown in Figure 1. This process is highly dependent on the
intuition and experience of the designer, neglects quantitative
analyses of various measures of the building performance, and
involves only a small number of concept iterations, making it
difficult to ensure the feasibility and validity of the output result.
In this work, we attempt to improve this process by (1) studying
large-space buildings to clarify the roles of design requirements,
performance objectives, and designer intentions in determining
building shapes; 2) constructing a cycle that includes steps such as
“performance simulation”, “shape optimization” and quantitative
analysis (Yiand Malkawi, 2012); and, as a result, 3) transforming
the uncontrollable “black box” into a “white box” with
transparent, quantifiable, and easy-to-manipulate information,
thereby ensuring that a large-space building shape with excellent
performance is obtained in the early design stage (Hopfe and
Hensen, 2011), as illustrated in Figure 2.

In the literature, the main research object of energy efficiency
optimization studies of existing buildings is mainly residential
buildings (up to 48%); other types of buildings such as
commercial, educational and historical buildings also account
for a considerable proportion (Hashempour et al., 2020), but
research on large-space buildings is very limited. Optimization
targets primarily include minimizing energy consumption
(Ascione et al., 2015; Negendahl and Nielsen, 2015; Feng
et al., 2021; Lin et al., 2021) or cold/hot loads (Raphael, 2011;
Xu et al., 2015), reducing costs (Evins et al., 2012; Thm and Krarti,
2013; Junghans and Darde, 2015) and carbon emissions
(McKinstray et al, 2015; Trinh et al, 2021). Other
diversification goals include maximizing thermal comfort (Yu
et al,, 2015; Li et al,, 2021), maximizing lighting quality (Karatas
and El-Rayes, 2015), improving air quality (Carlucci et al., 2015),
and achieving visual comfort (Ochoa et al., 2012) and aesthetics
(Yi, 2019). Research on space use is limited. Optimization
variables can be divided into three categories: the performance
and construction of the envelope enclosure (Murray et al., 2014;
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FIGURE 2 | The “white box” design model.

Shao et al., 2014; Kim and Clayton, 2020; Xu et al., 2021), the
selection and operation of mechanical systems (Han et al., 2013;
Penna et al.,, 2015) and the building shape. Because it is difficult to
describe a single variable, the relevant research always uses the
shape type (Tuhus-Dubrow and Krarti, 2010; Bichiou and Krarti,
2011; Ciardiello et al., 2020), orientation (Nguyen and Reiter,
2014; Xu et al,, 2015; Yu et al,, 2015) and aspect ratio (Ramallo-
Gonzalez and Coley, 2014; Xu et al., 2015) as variables; however,
Yi et al. pointed out that most studies are limited to simple
geometries, and complex forms can be explored through their
proposed hierarchical node control method (Yi and Malkawi,
2009), which provides the basis for the parameterized node-based
model in this paper. Based on existing research, the contributions
of the present study include selecting large-space buildings as the
object, improving the energy efficiency of building by optimizing
the form, and taking the use of space into account.

In this work, solar radiation gain is taken as the primary
objective for the shape optimization of large-space buildings,
because the active use of solar energy as a clean energy source can
effectively alleviate the problem of high energy consumption in
large-space buildings. First, such buildings have large and
relatively flat roofs that can be used as an excellent solar
collector. In addition, these roofs have access to adequate
sunlight, and photothermal and photovoltaic technology can
be used to convert solar energy into thermal energy or
electricity for direct use in buildings. Second, sufficient
sunlight creates good conditions for natural lighting, and
reasonable lighting port designs can effectively reduce the
lighting energy consumption of buildings, which is an
important part of building energy consumption. China’s
five primary solar radiation zone systems, established by
Jiang etc. in 2021, show that, with the exception of the
relatively low resource potential of Area V (mainly in
Sichuan Basin), most regions of China have good solar
energy potential, and it is feasible to collect solar energy
through buildings (Jiang et al., 2021).

In addition, the energy performance and space utilization of
buildings must also be considered in the building shape design
(Kampf et al., 2010; Tronchin et al., 2016; Talaei et al., 2021).
Energy performance requires building shape to be adapted to
the climate and avoid excessive heat exchange between the
building and the external environment, and space utilization
demands that the building meet the functional requirements
and, on this basis, minimize the waste of space. Although it is
ideal to achieve the above three objectives simultaneously, they
often conflict with one another in actual design practice and
are thus difficult to achieve simultaneously, which is a problem
that is especially prominent in large-space buildings with a
large number of free forms. Increasing solar energy acquisition
and expanding the solar interface of a building may cause
excessive energy loss due to increases in the external surface of
the building and result in wasted space. Tightening a building
to save energy may lead to limited access to sunlight or space
use constraints, so these three objectives must be balanced. In
addition to the objectives described above, secondary
indicators such as the area, space volume, and height of a
building are also considered by the designer and need to be
controlled in the design. Therefore, the issues that need to be
considered in the shape optimization of large-space buildings
in the early design stage are quite complex and require a high
efficiency in the generation, selection, and iteration of
concepts.

In this study, we propose a multi-objective genetic
algorithm (MOGA)-based method for the shape
optimization of large-space buildings. This method can
quickly generate a large number of different shape concepts,
automatically quantify and analyze the solar gain, energy
performance, and space utilization of each concept, select
concepts with better performance, further improve their
performance through iteration, and ultimately output and
visualize the optimization results to provide a basis for the
selection of the final concept by the designer (Raphael, 2011).
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FIGURE 3 | The “Modeling-Calculation-Optimization” process.

METHODOLOGY

The method is based on the “Modeling-Calculation-
Optimization” process and includes three steps, as shown in
Figure 3. First, a parametric shape model defined by the “core
space” is constructed considering the large-space building
characteristics. Second, by weighing the speed and accuracy
requirements in the early design stage, solar radiation gain,
energy performance, and space utilization are set as key
indicators (Chang et al, 2019), and the corresponding
calculation modules are developed to analyze the three key
aspects of performance quickly and quantitatively. Finally, the
MOGA (Wright et al., 2002; Wang et al., 2005a; Wang et al.,
2005b; Zhu et al., 2020) and the Pareto Frontier are applied to
achieve multi-performance optimization and visualize the results
of the early concepts (Tuhus-Dubrow and Krarti, 2010; Y1, 2019).

