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This study evaluated the agricultural eco-efficiency (AEE) of 77 counties and districts in
Jiangsu Province from 1999 to 2018 using the slack-based measure (SBM) of efficiency in
data envelopment analysis (DEA) (SBM-DEA) and analyzed its spatiotemporal evolution
characteristics and influencing factors. We found that 1) the overall AEE, pure technology
efficiency (PTE), and scale efficiency (SE) exhibited a fluctuating downward trend. AEE
exhibited a significantly positive spatial association and an increasingly widening regional
inequality. 2) AEE featured the “high south” and “low north” spatial pattern, with the high-
value regions concentrated around the Taihu Lake plain region in southern Jiangsu
Province (Sunan) and low-value regions scattered across most of the northern Jiangsu
Province (Subei) cities. The high-high and low-low spatial association types further
confirmed the existence of the north–south agglomeration pattern. 3) PTE and SE
exhibited a similar “high south” and “low north” spatial pattern to that of AEE. The
areas with the growth trends of AEE, PTE, and SE were clustered in Xuzhou and
Nanjing city and in the bordering regions between Yangzhou and the Huai’an city, and
also between Changzhou and the Wuxi city. 4) Excessive redundant input and use of
pesticides, chemical fertilizers, agricultural diesel, labor, land, and agricultural carbon
emissions, all have been the primary factors affecting Jiangsu’s AEE. Irrigation also
considerably affected AEE, while mechanical power and agricultural film have minimal
effects. The majority of counties and districts in the Subei, central Jiangsu Province
(Suzhong), and Ningzhen Yang Hilly region experienced excessive usage of chemical
fertilizers, pesticides, chemical fertilizers, agricultural diesel, labor, and land. The findings
can improve understanding of the spatial association effect and underlying impediment of
AEE and can further help policymakers promoting agricultural eco-efficiency.

Keywords: SBM-DEA model, improvement potential, Jiangsu province, agricultural eco-efficiency, spatial
perspective

INTRODUCTION

The rapid development of China’s agricultural industry has led to severe agricultural pollution
caused by the massive application of chemical fertilizers, agricultural plastic films, and pesticides.
This pollution is linked to intensive agriculture growth mode and is threatening sustainable
agricultural development (Liu et al., 2020; Zou et al., 2020). For instance, Jiangsu, one of
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China’s primary agricultural production bases, remains in the
conventional development mode of high investment, high
consumption, and high output. In recent years, the province
has declined into high material inputs, high carbon emissions,
and low efficiency to promote agricultural yield (Du, 2010; Tian
et al., 2014; Xiong et al., 2020). This has increased emissions of
agricultural ammonia (NH3), nitrogen (N), carbon dioxide
(CO2), chemical oxygen demand (COD), total nitrogen, and
total phosphorus emissions (Liu et al., 2014; Guo et al., 2017;
Huang et al., 2020). These agricultural byproducts have exerted
significant adverse effects on soil, water, air, and neurobehavioral
functions (Huang et al., 2007; Zhang et al., 2016). These
phenomena hamper the goals of sustainable agriculture aimed
at conserving land and water resources, using environmentally
non-degrading production techniques. They are also aimed at
using technically appropriate, economically viable, and socially
acceptable farming operations (Pretty, 2008; Bonfiglio et al.,
2017). Hence, identifying green agricultural performance and
its underlying impediment factors is crucial for supporting the
agricultural transformation and development of Jiangsu province
from the quantitative growth stage towards green and efficient
development.

Eco-efficiency is defined as the effectiveness of producing
maximum economic output while consuming minimal natural
resources and minimizing environmental degradation
(Kuosmanen, 2005; Huang et al., 2014; Caiado et al., 2017). It
has been applied in numerous fields, such as industrial processes
(Liu et al., 2021), tourism assessment(Peng et al., 2017), carbon
performance (Lei et al., 2017), energy and environmental impact
assessment (Xing et al., 2018; Peng et al., 2020), and even to a
specific sector of industry (Shao et al., 2019). By bridging the
economic value of agricultural activities and their impacts on the
environment, eco-efficiency is broadened to agricultural
applications and can be considered an effective tool for
measuring agricultural sustainability (Keating et al., 2010;
Georgopoulou et al., 2015). Agricultural eco-efficiency (AEE)
carries the inherent connotation of eco-efficiency and
embodies the ecological and economic aspects of agricultural
sustainability, which means producing more quantity and higher
quality agricultural products and services, exploiting fewer
natural resources, enhancing resource utilization, and causing
minimal adverse environmental impacts (Picazo-Tadeo et al.,
2011; Coluccia et al., 2020; Gołaś et al., 2020). The measurement
of AEE can effectively quantify agricultural sustainability
performance, which has been applied at different scales, from
the national level (Pang et al., 2016; Gancone et al., 2017),
provincial level (Xu et al., 2020; Liao et al., 2021), city level
(Rosano-Peña et al., 2020; Yang et al., 2021), village level (Xiang
et al., 2020), to the farm level (Barnes and Thomson, 2014;
Stępień et al., 2021). However, our review of the previous
related studies indicates that there is a lack of research on
evaluation of AEE at the county level, especially in Jiangsu
province. The county is considered as a basic administrative
unit in the agricultural production management, while the county
agriculture constitutes the foundation of the national economy.