Parametric Building Shape Modeling

In the early design stage, building shape modeling should not be
overly limited to details such as the window form, material, and
color but should use variables that are as simple as possible to
enable the building shape to transform freely within the
constraints to explore a greater number of shape possibilities
and thereby provide the designer with a broader range of choices
(Ourghi et al., 2007). Parametric shape modeling includes three
steps:

1) Analysis of design requirements. In the early design stage, the
geographic location, site environment, and climatic
conditions of the building should be considered in detail to
lay the foundation and precondition for the subsequent steps.

2) Definition of shape variables. The variables in this study
specifically refer to the independent variables that control
the generation of the building shape (Wang et al., 2006). The
designer can adjust the input values to change the building
shape. In previous studies, architectural variables such as the
orientation, area, story height, and story number have been
used to control the shape, and the pattern of shape change has
been limited by the types of variables. To exercise a sufficient
degree of freedom for the shape to change, this study starts
with the more essential shape generation rules and uses the

shape control nodes (hereafter referred to as nodes) as
variables to generate and manipulate the building shape
(Jin and Jeong, 2013; Jin and Jeong, 2014).

Setting of constraints. Constraints define the range of change
in variables and may originate from functional requirements,
design requirements, the intentions of the designer, and
standard specifications. In this step, the abovementioned
conditions need to be concretized into numerical
constraints on node variables, which are specifically
expressed as the movable range of nodes in three-
dimensional (3D) space.

3

~

The shape variable definition and the constraint setting of the
shape model are shown in Figure 4. The building shape can be
summarized as a spatial structure formed by a number of nodes
connected to each other in a specific order. This structure
expresses the generation rules and evolution pattern of the
shape, and changing the position of the nodes alters the shape
accordingly, thus controlling the change in shape (Negendahl,
2014). As shown in Figure 4A, the displacement of a node along
any direction can be decomposed into movements along the X-,
Y-, and Z-axes, as Ax, Ay and Az, respectively. Therefore, a freely
movable node needs to be expressed by three variables, but when
the movement of the node along an axis is constrained, the
number of variables decreases. For example, in Figure 4B, node A
is located in the XY-plane and cannot move along the Z-axis, so
its displacement is determined by the X and Y variables only;
node A in Figure 4C follows node B along the Y-axis, so its
position can be described by the X and Z variables only; and the
movement of node A in Figure 4D depends on node B
completely, so it has the same variables as node B, i.e., no new
variables are needed to describe its displacement.

The building shape model with nodes as variables features the
following advantages: 1) the shape can be accurately manipulated
by nodal displacements, which is especially suitable for generating
and controlling nonlinear shapes; 2) the degree of freedom of
shape change can be altered by imposing constraints on the
nodes, and the change interval of the shape can be controlled as
needed; and 3) the variables are all nodal displacements, which
are of the same type, share the same units, and can be concisely
expressed and easily calculated.
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The shape of a large-space building is defined by its inner core
space and outer envelope enclosure. The core space is the space
within the building that assumes the main use function, and its
size and shape are determined by the building function, not
necessarily with clear physical boundaries. The envelope
enclosure is the outer interface of the building (Oral and
Yilmaz, 2002) and can be understood as a “skin layer” that
wraps around the core space, with its form determined and
influenced by the core space. Therefore, the shape model of a
large-space building is actually a two-level node control system, in
which the nodes constituting the core space are called core nodes
and their spatial positions are described by core variables, while
the nodes constituting the envelope enclosure are called envelope
nodes and are described by envelope variables, which are defined
and constrained by core variables and change with them.

Calculation of Key Objectives

In the early design stage, the objectives of the solar gain, energy
performance, and space utilization of the shape of a large-space
building are selected according to two principles: first, they are
representative and capable of summarizing and describing the
corresponding building performance in a general and accurate
manner; second, they enable a high computational efficiency, do
not require a large consumption of time or computational
resources, and satisfy the need for performance analysis of a
large number of concepts in the early design stage.

Solar Radiation Gain

The solar gain of a building can be characterized by the annual
solar radiation gain at the surface of the building (Angelis-
Dimakis et al., 2011), and its data can be obtained through
solar radiation simulations (Perez et al., 1990). To ensure the
accuracy and efficiency of the simulation, the Ladybug tool, based
on the Grasshopper platform, was used in this study to calculate
the solar radiation gain (Roudsari and Pak, 2013). Ladybug
simulates solar radiation using a Climate-Based Daylight
Modeling (CBDM) method, which extracts area-specific
meteorological data from EnergyPlus weather files (.epw) as
the basis for the simulation. The solar radiation function in
Ladybug uses the cumulative sky approach to calculate the
amount of radiation for the Tregenza sky dome (Robinson
and Stone, 2004). The total solar radiation incident on the test
model and the amount at each test point on the surfaces are
accumulated, and the results are displayed on a multicolor user
interface. This method has proven reliable in many studies (Yi
and Kim, 2015; Freitas et al., 2020; Kharvari, 2020).

Energy Performance

In general, energy consumption must be simulated to measure the
energy efficiency of a building. However, high-precision annual
simulations not only consume large amounts of time and
computational resources but also require detailed and accurate
simulation parameters, which are difficult to determine in the
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early design stage. Therefore, an effective research approach is to
select indicators that show significant correlations between the
building shape and energy consumption (Jedrzejuk and Marks,
2002). Relevant studies have used a variety of indicators such as
the shape coefficient (Menezo et al, 2001), the building
corresponding area coefficient (Zhao and Hu, 2012), and the
thermal shape coefficient (Lin and Li, 2016). Based on the latest
research results, the surface coefficient was used as the core
indicator in this study (Wang et al, 2020). The surface
coefficient is defined as the ratio of the exterior surface area of
the building in contact with the air to the building area; that is,

SC = F,/S (1)

where SC is the surface coefficient, F, is the exterior surface area
of the building, and S is the bottom surface area of the building.
These two values can be obtained directly from a parametric
model. Studies have shown that the dimensionless surface
coefficient has a significant linear relationship with the energy
consumption per unit area of the building and can accurately
reflect the correlation between the building shape and energy
consumption.

Space Utilization

Inappropriate height, location, and shape values for a building
can lead to inefficient space utilization, resulting in a waste of
space and additional energy and material consumption (Coakley
et al,, 2014). In our previous study (Zhang et al,, 2016), the
concept of space efficiency (SE) was proposed to measure the
extent of utilization of the interior space of a building:

SE=V,IV, (2)

where E is the space efficiency, V,, is the volume of available space,
and V) is the total volume of the interior space of the building.
Large-space buildings are characterized by zoning use and time-
sharing operation, and the extent of use of each space zone varies
significantly over time. Therefore, the utilization rate is
introduced to modify Eq. 2. The utilization rate refers to the
percentage of time in hours that a specific space region is put into
use relative to the total operating time of the building throughout
the year. The utilization rate is 100% for the space region that is
put into use during the entire operation period of the building, 0%
for the space region that is never used, 50% for the space region
that is used for half of the operation period, and so on. Then, SE
can be written as

Z?:] (Vu)i X1

SE =
Vo

(©)
where 7 is the number of zones in the large space, i is the zoning
ID, and r; is the utilization rate of the ith zone. These values can all
be calculated using a parametric model.