AEE has been evaluated using numerous methods including
the ratio method, life cycle accounting (LCA), ecological

footprint, environmentally sustainable value (ESV), stochastic
frontier analysis (SFA), and data envelopment analysis (DEA)
(Victor et al., 2018; Czyżewski et al., 2021). Compared with the
specific parameter methods, the nonparametric DEA has the
advantage of neither specifying a functional form, nor dealing
with multiple input and output systems, are required (Huang
et al., 2018; Yu et al., 2018). Moreover, various improvements
have been made to ameliorate the limitations of the original DEA
model and expand its flexibility and effectiveness. For example,
Tone (2001) proposed a non-radial slacks-based measure (SBM)
DEA model to avoid the biased estimation of radial and oriented
DEAmodels, which effectively resolves the slack of input excesses
and the output shortfalls and measures the inefficiency of the
decision-making units (DMUs) in traditional DEA. Tone (2004)
further extended the SBM to consider undesirable outputs for
production efficiency evaluation, which reflects the real
production process. Hence, the SBM model incorporating
slack variables and undesirable outputs can better reflect the
nature of eco-efficiency evaluation (Lee et al., 2014; Peng et al.,
2017) and is, therefore, more suitable for the evaluation of
agricultural production performance that accommodates both
economic and environmental effects (Chen, 2014; Linh Le et al.,
2019; Suzigan et al., 2020).

The first law of geography states that everything is related to
everything else, and that near things are more related than distant
things (Tobler, 1970; Zhu et al., 2018). Likewise, space is highly
consequential in environmental and resource economic analyses
(Anselin, 2001). Spatial effects concerning spatial dependence,
heterogeneity, and clustering have been considered in energy eco-
efficiency (Guan and Xu, 2016; Wang et al., 2019) and regional
eco-efficiency (Zhou et al., 2019). The spatial effects of inter-
regional eco-efficiency can be evaluated by measuring the global
Moran’s I and local Moran’s I. There are six agricultural zones in
Jiangsu province, that are divided according to the physiographic
and socioeconomic composition of agricultural production
contexts: 1) the Taihu lake agriculture area, 2) the agriculture
area along the Yangtze River, 3) the Ningzheny Yang hilly
agricultural area, 4) the Xuzhou-Huai’an agriculture area, 5)
the coastal agriculture area, and 6) the Lixiahe river area.
Evaluation of the spatiotemporal evolution characteristics of
AEE can support the formulation and implementation of
high-quality green agricultural strategies. Given these similar
inner production conditions, the spatial dimension of
agricultural eco-efficiency and the global and local spatial
clustering of agricultural eco-efficiency should be used to
analyze the cluster pattern of agricultural eco-efficiency in
Jiangsu province.

In this study, the DEA-SBMmodel was used to assess the AEE
by incorporating agricultural carbon emissions in the 77 counties
and districts of Jiangsu province (China) in 1999–2018. The main
research questions addressed by the study are 1) the temporal
variation trend of the AEE and its decomposition terms in Jiangsu
province during the study period, 2) the spatial differences in AEE
based on characteristics, association patterns, and growth type,
and 3) the primary sources of AEE loss for various counties and
districts of Jiangsu province. This manuscript is organized as
follows: the second part is methodology and data, followed by

Frontiers in Energy Research | www.frontiersin.org August 2021 | Volume 9 | Article 7464052

Li et al. Agriculture and Eco Efficiency

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


empirical results and analysis, then the discussion, and finally, the
conclusion.

METHDOLOGY AND DATA

Study Area
Jiangsu province is located in the eastern coast of China, at the
lower reaches of the Yangtze and Huaihe rivers (Figure 1). The
topography features vast plains and water areas with patches of
mountains and hilly lands. Due to rapid urbanization and
industrialization, losses in croplands have shown a decreasing
trend from 700.10 × 104 hm2 in 2000 to 633.06 × 104 hm2 in
2015 (Wu et al., 2020). The per capita cultivated land is
0.85 mu, equivalent to two-thirds of the national average. In
the southern Jiangsu, the value difference is even more
prominent when the per capita cultivated land is less than
0.30 mu. Due to the region’s limited per capita arable land and
dense population, the Jiangsu’s agricultural production is
highly dependent on use of fertilizers that trigger strong
carbon release and intensified environmental pressure (Hu
et al., 2019).

Jiangsu is located in the northern part of the Yangtze River
Delta economic zone. It is composed of 13 municipalities, which
can be further subdivided into three districts based on
socioeconomic boundaries: Subei, Suzhong, and Sunan. The
level of economic development greatly varies among the three
regions, exhibiting clear decreasing trend from south to north.
Jiangsu is one of the 13 major grain-producing provinces in
China.

The SBM-DEA Model
As a non-radial and non-oriented DEA model, the SBM model
has the advantage of settling the problem of input and output
slacks and avoid radial and oriented deviation. In this study, we
selected 77 counties of Jiangsu as DMUs. Each unit contains
inputs, desirable outputs, and undesirable outputs (carbon
emissions), represented by the vectors: x ∈ Rm,yg ∈ Rs1 ,
andyb ∈ Rs2 , respectively. The matrices X, Yg , and Yb are
defined as follows (Xu et al., 2019; Guo et al., 2020). The AEE,
including undesirable outputs, can be calculated as shown below
in Equation 1:[SBM]

ρ* � min
1 − 1

m∑m
i�1

s−i
xi0

1 + 1
s1+s2 (∑s1

r�1
sgr
ygr0

+∑s2
r�1

sbr
ybr0
) (1)

where s− ∈ Rm, sg ∈ Rs1 , and sb ∈ Rs2 represents the slacks in
inputs, desirable outputs, and undesirable outputs, respectively,
while m, s1, and s2 indicate the number of factors for inputs,
desirable outputs, and undesirable outputs, respectively. When
there is no superfluous input, insufficient desirable output, and
redundant undesirable output (i.e., s− � 0, sg � 0, sb � 0), the
DMU0 (x0, yg0, yb0) is efficient. However, if DMU0 is inefficient,
the inputs, desirable outputs, and undesirable outputs must be
improved. The vectors s−indicate that the actual input resource is
more than the frontier input. sg indicates whether the desirable

output produced in a realistic operation is less than the frontier
desirable output. sbmeans that the actual undesirable output level
is greater than the leading edge of the undesirable output level.
where λ is the intensity vector.

AEE can be decomposed into pure technology efficiency
(PTE) and scale efficiency (SE). PTE refers to the efficiency
of resource allocation, utilization, pollution control,
management, and production technology. SE is the efficiency
of the resource scale, using which one can determine whether
the DMUs are at the optimal production scale or not (Cheng,
2014). The value ρpwas set between 0 and 1; if ρp � 1, the eco-
efficiency of DMU0 is seemingly efficient, and PTE and SE are
also efficient, if ρp<1, DMU0 is considered to be inefficient, and
PTE or SE is inefficient but can be improved by deleting the
excess in bad outputs and augmenting the shortfalls in good
outputs via SBM-projection (Zhou and Zhum, 2017). In this
study, the AEE, PTE, and SE of each county and district in
Jiangsu province from 1999 to 2018 were calculated using
MaxDEA Ultra 8.8 Software.

Gini Coefficient and Coefficient of
Variation (CV)
The degree of inequality in the AEE can be measured using the
CV and the Gini coefficient.

CV � s/x (2)

Gini � 1
2n2x

∑n
i�1

∑n
i�1

∣∣∣∣Xi − Xj

∣∣∣∣ (3)

where x � ∑n
i�1 Xi/77, s �

����������������
(1/76)∑ n

i�1 (Xi − x)
√

, and n is the
number of counties and districts, and Xi denotes the specific
AEE in county i or district.

Exploratory Spatial Data Analysis (ESDA)
ESDA is a set of synthesized methods focused on exploring spatial
distributions and on identifying spatial association, clusters, and
hot (or cold) spots, for both global and local spatial
autocorrelations (Kim and Dall’erba, 2014; Fan et al., 2019).
The global Moran’s I is mainly utilized to describe the global
spatial autocorrelation, and is defined for n observations on an
attribution variable x as follows (Anselin, 1995):

I � n
S0

∑n
i�1 ∑n

j�1 wij(xi − x)(xj − x)
∑n

i�1 (xi − x)2 (4)

Where xi and xj are the AEE values for units i and j, respectively, x
is the mean of variable x, wij is the defined spatial queen matrix,
and S0 � ∑n

i�1 ∑n
j�1 wij. The Z score can be calculated to determine

a significance level of the autocorrelation. AMoran’s I index value
close to 1 indicates positive spatial clustering, whereas a value
close to 0 indicates a random distribution.