MOGA Optimization

Shape optimization can be divided into two steps. The first step is
to find the optimized shapes that perform well with respect to the
three objectives and gather them into an optimized solution set.
The second step is to sort the shapes in the optimized solution set

Building Design Concerning Solar Energy

according to their performances and visualize them to provide a
basis for the designer to select the final solution to be
implemented. The objective function of shape optimization
can be written as follows:

I)Iclél)?f (x) = [fl (-x), fz (x), f3 (x)] (4)
where
fi1(x)=-SR 5)
f2(x) =SC = Fo/S ©
f3(x)=-SE = _W -
0

Optimization problems are generally expressed as minimum
value problems. Therefore, the purpose of shape optimization is
to find the solutions that achieve the minimum values of the three
objectives. f1(x) is the total sunlight obtained by the building,
f2(x) is the surface area coefficient of the building, f3(x) is the
spatial efficiency of the building. Because larger total sunlight and
spatial efficiency values are better, the results of f; (x) and f3(x)
are multiplied by -1 to minimize the function from maximization.

A variety of optimization algorithms, such as the genetic
algorithm (GA) (Ouarghi and Krarti, 2006), the sensitivity
vector algorithm (SVA) (Wang and Zhao, 2021), and the
Manta Ray Foraging Optimization algorithm (MRFOA) (Feng
et al., 2021), have been used for building shape optimization. In
this study, the Pareto optimization method was used for shape
optimization. This method balances multiple objectives by
finding nondominated solutions, also known as Pareto
solutions. These solutions are not dominated by other
solutions in the solution space. The set of nondominated
solutions is called the Pareto Frontier, and each optimized
solution has a particular performance benefit and achieves a
certain optimal tradeoff among the multiple objectives. This
method is particularly suitable for complex optimization
problems such as the one involved in this study.

An optimization tool called Octopus, a Grasshopper plug-in,
was used to carry out the optimization. Octopus is a MOGA tool
based on the principle of evolution and can achieve the optimal
tradeoff of multiple optimization objectives through a multi-
objective optimization process. Octopus generates the set of
optimized solutions for each generation in the form of a
Pareto Frontier and displays the form and key indicator
information of each solution to monitor and control the
optimization process. In addition, Octopus can record various
types of secondary indicator information of the solution to
provide a basis for the designer to choose the final
optimization solution.

CASE STUDY

Case Overview

To verify this method, a large-space exhibition hall in Shenyang,
China, is used as a case study in this work. Shenyang is in a cold
region of China and is a typical winter city. The building design
considers the reception of sufficient sunlight and minimization of
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the exterior surface area of the building to reduce energy
consumption as important sustainable design goals. Climate
information for Shenyang is available from the website
(https://www.energyplus.net/weather).

The exhibition hall is arranged in the north-south direction
and has the following design requirements: 1) the large core space
with an exhibition function has the basic size of 120 m x 90 m x
14 m and a variable planar form with a total area of not less than
10,800 m?; 2) the total building height is not less than 14 m and
not greater than 24 m; and 3) in addition to the core space, there is
a 10-m space at both the north and south sides of the building for
shape adjustment. These design requirements can be converted
into constraints on shape variables. The actual utilization of the
building space requires field observation. Since this work aims to
verify the feasibility of the method, the problem is simplified by
assuming the utilization rate of each space zone based on the
height and location. According to the standard requirement for
the height of an exhibition hall space, as shown in the section view
in Figure 5, it is assumed that a space with a clear height of 12 m
(e.g., zone A) can be fully utilized (i.e., utilization rate = 100%), a
space with a clear height greater than 12 m and less than or equal
to 20 m (e.g., zone D) has a utilization rate of 50%, and a space

with a clear height greater than 2.1 m but less than 12 m (e.g.,
zone B or C) is available 70% of the time (i.e., utilization rate =
70%). A space with a clear height that does not meet the use
requirements, i.e., less than 2.1 m (e.g., zone E), greater than 20 m
(e.g., zone G), or with a shape that does not meet the use
requirements (e.g., zone F, which has a roof area larger than
the corresponding floor area), has a utilization rate of 0.

Shape Modeling

Core Space Modeling

According to the design requirements, the core space is initially
box-shaped with a length of 120 m, a width of 90 m, and a height
of 14 m, as shown in Figure 6. The bottom nodes and top nodes
are labeled clockwise as A-D and E-H, respectively, with edges
BC, AD, AB, and CD facing south, north, east, and west,
respectively. Since the height of the space remains constant at
14 m, nodes E-H can only move along the horizontal direction,
and hence, the change in the core space is reflected in the change
in the form of plane. In this work, two planar forms commonly
used in exhibition halls—rectangular plane and convex
quadrilateral plane—are selected for comparative study.

In the rectangular plane shown in Figure 7A, the three
adjacent edges that pass through any node are perpendicular
to each other. Node A is set as the origin (the same below), and
node D is allowed to move along the X-axis as node variable D,.
When node D moves, nodes B and C will move with it to ensure
that the adjacent edges remain perpendicular to each other under
the condition of a constant area. Assuming that D; and D, are the
endpoints of D moving along the X-axis, when node D moves to
D;, the corresponding node C will move to C;, and when node D
moves to D5, node C will then move to C,. Therefore, only one
variable D, is needed to control the change in the plane of the core
space. In this work, the D; and D, directions are set to be positive
and negative directions, respectively, and this core space model is
denoted as C1.

The case of the convex quadrilateral plane as shown in
Figure 7B becomes complex. Since there is no restriction that
adjacent edges are perpendicular to each other, three additional
variables in addition to D, are needed to ensure that the planar
area remains unchanged when the plane shape changes. In this
work, the change in plane shape is controlled by setting the offset
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FIGURE 7 | Control nodes and variables of the core space: (A) rectangular plane; (B) convex quadrilateral plane.

angle: 1) the angle between the edge CD and the Y-axis is set as
£a, with clockwise and counterclockwise rotations being positive
and negative, respectively; 2) the angle between the edge AB and
the X-axis is set as £ B, which is the mirror image of 2a, with
clockwise and counterclockwise rotations being negative and
positive, respectively; and 3) the angle between the edge BC
and the X-axis as <y, with clockwise and counterclockwise
rotations being negative and positive, respectively. This core
space model is denoted as C2.