While global spatial autocorrelation can help identify spatial
clusters, it cannot be used for spatial allocation of these clusters.
Local spatial autocorrelation can be used to explain the patterns
of local clustering. For province i and year t, the local spatial
autocorrelation is expressed as (Ren et al., 2020):
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Ii � ( xi
m0

)∑n
j�1

wijxjwithm0 � ∑n
i�1

x2i
n

(5)

Four types of spatial associations can be identified based on the
value of adjacent regions from the local spatial autocorrelation:
high-high, low-low, high-low, and low-high. Regions classified as
high are those with greater-than-average values clustered in areas
with greater-than-average values. Likewise, low-low, high-low,
and low-high clusters can be identified. Only the high-high and
low-low classes represent positive spatial autocorrelation, since
these categories have regions with similar values being clustered
together.

Data Sources
General agriculture comprises agriculture, forestry, animal
husbandry, and fishery, while special agriculture only refers
to planting. Planting is the foundation of agriculture and is the
most important component from AEEs perspective. In this
study, special agriculture (i.e., planting) was selected as the
research object to measure AEE. Seven input indicators were
selected to characterize agricultural labor, land, irrigation,
chemical fertilizer, and pesticide usage using the available
data from Jiangsu’s Statistics Bureau. Both desirable and
undesirable output indicators were included, and the
evaluation system for the input-output and variable selection
is described in Table 1.

Agricultural carbon emissions were incorporated as
undesirable agricultural outputs. The main carbon sources for
agricultural production activities were identified as chemical
fertilizers, pesticides, films, diesel, irrigation, and tillage. We
used the estimates from the previous studies (Tian et al., 2014;
Xiong et al., 2016; Xiang et al., 2020): agricultural chemical
fertilizer (0.8956 t/t), agricultural pesticide (4.9341 t/t),
agricultural film (5.18 t/t), agricultural diesel (0.5927 t/t),
agricultural irrigation (0.2665 t/hm2), and arable land
(0.3126 t/hm2). Agricultural output indicators were
characterized using the total agricultural output value. Price
data were adjusted to the 1999 prices to eliminate the impact
of price fluctuations. All data were collected from the Jiangsu
Statistical Yearbook (2000–2019) and the Rural Statistical
Yearbook of Jiangsu Province (2000–2019), that are annually
published by the Jiangsu Statistics Press.

EMPIRICAL RESULTS AND ANALYSIS

Temporal Change of Agricultural
Eco-efficiency
The temporal changes in the AEE, PTE, and SE are shown in
Figure 2 by calculating each year’s geometric mean value of the
AEE, PTE, and SE of all counties and districts from 1999 to 2018.

As seen from Figure 2, the annual mean of AEE was 0.640,
thus, indicating that the actual input was only approximately
64.0% of the optimal input. Under a constant output, a reduction
of 36.0% of the input would yield effective AEE. The geometric
mean value for the annual PTE was 0.730, while it was 0.876. Both
values are above the annual mean value of AEE, and the value of
SE was greater than that of PTE, suggesting that the improvement
of AEE was dependent on scale efficiency.

Figure 2 also shows that the AEE exhibited a generally
downward fluctuating trend. The value increased from 0.669
in 1999 to 0.695 in 2002. Then it dropped to 0.597 in 2003,
mounted to a peak value of 0.741 in 2006, declined to 0.574 in
2011, and, ultimately, reached 0.621 in 2018. The PTE
experienced temporal fluctuations in the AEE. For the SE, the
value rose from 0.867 in 1999 to 0.933 in 2006 and declined to
0.879 in 2018. Its contribution rate to AEE has increased from
129.65% in 1999 to 141.55% in 2018.

Spatial Evolution Pattern of Agricultural
Eco-efficiency
First, the CV and Gini coefficients of AEE at the temporal and
spatial dimensions were calculated (Figures 3, 4). As shown in
Figure 3, the CV and Gini coefficients of AEE exhibited a
fluctuating but generally upward trend. It experienced an
initial decline followed by a strongly positive trend. More
specifically, the CV and Gini values decreased from 0.239 to
0.132 in 1999 to 0.195 and 0.110 in 2004, and rose to 0.332 and
0.190, respectively, in 2018. These trends indicate that in recent
years, the regional differences in AEE have been likely increased.

Taking 0.65 as the dividing line of high and low AEE by 0.65
and using 0.19 to separate relative equality and inequality groups,
then, the spatiotemporal differentiation evolution types of AEE
for each county and district was visualized through the ArcGIS
10.5 software (Figure 4). As shown in Figure 4, the annual

TABLE 1 | The evaluation indicators of agricultural eco-efficiency.

Primary indices Secondary Indices Interpretation Max Min Mean Stdev

Input indicators Mechanical power (x1) Total agricultural machinery power (10̂4 kw·h) 501 0.24 11.24 15.35
Irrigation (x2) Effective irrigation area (10̂3 hm2) 253.58 0.55 100.13 61.53
Labor (x3) Agricultural practitioner (Million person) 159.29 3.75 50.33 27.86
Land (x4) Cultivated land area (10̂3 hm2) 211.67 2.44 48.57 31.09
Pesticide (x5) Usage of pesticides (ton) 152481 1755 43222.07 32454.57
Agricultural film (x6) Usage of plastic sheeting (ton) 15557 20 1156.64 859.61
Chemical fertilizer (x7) Usage of fertilizers (ton) 10230 39 1160.99 1274.16
Diesel (x8) Usage of diesel oil (ton) 79125 355 11696.16 13131.94

Expected output indicator Carbon emission (z1) Agricultural carbon emissions (ton) 18.88 0.38 5.88 4.06
Undesirable output indicator Output value (z2) Total gross output value of agriculture (billion) 1601222 10757 273295.09 209448.06
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geometric mean value of AEE in Jiangsu province overall
disclosed a “high south” and “low north” distribution pattern.
The counties and districts with high AEE values were evidenced
mainly around the Taihu Plain in Sunan and scattered in Nanjing,
Yangzhou, Huai’an, and the Taizhou City. Those with low AEE
values were mainly located in Subei, particularly along the coasts,
and in Ningzhen Yang Hilly of Sunan.

The variation coefficient for each county and district from
1999 to 2018 was calculated to identify inter-annual fluctuation
patterns. Overall, the variation coefficient ranged from 0.074 to
0.408, thus, pointing on a large interannual difference in AEE for

most counties and districts. The spatial pattern of the regional
variation coefficient was nearly opposite to the calculated
geometric mean of the AEE. The high variation coefficient
regions were mainly found in Subei, and particularly in
Yancheng and Huai’an, while the low variation coefficient
regions were mainly found in Sunan and Suzhong. The
regions with a high geometric mean of AEE have likely
experienced weaker interannual variability. In contrast, the
regions with lower geometric mean value have likely exhibited
stronger interannual fluctuations because the low AEE regions
were more susceptible to input conditions in agricultural

FIGURE 1 | The study area.

FIGURE 2 | Temporal variation of the AEE, PTE, and SE from 1999 to 2018.
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production, while the spatial evolution pattern of high AEE has
cumulative and inertial effects.

The spatiotemporal differentiation pattern of the combination type
between high and low and equal and unequal AEE was generally
consistentwith the geometricmeanpattern ofAEE. The high and equal
types were mainly distributed in Sunan, Yangzhou in Suzhong, Dafeng
County, and the Huai’an districts, accounting for 32.47% of the entire
region. The low and inequal and low and equal types were respectively
scattered in the Ningzhen Yang Hilly region and the northern and
coastal counties in Subei, accounting for 50.65% of the whole region.

Spatial Association Pattern of Agricultural
Eco-efficiency
As shown in Table 2, the global Moran’s I of the AEE exhibited a
positive spatial correlation. Overall, the globalMoran’s I passed the 5%
significance level except 2003, 2004, and 2005. These findings
indicated that AEE in Jiangsu province exhibited significant
clustering, but the degree of clustering showed a fluctuating and
expanding trend. Likewise, the Moran’s I of AEE fluctuated to its
lowest level in 2004, followed by a rapid increase. The results suggest a
consistent variation trend between the spatial association and regional
inequality of the AEE. With the improvement of AEE in all counties

and districts in 2000 and 2004, the regional difference and spatial
clustering degree were significantly reduced. However, with the
regional difference in AEE increasing since 2004, the spatial
clustering degree of regional AEEs has returned to expanding pattern.

Global Moran’s I values did not reflect the spatial association
characteristics of a particular region. Due to this, the local
Moran’s I value was used to explore the local clustering
characteristics of agricultural eco-efficiency during five selected
years: 1999, 2004, 2009, 2014, and 2018. According to the local

FIGURE 3 | The CV and Gini coefficient of regional agricultural eco-efficiency from 1999 to 2018.

FIGURE 4 | Spatial evolution pattern of regional agricultural eco-efficiency.

TABLE 2 | The Moran’s I of agricultural eco-efficiency from 1999 to 2018.