Envelope Modeling

The final shape of the building can be generated by constructing
the envelope variable system based on core spaces C1 and C2. The
envelope nodes can be regarded as those obtained by moving the
core nodes A-H, so the corresponding envelope nodes are set as
A1-H1. Since the envelope nodes of the building can only move
outside the core space, the displacements of the nodes away from
the core space along the X-, Y-, and Z-axes are defined as positive,
which can simplify the description and calculation of the shape
variables.

In this work, six typical large-space shapes are selected as the
optimization alternatives (S1-S6). All nodes in S1-S3 are
connected by straight lines and are thus denoted as straight-
edge shapes (Figure 8). The nodes on the east and west sides in
the middle of S4-S6 are passed through by curves, so these three
are curved-edge shapes (Figure 9). These curves are generated
using the “interpolate curve” command in Rhinoceros software,
with degree and weight set to 3 and 1, respectively, to ensure that
there is one and only one curve passing through these nodes. It
should be noted that the east and west facades of these six shapes
are all perpendicular to the ground for two reasons. First, in
building design, traffic space is usually set up on the short-edge
side of the exhibition hall or along connections with other
exhibition halls, and the vertical facades are conducive to
space arrangement. Second, compared to the roof and south
fagades, changes in angle of the east and west facades have little
impact on solar energy capture, and hence, setting the two fagades
as vertical helps simplify the problem. Details of the six shapes
and their variables are as follows.

1) Shapel (S1) is a box shape, as shown in Figure 8A. It has C1 as
the base, and the three adjacent edges passing through any
envelope node are perpendicular to each other. As shown in

2)

3)

4)

Figure 8B, because the adjacent faces are perpendicular to
each other, nodes D, H, and E move together with node A
along the Y-axis with the same displacement as A; C, F,and G
move together with B along the Y-axis with the same
displacement as By; and F, G, and H move together with E
along the Z-axis with the same displacement as E,. Thus, the
form change of S1 can be controlled by envelope variables A,,
By, and E, and the core variable D.

Shape2 (S2) is also based on CI as is S1, but there is no
restriction that adjacent edges are perpendicular to each other.
As shown in Figure 8C, nodes A-H can independently move
to the corresponding positions A;-Hj, and in this case there
can be various angles between adjacent edges. Figure 8D
shows that nodes A-D can all move freely along the Y-axis as
the corresponding variables A,-Dy; nodes E-H can move
freely along the Y-axis and Z-axis, with the corresponding
variables denoted as E,-Hy and E,-H,, respectively. In this
case, 12 envelope variables and one core variable D, are
required to control the form change of S2.

As shown in Figure 8E, Shape3 (S3) is based on C2, and its
nodes are similar to those of S2. A-H can move independently
to the corresponding positions A;-H; and there can be a
variety of angles between adjacent edges. The envelope
variables for S3 shown in Figure 8F are the same as those
for S2, and these 12 envelope variables and four core variables
of C2, totaling 16 variables, are needed to control the form
change of S3.

Based on C1, Shape4 (S4) is a curved-edge shape with
symmetrical east and west sides and is integrated by the
top surface of the building and the north and south
fagades. The envelope nodes on the east and west sides of
the building are symmetrically positioned and each
intersected by separate curves with the same trend. To
control the building height and the change trend of the
curved-edge shape, a ridgeline is set at the roof of the
building with two endpoints M; and N;, which are
obtained by moving the midpoint M of the line connecting
nodes E; and F; and the midpoint N of the line connecting
nodes H1 and G1 along the Y- and Z-axes, respectively, as
shown in Figure 9A. Using the “interpolate curve” command
(with the degree of the curves set to 3 and the weights set to 1,
the same below), two curves are obtained by connecting A,
E;, My, Fy, and B; to Dy, Hj, Ny, Gy, and C;, respectively, to
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generate the building envelope. Regarding envelope variables
of S4 shown in Figure 9B, due to the east-west symmetry of
the shape, the displacements of nodes C, D, H, G, and N are
the same as those of nodes B, A, E, M, and F, respectively, so S4
can be described by eight envelope variables (A, By, E,, E,, Fy,
F,, My, and M,) and the core variable D,.

5) Shape5 (S5) is based on Cl1 and is a curved-edge shape like 4,
except that the east and west sides need not be symmetrical, as
shown in Figure 9C. In addition, nodes A-N can each move to

6)

any of the positions A;-N;, the number of envelope variables
is doubled compared to that of S4. As seen in Figures 9A,D
total of 16 envelope variables and one core variable D, are
needed to control the shape change of S5.

Shape6 (S6) takes C2 as the core space, as shown in Figure 9E,
and nodes A-N each can move to any of the positions A;-Nj.
Figure 9F shows that S6 has 16 envelope variables, which are
the same as those of S5, but its core variables are increased to
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four, as determined by C2. Therefore, a total of 20 variables are
needed to describe its form change.

The six shapes described above are typical of the shapes
commonly used in large-space exhibition halls. These shapes
range from simple to complex, with increasing numbers of node
variables. The information on the six shapes is summarized in
Table 1.

Values of Variables

The value range and accuracy of the variables directly affect the
complexity of the optimization. The optimization efficiency can
be improved by setting reasonable upper and lower bounds and
step sizes for the variables. Considering the complexity of the
optimization in this case, the variables are defined as follows: 1)
For the two core spaces C1 and C2, the range of Dy is set to be
between —20 and 20 m (inclusive), with a step size of 0.1 m. 2) In
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S1 S2 S3 S4 S5 S6

Number of nodes 8 8 8 10 10 10

Relation type Linear Linear Linear Curve Curve Curve

Core plan form Rectangle Rectangle Convex quadrilateral Rectangle Rectangle Convex quadrilateral

South and north fagcade Planar Surface Surface Surface Surface Surface

East and west facade Planar Planar Planar Planar Planar Planar

Roof Planar Surface Surface Surface Surface Surface

Number of core variables 1 1 4 1 1 4

Number of envelop variables 3 12 12 8 16 16

Total number of variables 4 13 16 9 17 20

TABLE 2 | Domains of the shape variables.

S1 S2 S3 S4 S5 S6
Min Max Min Max Min Max Min Max Min Max Min Max

Core Variables Dy -20 20 -20 20 -20 20 -20 20 -20 20 -20 20
La - — — - -15 15 - - — — -15 15
B — — — — -15 15 — — — — -15 15
ry — - — - -20 20 - - — — -20 20

Envelope Variables Ay 0 10 0 10 0 10 0 10 0 10 0 10
By 0 10 0 10 0 10 0 10 0 10 0 10
Cy — 0 10 0 10 - — 0 10 0 10
Dy — — 0 10 0 10 — — 0 10 0 10
E, - — 0 10 0 10 0 10 0 10 0 10
Fy — — 0 10 0 10 0 10 0 10 0 10
Gy - — 0 10 0 10 - - 0 10 0 10
Hy, — — 0 10 0 10 - — 0 10 0 10
E, 0 10 0 10 0 10 0 5 0 5 0 5
F, — 0 10 0 10 0 5 0 5 0 5
G, — — 0 10 0 10 — — 0 5 0 5
H, - — 0 10 0 10 - - 0 5 0 5
My — — — — — — -10 10 -10 10 -10 10
Ny - — — - - — - - -10 10 -10 10
M, — — — — — — 5 10 5 10 5 10
N, — - - — - — - - 5 10 5 10

C2, ca and £p are allowed to change within +15° and 2y to
change within +20°, with a step size of 1°. 3) The values of all
variables of each node in S1-S3 and variables of each node in
S4-S6 on the X- and Y-axes can range from 0 to 10 m (inclusive),
with a step size of 0.1 m. 4) Nodes E, F, G, H, M, and N in S4-S6
can range between 0 and 5 m along the Z-axis, with the distance
from nodes M and N to the core space ensured to be between 0
and 10 m and the step size of the above variables set to 0.1 m,
which is consistent with that for S1-S3. Finally, 5) in S4-S6, the
horizontal movement of nodes M and N is set to range between
—10 and 10 m, with a step size of 0.1 m. Details of the variables are
shown in Table 2.

Key Objective Calculations

In this case, solar radiation (SR), the surface coefficient (SC), and
space efficiency (SE) are selected as the key objectives for
optimization, where larger SR and SE values and smaller SC
values are better. In addition, the building area, volume, and
height are selected as secondary indicators to provide a basis for
the designers to select solutions. SR is calculated using the

Grasshopper plug-in Ladybug, SC and SE are calculated by a
program written in Grasshopper, and the secondary indicators
can be obtained by direct query in Grasshopper.

Reference buildings

To verify the effectiveness of this optimization method, reference
buildings for comparative study are defined with the following
rules: 1) corresponding reference buildings are set for straight-
edge shapes and curved-edge shapes; 2) the reference buildings
are modeled after the baseline straight-edge shape S1 and the
curved-edge shape S4, respectively, and the upper and lower
bounds of the node variables except D, are removed to evaluate
the performance of building shapes under extreme conditions.
Therefore, there are a total of four reference buildings,
numbered 1-4, with the minimum and maximum values of
node variables of S1 selected for reference buildings 1 and 2,
respectively, and the minimum and maximum values of node
variables of S4 selected for reference buildings 3 and 4,
respectively. After the simulation, the shapes and solar
radiation distributions of the reference buildings are shown
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FIGURE 10| The shapes and solar radiation distributions of the reference buildings: (A) Reference building 1; (B) Reference building 2; (C) Reference building 3; (D)
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TABLE 3 | Variables and performance of the reference buildings.

Reference building 1

Reference building 2 Reference building 3 Reference building 4

Variables Dy 0 0 0 0
Ay 0 10 0 0
B, 0 10 0 0
E, 0 10 0 0
Fy — — 0 0
E, — - 0 5
F, - - 0 5
M, — — 0 0
M, - - 5 10
Key objectives Solar 17,147.99 23,232.45 17,823.06 22,749.33
Radiation (MWh)
Surface 1.5444 1.8364 1.66 1.7834
Coefficient
Space 92.8571 66.6667 81.1591 65.9539
Efficiency (%)
Secondary indicator Area (m?) 10,800 13,200 10,800 13,200
Volume (m®) 16,680 24,240 17,927.66 23,540.87
Height (m) 14 24 19.15 24.49
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FIGURE 11 | Pareto Frontier of S1 and the building shapes of its optimal solutions: (A) S1; (B) S2; (C) SS3.

in Figure 10, and the values of their respective variables, core
indicators (“Objectives”), and secondary indicators are
presented in Table 3.

MOGA settings

For this case, the following MOGA parameter values were set:
the population size = 50, maximum generations = 100, crossover
rate = 0.8, mutation probability = 0.2, mutation rate = 0.9 and
elitism = 0.5. The optimization was performed on a computer
with Windows 10 (16 core 3.5 GHz processor, 8G RAM), and the
total calculation required 120.4h. The results are presented
hereafter.

RESULTS AND DISCUSSION

The optimization method proposed in this work can achieve
nondominated solutions for the optimized tradeoff among three
key objectives, and the optimization results can be used to
support the early-stage design of large-space building shapes
in three ways: 1) By visualizing the Pareto Frontier, the
distribution pattern of nondominated solutions can be
presented and the information on key objectives distribution
displayed. 2) The performance characteristics of the optimized
shapes can be investigated through a horizontal comparison of
the optimized solutions for different shape types, and the
performance improvement effect of the optimization can be
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verified by comparing the optimized shapes with reference
buildings. Finally, 3) analysis of the distribution of the shape
variables in the optimized solutions facilitates both the discovery
of typical shape characteristics of the optimized solutions and the
potential identification of key variables affecting building
performance, which provides a reference for subsequent in-
depth designs.

Pareto Frontier

The Pareto Frontier for each of the six shapes in this case study
was generated after 100 iterations. Each point on the Pareto
Frontier is a nondominated solution. Except for the solution that
obtains the optimal value for a core indicator, each of the

remaining solutions achieves the optimal tradeoff among the
three objectives, which is called a characteristic solution in this
study and can be selected as the final scheme. The optimal
solutions for single indicators are presented here, with their
positions in the Pareto Frontier, building shapes, sunlight
distributions, and key indicators shown in Figure 11. The
other three random characteristic solutions of each shape are
also marked, and their key indicator values were also used in the
comparative analysis.

1) Figure 11A shows the Pareto Frontier for S1, which has a total
of 63 nondominated solutions that are approximately
distributed in an arc. Solution 63 has the largest solar
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TABLE 4 | Performance of S1-S3 characteristic solutions and comparison with reference buildings 1 and 2.