Year Moran’s I Z p Year Moran’s I Z p

1999 0.3372 4.696 0.000 2009 0.1875 2.680 0.004
2000 0.3301 4.598 0.000 2010 0.1834 2.626 0.004
2001 0.3225 4.490 0.000 2011 0.2628 3.685 0.000
2002 0.3306 4.598 0.000 2012 0.2590 3.633 0.000
2003 0.0269 0.538 0.295 2013 0.3249 4.512 0.000
2004 0.0174 0.410 0.341 2014 0.3403 4.713 0.000
2005 0.0448 0.774 0.219 2015 0.3541 4.898 0.000
2006 0.1340 1.965 0.025 2016 0.3140 4.367 0.000
2007 0.1539 2.232 0.013 2017 0.3821 5.275 0.000
2008 0.1818 2.604 0.005 2018 0.2792 3.904 0.000
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indicators of spatial association (LISA) agglomeration diagram (as
shown in Figure 5), the local spatial correlation in Jiangsu’s
agricultural eco-efficiency showed distinct characteristics. First,
AEE was generally significant for the high-high and low-low
spatial clusters, with the high-high type accounting for 32.47%,
and the low-low type accounting for 35.06%. The rest (high-low
and low-high agglomeration regions) accounted for only 32.47%.
Second, the spatial association pattern in the regional AEEs
exhibited salient spatial variability. The high-high cluster regions
exhibited significant spatial variations, with the initial clustering in
the border regions of Wuxi, Nantong, and the Suzhou city shifting
to the districts of Nanjing and Taizhou city. The clustering then
shifted toward the continuous Suzhou-Wuxi-Changzhou region
and expanded the isolated Xuzhou, Yangzhou, and Nanjing cities.
The low-low cluster regions exhibited noticeable contrast with an
initial scattered distribution among inland counties and districts of
Xuzhou, Huai’an, and the Nanjing City, shifting towards coastal
counties and districts of Subei and Suzhong, especially in Yancheng
and Nantong city and parts of Lianyungang and Suqian City. The
high-low and low-high regions had unstable spatial patterns. Also,
the number of high-low regions decreased, while the low-high
regions clustered in the Ningzhen Yang Hilly mountain area.

Spatial Growth Type of Agricultural
Eco-efficiency
The coordination growth between AEE, PTE, and SE was further
identified, mapped, and categorized in terms of growth type. As

shown in Figure 6, the spatial pattern of PTE is generally
consistent with that of AEE, where high values are found in
the north, and low values are found in the south. The regions with
relatively low PTE geometric mean value are distributed in Subei,
the coastal regions of Suzhong, and parts of the Ningzhen Yang
Hilly region. From SE perspective, the geometric mean value for
each county and district is higher than the PTE, indicating that SE
significantly contributes to promoting AEE. Likewise, SE
exhibited a spatial pattern of high south and low north. The
areas with high SE are found mainly in Sunan, the inland regions
of Suzhong, and the Huai’an city of Subei, while low SE regions
are clustered in the coastal and northern regions of Subei,
particularly in Yancheng city.

During the study period, the areas with positive growth of
AEE, PTE, and SE accounted for 27.27% of total areas and were
mainly situated in Xuzhou, Huai’an, Yangzhou, Nanjing, and
Changzhou city, which implies that these regions’ positive AEE
growth has been accompanied by the synergistic growth of PTE
and SE. The areas with the negative AEE, negative PTE, and
positive SE type accounted for 22.08% and were mainly
distributed in Subei. This growth combination hints that AEE
growth is dwindled by the lag in PTE growth. Meanwhile, the
areas with negative AEE, PTE, and SE growth accounted for
25.97% and were concentrated in the coastal regions of Suzhong
and Sunan and along the Yangtze River region, where the
negative AEE was caused by the deterioration in PTE and SE.
The number of the other types was relatively small and was
scattered throughout the province.

FIGURE 5 | Spatial association pattern of regional agricultural eco-efficiency.
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Sources for Agricultural Eco-efficiency
Loss
The non-effective DEA unit analysis showed that the input-
output allocation had not reached the optimal level. The
redundancy analysis of input factors can identify the reasons
for AEE loss in Jiangsu province and clarify the potential for
promoting AEE. According to the SBMmodel, when p*<1, s−, sg ,
and sb can reflect the redundancy of the AEE. To calculate the
input-output redundancy rate in each county or district, the
redundancy value of each input indicator and undesirable
output indicator is divided by each input indicator and
undesirable output indicator. For analysis, the input-output
redundancy rate can be subdivided into three categories: low
(0–20%), moderate (20–35%), and high (>35%). The number and
proportion of counties and districts for each indicator are listed in
Table 3.

As shown in Table 3, the loss of agricultural eco-efficiency in
most counties and districts results from the excessive use of
pesticides (x5), chemical fertilizers (x7), diesel (x8), labor (x3),
land (x4), and agricultural carbon emissions (z1). In particular,
the number of counties and districts with high values of pesticide
(x5) and chemical fertilizer (x7) use were 53 and 54, respectively.
These estimates account for 68.83 and 70.13% of whole units,
respectively. Thus, more than 68% of counties and districts
should reduce their agricultural pesticide and chemical
fertilizer use by at least 35%. The similar conclusions are
applicable for x8, x3, and x4. In terms of undesirable output

(z1), 67.53% of counties and districts have high input-output
redundancy rates. As a part of agricultural carbon emissions
resulting from chemical fertilizer (x5), pesticide (x7), diesel (x8),
and arable land (x4). In turn, it indicates that the excessive use of
agricultural chemicals and extensive farming techniques are
significant factors influencing the AEE. Likewise, x2
considerably affects AEE, while x6 and x1 only have minimal
effects.