Solar radiation Surface coefficient Space efficiency Reference building 1

Reference building 2

(MWh) (%) Solar radiation Surface coefficient Space efficiency Solar radiation

improvement (%) improvement (%) improvement (%) improvement (%)

S1  Best SR 23,962.52 1.8370 66.67 39.74 -18.95 -28.20 3.14
Best SC 20,713.24 1.4873 92.86 20.79 3.70 0.00 -10.84
Best SE 21,150.35 1.4882 92.86 23.34 3.64 0.00 -8.96
C19 21,937.75 1.5859 85.71 27.93 -5.57 —2.69 13.64
C39 22,837.65 1.6626 81.58 33.18 —-7.65 -12.14 -1.70
C54 23,612.57 1.7812 71.43 37.12 1.21 -16.33 3.01

S2 Best SR 22,617.23 1.6712 71.49 31.89 -8.21 -23.01 -2.65
Best SC 19,608.14 1.3236 90.76 14.35 14.30 —2.26 -15.60
Best SE 20,223.27 1.3927 91.82 17.93 9.82 -1.12 -12.95
C68 20,941.85 1.4396 85.54 2212 -9.86 6.79 21.61
C108 21,5612.78 1.6140 83.38 25.45 —7.40 1.97 17.56
C164 22,401.30 1.6287 71.76 30.64 -5.46 —22.72 -3.58

S3  Best SR 23,901.06 1.7733 74.36 39.38 -14.82 -19.92 2.88
Best SC 19,781.91 1.3239 90.65 15.36 14.28 -2.38 -14.85
Best SE 20,899.67 1.5179 92.31 21.88 1.72 -0.59 -10.04
C1 19,673.43 1.45563 92.27 14.73 5.77 -0.63 -16.32
C90 22,441.31 1.5280 79.87 30.87 1.06 -13.99 -3.41
C134 23,248.34 1.6515 75.18 36.57 —6.93 -19.04 0.07

Surface coefficient
improvement (%)

-0.03
19.01
18.96
-7.70
9.46
-23.08
9.00
27.92
24.16
-7.88
-10.21
11.31
3.44
27.91
17.34
20.75
16.79
10.07

Space efficiency
improvement (%)

0.00
39.29
39.29
28.56
22.37

7.14

7.23
36.14
37.73
28.31
25.07
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11.54
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radiation, 23,962.52 MWHh; Solution 1 has the smallest surface
coefficient, 1.4870; and Solution 2 has the highest space
efficiency, up to 92.86%. The two solutions are close to
each other in the Pareto Frontier, indicating that the
surface coefficient and space efficiency are highly correlated
for S1.

The Pareto Frontier of S2 is shown in Figure 11B. There
are a total of 169 nondominated solutions, which are
distributed in two curves. Solution 169 located at the
top end of the curve on the right side has the highest
solar radiation, 22,617.23 MWh; Solution 1 has the
smallest surface coefficient, 1.3236; and Solution 21 has
the highest space efficiency, 91.82%.

As shown in Figure 11C, the Pareto Frontier of S3 is more
scattered than that of S2, and there are a total of 160
nondominated  solutions, which are approximately
distributed over a curved surface. Solution 160 at the top
right end of the surface has the highest solar radiation,
23,901.06 MWh; Solution 4 has the smallest surface
coefficient, 1.3239; and Solution 27 has the highest space
efficiency, 92.31%. The rest of the characteristic solutions
each have their own shape characteristics and emphasized
indicators, which can meet the diverse preferences of
designers for shapes.

The Pareto Frontier of S4 is shown in Figure 12A, which
contains a total of 146 nondominated solutions distributed
approximately on two curves that converge at the upper right
corner, where Solution 146 is located. This solution has the
highest solar radiation, 23,374.13 MWh; Solution 1 has the
smallest surface coefficient, 1.3997; and Solution 2 has the
highest space efficiency, 82.96%. Solutions 1 and 2 have very
close values for each indicator and are located in the lower left
corner of the Pareto Frontier.

2)

3)

4)

5) Figure 12B shows that there are 159 nondominated solutions
in the Pareto Frontier of S5, with a distribution similar to that
of S4. Specifically, the formed curves also converge at the top,
where Solution 159 is located. This solution features the
highest solar radiation of 23,320.51 MWHh; at the lower left
corner of the curves, Solution 1 has the smallest surface
coefficient of 1.4011 and Solution 2 the highest space
efficiency of 82.90%. A comprehensive comparison revealed
that the characteristic solutions differ substantially in terms of
each indicator and hence can be selected according to
different needs.

6) Three core variables are added to S6, which therefore has a
significantly different planar shape. Figure 12C shows its
Pareto Frontier, which consists of a total of 156
nondominated solutions distributed on a roughly curved
surface. Solution 156 has the highest solar radiation,
24,460.74 MWh; Solution 1 has the smallest surface
coefficient, 1.4136; and Solution 34 has the highest space
efficiency, up to 88.50%. The remaining characteristic
solutions differ significantly in terms of the shape,
indicators, and variable values, indicating a broad range of
optimization solutions and a high variability in the results,
which can meet diverse design needs.

Building Design Concerning Solar Energy

Comparative Analysis of the Results
The comparative analysis of the results includes a comparison of

the optimized solutions among different shape types and
comparisons with the corresponding reference buildings.

The solar radiation, surface coefficient, and space efficiency
values for the extremal solutions and the remaining characteristic
solutions of S1, S2, and S3 with straight edges, as well as the
improvements relative to reference building 1 and reference
building 2, are shown in Table 4. In terms of solar radiation,
each optimized shape shows a significant improvement over that
for reference building 1. The solution with the greatest
improvement is the Best SR solution of S1, exhibiting an
improvement of 39.74% in solar radiation accompanied by a
change of 18.95% in the surface coefficient and 28.20% in space
efficiency; and the solution with the smallest improvement is the
Best SC solution of S2, with a 14.35% increase in solar radiation
along with a 14.30% increase in the surface coefficient but a 2.26%
decrease in space efficiency, noting that the decrease is much
smaller than the increases in the other two indicators. In contrast
to reference building 2, which performs well in solar radiation,
most of the nondominated solutions show a decrease in solar
radiation but a significant improvement in the surface coefficient
and space efficiency. The solution with the largest reduction in
solar radiation is the Best SC solution of S2, which shows a
15.60% decrease in solar radiation in exchange for a 27.92%
improvement in the surface coefficient and a 36.14%
improvement in space efficiency. It is worth mentioning that
the best SR solution of S3 improves all three indicators by 2.88,
3.44, and 11.54%, respectively.