The ArcGIS 10.5 software was used to visualize the spatial
difference of the reducible proportion for the different indicators.
As shown in Figure 7, the areas with high reducible proportions
are mainly situated in Subei, Suzhong, and the Ningzhen Yang
Hilly region, while the majority of counties with low reducibility
and districts are clustered in the Taihu Plain. In terms of chemical
fertilizer (x7), the spatial pattern exhibits distinct south low and
north high distributions. A similar spatial pattern can be
identified for x3, x4, x5, and x8. Given the improvements in
agricultural mechanization and the progress of agricultural
production technology, the reducible proportion for inputs of
x1, x2, and x6 is significantly reduced in most counties and
districts.

DISCUSSION

The trends of temporal change of AEE, PTE, and SE show that the
slow growth of AEE in Jiangsu province for the past 20 yr has

FIGURE 6 | The growth type of between agricultural eco-efficiency, pure technology efficiency, and scale efficiency.

TABLE 3 | The number and proportion of counties and districts at different intervals of indicators.

Type Low Value Moderate Value High Value

Number Proportion (%) Number Proportion (%) Number Proportion (%)

x1 24 31.17 34 44.16 19 24.68
x2 19 24.68 35 45.45 23 29.87
x3 16 20.78 24 31.17 37 48.05
x4 14 18.18 26 33.77 37 48.05
x5 9 11.69 15 19.48 53 68.83
x6 28 36.36 30 38.96 19 24.68
x7 11 14.29 12 15.58 54 70.13
x8 15 19.48 20 25.97 42 54.55
z1 9 11.69 16 20.78 52 67.53
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been caused by the negative growth in PTE. It yielded the low-
level conversion rate of green technology and caused the
unreasonable allocation of resources. Thus, the agricultural
technological innovation and rational resource allocation
should be prioritized to minimize the reduction of AEE caused
by the lag in PTE. With the accelerating land-intensive degree in
Jiangsu province, the scale effect of the labor, machinery, and
chemical fertilizer inputs is maximized due to adverse
combination of all factors. Therefore, SE plays an important
role in promoting AEE.

The quick rise of the real estate industry expropriated many
agricultural lands, thus, causing a sudden drop in AEE in 2003.
Since 2004, AEE has entered a new stage of rapid development
driven by the series of policies issued by the Chinese government
to support the agriculture. Jiangsu province positively responds to
policies and arrangements to benefit farmers, by actively
adjusting its agricultural structure, and by implementing
relevant fiscal policies. This further helps to increase the
benefits from farm operations. These actions also promote the
development of modern agriculture with high yield, high
efficiency, ecology, and safety.

The spatial patterns of geomean, variation coefficient, and
growth type indicate that the high south and low north spatial

configurations are relatively constant and cannot easily be
changed. Moreover, the significantly increasing global Moran’s
I value hint that the spatial clustering of AEE is intensifying.
Meanwhile, the local high-high and low-low clusters become
increasingly more spatially concentrated. These results suggest
that the spatiotemporal evolution pattern of AEE exhibits a
relatively stable spatial dependence due to limitations in
geographical environmental conditions, agricultural production
technology, and socioeconomic conditions.

Given the dominance of planting in the agricultural sector in
Jiangsu province, the proportion of planting output over the total
agricultural output was over 50% from to 1999–2018. During the
planting production process, large amounts of chemical
fertilizers, pesticides, agricultural films, and other direct and
indirect material inputs are expended. They further consume
energy and cause environmental damage through greenhouse gas
emissions, soil structure deterioration, and water pollution
(Xiong et al., 2020). Excessive chemical fertilizer and pesticide
use has been identified as the primary sources of pollution in
agricultural production (Chen and Ma, 2018). Meanwhile, the
spatial difference in the reducible proportion of input factors was
found to be closely related to the regional economic disparity in
Jiangsu province. More specifically, Sunan has a developed

FIGURE 7 | The improvement potential for agricultural ecological efficiency.
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economy and strong purchasing capacity for agricultural
materials, embracing the intensive agricultural production
mode. While the economic development of Subei and Suzhong
is relatively backward, and with a large proportion of agriculture
accounting for the local economy, the labor force and land
resources are relatively rich in Subei and Suzhong. This causes
extensive agricultural production, thus, also leading to excessive
redundancy of various production factors.