The solar radiation, surface coefficient, and space efficiency of
each nondominated solution of the curved-edge shapes S4, S5,
and S6 and the improvements relative to reference buildings 3
and 4 are shown in Table 5. The comparison with reference
building 3 shows that the solar radiation of each nondominated
solution increases significantly, and the Best SR solution of S6
improves solar radiation the most, by up to 37.24%, albeit
accompanied by a 10.08% decrease in the surface coefficient
and a 16.61% decrease in space efficiency. The best SC
solution of S5 has the smallest increase in solar radiation,
13.58%, but its surface coefficient and space efficiency increase
by 15.60 and 2.10% respectively, indicating that the three
indicators are all better than those of reference building 3.
Compared with reference building 4, some of the characteristic
solutions show reductions in solar radiation in the range of
0.98-11.02% but display significant improvements in the other
two indicators, with the improvement in the surface coefficient in
the range of 8.94-21.52% and the improvement in the space
efficiency between 13.31 and 34.18%; other characteristic
solutions exhibit an improvement in solar radiation between
043 and 7.52%, and most of these solutions feature
improvements in both the surface coefficient and space
efficiency, achieving an overall improvement in the three
indicators.

The distribution of all nondominated solutions of the six
shapes are analyzed to verify the effectiveness of the
optimization and provide a basis for selection in the early
design stage. As seen in Figure 13A, all the nondominated
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TABLE 5 | Performance of S4-S6 characteristic solutions and comparison with reference buildings 3 and 4.

S4

S5

S6

Best SR
Best SC
Best SE
C36
C112
C113
Best SR
Best SC
Best SE
c28
C99
C129
Best SR
Best SC
Best SE
C89
C143
C155

Solar radiation

(MWh)

23,374.13
20,246.40
20,295.44
21,419.08
22,868.91
22,877.14
23,320.51
20,242.87
20,313.38
21,340.01
22,481.80
22,847.89
24,460.74
20,960.35
22,627.35
23,479.17
24,231.46
24,456.53

Surface coefficient

1.7738
1.3997
1.4036
1.56326
1.6857
1.6742
1.7642
1.4011
1.4065
1.5087
1.6116
1.6982
1.8273
1.4136
1.6239
1.6784
1.7818
1.8554

Space efficiency

(%)

66.12
82.95
82.96
82.56
73.46
68.26
66.74
82.86
82.90
82.56
74.73
76.34
67.68
82.95
88.50
74.72
66.19
73.83

Reference building 3

Reference building 4

Solar radiation
improvement (%)

31.15
13.60
13.87
20.18
28.31
28.36
30.84
13.58
13.97
19.78
26.14
28.19
37.24
17.60
26.39
31.738
35.96
37.22

Surface coefficient
improvement (%)

-6.86
15.68
156.45
7.67
-1.65
-0.86
-6.28
15.60
15.27
9.11
2.92
-2.30
-10.08
14.84
217
=111
-7.34
-11.77

Space efficiency
improvement (%)

-18.63
2.21
2.22
1.73

-9.49

-15.89

-17.77
2.10
2.15
1.73

—7.92
-5.94

-16.61
2.21
9.05

—-7.93

-18.44

-9.03

Solar radiation
improvement (%)

2.75
-11.00
-10.79
-5.85
0.53
0.56
2.51
-11.02
-10.71
-6.19
-1.18
0.43
7.52
-7.86
-0.98
3.21
6.52
7.50

Surface coefficient
improvement (%)

0.54
21.52
21.30
14.06

5.48

6.12

1.08
21.44
21.13
156.40

9.63

4.78
-2.46
20.74

8.94

5.89

0.09
-4.04

Space efficiency
improvement (%)

0.25
25.77
25.78
25.18
11.38

3.50

1.19
25.63
25.69
25.18
13.31
16.75

2.62
25.77
34.18
13.29

0.36
11.94
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with the reference buildings: (A) solar radiation; (B) surface coefficient; (C)
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solutions of the six shapes are significantly better than reference
buildings 1 and 3 in terms of solar radiation, and all the shapes
except S2 have several optimized solutions better than reference

Building Design Concerning Solar Energy

buildings 2 and 4. In terms of the surface coefficient, as shown in
Figure 13B, most of the nondominated solutions of all six shapes
are better than the reference buildings, with S2 performing the
best and approximately 75% of the nondominated solutions
performing better than reference building 1, the best
performer for this indicator among the reference buildings.
Figure 13C shows that the space efficiencies of all optimized
solutions lie between that of reference building 1, the best
performer by this indicator, and reference building 4, the
worst performer by this indicator, with S1, S2, and S3
performing relatively well, indicating that the straight-edge
shapes have an advantage in space utilization. Among the
curved-edge shapes, S6 has a higher upper bound due to its
greater flexibility in shape change and better chance of achieving
higher space efficiency.

Variable Distribution Analysis

In this work, a parallel coordinates plot (PCP) is used to analyze
the distribution of shape variables of nondominated solutions.
PCP is a visualization method suitable for multidimensional data
and can reflect the distributional trends in data and relationships
among variables. Using this method, we can clarify the variable
value patterns of the optimized solutions and thereby discover the
common shape characteristics of the nondominated solutions
and identify the key variables affecting building performance,
which can provide a reference for subsequent in-depth design.
The variable distributions of straight- and curved-edge shapes are
shown in Figures 11,12, respectively, where the solutions with
different solar radiation gains are marked in different colors, as
noted in the legend.

1) The variable distribution of S1 in Figure 14A shows that D,,
A,, and By generally take their respective maximum values
with high consistency, indicating that the depth of the
building and the area of the south fagade both tend to
increase in optimized shapes. In terms of optimization
objectives, solar radiation gain is positively correlated with
the surface coefficient and negatively correlated with space
efficiency. The solar radiation gain of the building depends
more on E,, with a larger E, leading to a higher solar radiation,
a greater surface coefficient, and a lower space efficiency.
Thus, E, is the key variable for shape in this work and should
be given attention in the design.

2) Figure 14B shows the variable distribution of S2, which is

similar to that of S1, that is, Dy, Ay, By, C,, and Dy tend to

choose their respective maximum values to maximize the
planar area and the south fagade area. Similarly, solar
radiation gain is positively correlated with the surface
coefficient and negatively correlated with space efficiency.

Variables Hy, E,, and Hz are strongly correlated with solar

radiation, and the larger their values are, the greater the solar

radiation gain of the building. Hence, these are key variables
that need to be addressed in design.