CONCLUSION

Green agriculture is one of the inevitable trends of agriculture on
the way to diversification and multiple functionality in the future.
Agricultural eco-efficiency is an important index for measuring
the green and sustainable development of agriculture.
Quantitative evaluation of agricultural eco-efficiency facilitates
the accurate evaluation of the true level of agricultural
ecosystems, thus, elucidating the efficient utilization of
agricultural resources. This study evaluates the agricultural
eco-efficiency of 77 counties and districts in Jiangsu province
(China) from 1999 to 2018 using the SBM-DEA model and
analyzes the spatiotemporal evolution pattern and underlying
loss sources of agricultural eco-efficiency.

1) The AEE, PTE, and SE generally exhibited a downward
fluctuating trend from 1999 to 2018. The improvement of
AEE in Jiangsu province mainly depends on the growth of SE,
while PTE makes secondary contributions. Regional
inequality in AEE among counties and districts tends to
increase, and AEE exhibits a strong positive spatial
association.

2) The AEE in Jiangsu province exhibited a “high south” and
“low north” spatial pattern, with the high-level AEE regions
were mainly clustered around the Taihu lake plain region in
Sunan and with the low-level AEE regions clustered in the
rugged hills and bordering counties and districts of Yancheng,
Changzhou, Huai’an, Suqian, Xuzhou, and the Lianyungang
city. Moreover, the local spatial association pattern of AEE
manifested a prominent spatial locking effect. Namely, the
high-high type was increasingly concentrated around the
adjacent Suzhou-Wuxi-Changzhou region. The low-low
type was mainly distributed in the coastal regions of Subei
and Suzhong, and with the high-low and low-high type were
both marginal in number and scattered all over the region.
Moreover, the spatial pattern of PTE and SE demonstrated a
“north high” and “south low” distribution, thus, contributing
to the relatively stable evolution of spatial dependence pattern
of AEE.

3) The excessive use of pesticides, chemical fertilizers,
agricultural diesel, labor, land, and agricultural carbon
emissions are the main factors affecting AEE in Jiangsu
Province. Irrigation considerably affects AEE, while
mechanical power and use of agricultural films have
minimal effects. The majority of counties and districts in
Subei, Suzhong, and the Ningzhen Yang Hilly region should
significantly reduce their use and dependence on chemical

fertilizers, pesticides, chemical fertilizers, agricultural diesel,
labor, and land.

To improve the eco-efficiency of regional agricultural production,
we propose relevant policy recommendations. First, the local
governments should take the transformation of traditional
agricultural operations towards green agricultural development as
the focus of sustainable transformation development strategy. They
should further create green agricultural development support
systems, including the green value system, green technology
system, green finance system, green policy system, and green
management system. In addition, each county and district should
fully exploit their regional advantages and develop agriculture with
local characteristics in light of local conditions. Meanwhile, the local
governments should comprehensively account for the differences in
geographical location, resource endowment, and agricultural
economic development level with neighboring regions, strengthen
agricultural production cooperation and exchange, and establish
agricultural ecological cooperation mechanisms and agricultural
ecological policy linkage mechanisms with neighboring regions.

Second, several steps are required to reduce redundancies in
the current input factors. Namely, is necessary to promote the
transformation of agricultural operations from the high
investment extensive type to the intensive ecological type, to
accelerate the upgrading of the agricultural technical level, to
improve the allocation efficiency of agricultural production
factors, and to strengthen the ecological management
performance of regional farming systems. Meanwhile, to
ensure the sustainability of agricultural production and
growth, it is also necessary to implement an innovation-driven
growth strategy, introduce modern production factors (such as
improved seeds, machinery and equipment, farming technology,
etc.) to increase the input of environment-friendly factors, to
improve the socialization of agricultural services, to deepen the
specialization of agriculture, and optimize the planting structure.

Third, it is necessary to strengthen farmers’ education and
training and adopt incentive policies to encourage them to
reduce their dependence on fertilizers and pesticides. Moreover,
the local governments should promote the restructuring of the
agricultural industry and improve the absorption capacity of
township enterprises by integrating the rural surplus labor force.
It is also necessary to improve agricultural land utilization
efficiency and agricultural total factor productivity by relying on
the popularity of agricultural industrialization and mechanization.

This study has some limitations to report. First, many input
and output indicators are unavailable due to the restriction of
county data availability and the lack of a uniform evaluation
standard for AEE. Hence, the AEE calculated herein may suffer
from unknown uncertainties. Moreover, the analysis of
influencing factors of AEE is based on input-output
redundancy rate, without taking into account other
socioeconomic and natural variables, such as urbanization rate,
the fragmentation degree of cultivated land, terrain, and
marketization degree. Future studies can introduce a spatial
econometric model to identify their impact on AEE. In
addition, the factors influencing both PTE and SE can be

Frontiers in Energy Research | www.frontiersin.org August 2021 | Volume 9 | Article 74640510

Li et al. Agriculture and Eco Efficiency

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


further explored to identify the impediment factors of AEE by
using the spatial econometric model.
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