The variable distribution of S3 shown in Figure 14C is much

more complex than those of S1 and S2. Specifically, the

distributions of the values of Dy, za, 4B, Ay, By, C,, Dy,
and Hy of nondominated solutions are relatively concentrated,

3

~
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and the advantage of intercepting sunlight is prominent when
the maximum values of these variables are taken. G, tends to
take the minimum value; that is, the roof slopes downward
toward this point to obtain more sunlight. The remaining
variables are widely distributed; in particular, G, and F, each
exhibit a polarized trend. Due to the large number of variables,
their influence on the optimization results is complex, and
there are no obvious correlations between the optimization
objectives.

In the variable distribution of S4 shown in Figure 15A, similar
to that of S1, Dy, Ay, and By are all concentrated at their
respective maximum values to increase the building depth and
south-facing area. In addition, a greater E, can increase the
roof area and thus further increase the building’s ability to
acquire sunlight. E, is strongly correlated with solar radiation,
and the larger its value is, the more the roof slopes to the south
and the more favorable it is for receiving sunlight. Overall,
solar radiation is positively correlated with the surface
coefficient and notably negatively correlated with space
efficiency.

The variable distribution of S5 in Figure 15B shows that the
values of Dy, Ay, By, Cy, and Dy are still aimed at maximizing

~

)

6)

DI

the planar area, and hence, the maximum values tend to be
chosen. Larger values of My and N, increase the solar
radiation by tilting the roof to the south; the distributions
of E, and Hy are strongly correlated with solar radiation, and
the greater their values are, the greater the solar radiation gain,
so the two can be used as key variables in the design.
Figure 15C shows that among the 20 variables of S6,
excluding Dy, za, Ay, By, C,, and Dy, which take their
respective maximum values, the values of the remaining
variables are widely distributed and discrete, showing no
obvious pattern. This distribution indicates that when there
are a larger number of variables, the influence of the
interactions among variables on the optimization results is
relatively complex. In terms of solar radiation gain alone, solar
radiation increases most significantly when E, and Hz are
maximized.

SCUSSION

The simulation results for six large-space exhibition hall shapes in
this case study show that this optimization method is very

Frontiers in Energy Research | www.frontiersin.org

19

November 2021 | Volume 9 | Article 744974


https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Zhang et al.

Building Design Concerning Solar Energy

Dx Ay

16 9

12 8

8 7

4 6

0 5

-4 4

-8 3

12 2

-16 1

20 0
Dx Ay By Cy Dy
20 10 16— S
16 9 9 9 9
12 8 8 8 8\
8 7 7 7 7\\
4 6 6 6 6
0 5 5 5 5
-4 4 4 4 4
-8 3 3 3 3
a2 f2 2 3 2
-16 1 1 1 1
20 Lo 0 0 0

Ay By Cy Dy Ey Fy Gy Hy
ISP 9 9 9 ] o o
12 9 8 8 8 s}\ te [ F8
8 6 7 7 7 7 /7 7
4 3 6 6 6 6 6 6
0 0 5 5 5 5 5 5
4 t3 4 4 4 4 4l t4
-8 6 3 3 3 3 3 3
-12 9 2 2 2 2 ¢/ // ke
16 f-12 1 1 1 1 \V Y v 1
20 L-1s 0 0 0 0 o Yo o 0

FIGURE 15 | Variable distributions of shapes S4-S6: (A) S4; (B) S5; (C) S6.

C The distribution of variables for S6

Max SR

Min SR

effective at comprehensively improving various aspects of
building performance. Designers are provided with sufficient
quantitative data support through the Pareto Frontier,
comparative analysis of results, and analysis of variable
distributions.

1) The optimized nondominated solutions in the Pareto Frontier
are sorted, and their shape appearances, performance,
secondary indicators, and variable values are directly
displayed, so that designers are provided with an intuitive
basis for choosing concepts.

The comparative analysis of the results enables a
horizontal comparison of the differences in
performance among various optimized shape types
and in improvements in the optimized shapes relative
to reference buildings, allowing a designer to select the
shape type that meets the design intention based on the
results.

Distributional analysis of color-coded variables can reveal the
patterns of values for variables under various optimized
shapes and determine both the correlations between
variables and correlations between variables and objectives

2)

3)

and hence help designers find the key variables affecting
performance.

CONCLUSION

Building design is essentially a process of finding optimal
solutions to multiple objectives within the constraints of
objective design requirements and subjective design intention.
These objectives often conflict with each other, and the designer
needs to balance them to obtain the best overall building
performance. In the early design stage, optimization of the
building concept can yield significant and long-term benefits
at a relatively low cost. In this work, a method is discussed for
enhancing the solar potential of a large-space building through
shape optimization in the early design process to obtain sufficient
sunlight while balancing the energy efficiency and space
utilization of the building. This method is based on the
“modeling-calculation-optimization” process, which includes
three main steps, namely, building shape modeling, key
indicator calculation, and MOGA optimization. First, the
parametric modeling method is used to construct a two-level
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large-space building shape model with core and envelope
variables. Next, three key performance objectives, i.e., solar
radiation, the surface coefficient, and space efficiency, are
calculated and used to drive the MOGA to automatically
iterate and optimize the building shape. The optimization
results can be used to generate the Pareto Frontier, a
comparative analysis, and a variable distribution analysis
to provide designers with feasible suggestions and a
quantitative basis for selecting a solution. A case study of
a large-space exhibition hall in Shenyang, China, is
conducted to demonstrate the applicability of this method
during the early design stage in which a large number of
building shape concepts need to be generated, compared,
and optimized. The proposed method can help designers
obtain optimized building shape solutions quickly and
efficiently.

The following main conclusions were drawn from this study:

1 The case study shows that this method can be used to obtain
relatively optimized large-space building shapes that achieve
multi-objective tradeoff optimization in terms of improving
the solar gain, energy efficiency, and space utilization, thereby
significantly improving the overall performance of the
building compared to the reference buildings.

2 A modeling method that describes the generation and
change in building shape through node variables is suitable
for large-space shape optimization. By changing the range of
values and constraints of the node variables of the parametric
model, the degree of freedom of the building shape change can
be controlled, which in turn controls the optimization and
improves the optimization efficiency.

3 There are some differences among the shape optimization
schemes. For example, curved-edge shapes have an advantage
over straight-edge shapes in terms of solar gain but are inferior
in terms of space efficiency. These characteristics can be
utilized in the design.

4 This method can effectively help designers in the early design
stage: the Pareto Frontier can be used to visualize the shapes
and various indicators of nondominated solutions; the
differences among the shapes can be identified through a
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