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Intelligent diagnosis is an important means of ensuring the safe and stable operation of
chillers driven by big data. To address the problems of input feature redundancy in
intelligent diagnosis and reliance on human intervention in the selection of model
parameters, a chiller fault diagnosis method was developed in this study based on
automatic machine learning. Firstly, the improved max-relevance and min-redundancy
algorithm was used to extract important feature information effectively and automatically
from the training data. Then, the long short-term memory (LSTM) model was used to mine
the temporal correlation between data, and the genetic algorithm was employed to train
and optimize the model to obtain the optimal neural network architecture and
hyperparameter configuration. Finally, a transient co-simulation platform for building
chillers based on MATLAB as well as the Engineering Equation Solver was built, and
the effectiveness of the proposedmethod was verified using a dynamic simulation dataset.
The experimental results showed that, compared with traditional machine learning
methods such as the recurrent neural network, back propagation neural network, and
support vector machine methods, the proposed automatic machine learning algorithm
based on LSTM provides significant performance improvement in cases of low fault
severity and complex faults, verifying the effectiveness and superiority of this method.

Keywords: chiller, fault diagnosis, long short-term memory network, automatic machine learning, transient co-
simulation

INTRODUCTION

As an industry with high energy consumption, the construction industry has become a key area for
energy conservation and emission reduction (Li et al., 2019a; Daneshvar et al., 2020). In particular,
the energy waste caused by the aging of heating, ventilation, and air conditioning (HVAC) systems as
well as equipment failure accounts for 15–30% of the total energy consumption of buildings (Zhou
et al., 2020) and has become a “severe disaster area” in terms of building energy efficiency.

Chiller is the equipment with the largest energy consumption in HVAC system. Relevant research
shows that timely troubleshooting of chiller can effectively reduce energy consumption by 20–50%
(Zhou et al., 2020). Therefore, rapid and accurate judgment of chiller operation state is an important
basis for ensuring safe and stable operation of chiller and saving energy.

In recent years, machine learning methods, as the core of artificial intelligence, have become a
research hotspot and have been successfully applied to building energy consumption prediction,
system modeling, and industrial process monitoring. In heating, ventilation, and air conditioning
system analysis, remarkable progress has also been made in machine learning chiller fault detection
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and diagnosis (FDD) strategies. Machine learningmethods can be
divided into two main categories: traditional machine learning
methods and deep learning methods.

In traditional machine learning, support vector machines
(SVMs) have been widely used in chiller FDD. Liang and Du
developed a multi-layer classifier based on an SVM (Zhao et al.,
2019a), which could effectively detect chiller faults via residual
analysis with high classification accuracy. To improve chiller
FDD performance further, Sun et al. (Sun et al., 2016a)
utilized signal processing to remove the noise information
contained in the original chiller measurements. They proposed
a hybrid refrigerant charge adjustment fault diagnosis model
based on an SVM and wavelet denoising for the fault of improper
refrigerant charge adjustment in chillers. In addition, Han et al.
(Han et al., 2011) combined an SVM with other methods to
improve the performance and reliability of chiller FDD. They
proposed a hybrid SVM model combining an SVM and a genetic
algorithm (GA) for chiller FDD. This model performs diagnosis
efficiently, but it is not suitable for refrigerant leakage (RL) or
refrigerant overcharging failures. To overcome the limitations of
this model, Han et al. proposed a least-squares SVM model (Han
et al., 2019) and realized the FDD of a centrifugal chiller through
cross-validation optimization. Compared with product-based
neural networks and SVMs, the proposed method exhibited
better FDD performance. In addition, with the improvements
in processing unit computing ability and the evolution of
machine learning methods, deep learning (LeCun et al., 2015)
has attracted extensive research interest. Notably, deep learning
has been proven to perform better than traditional machine
learning methods and has been widely used in network
security (Chen et al., 2020; Dixit and Silakari, 2021), medical
image analysis (Grohl et al., 2021; Li et al., 2021; Xie et al., 2021),
and computer vision (Hu, 2020; Zhang et al., 2020).

Deep learning architectures are also widely utilized in FDD in
industry (Zhao et al., 2019b). For instance, Guo et al. (Yabin et al.,
2018) proposed a fault diagnosis method for a variable refrigerant
flow system based on a deep belief network. Azamfar et al.
(Azamfar et al., 2020) proposed a gearbox fault diagnosis
method based on the analysis of motor current characteristics.
This method fuses the data collected by multiple current sensors
through a novel two-dimensional convolutional neural network
architecture and is directly used for classification without manual
feature extraction. Further, Liu et al. (Liu et al., 2018) proposed a
rotating machinery fault-type recognition method utilizing a
recurrent neural network (RNN) based on the ability of an
RNN to capture the time correlation of time series data, which
showed good robustness and high classification accuracy. Long
short-term memory (LSTM) (Shi et al., 2021) is a special type of
RNN, which compensates for the shortcomings of RNNs in dealing
with nonlinear time problems (Ma et al., 2015).Moreover, owing to
the characteristics of the network structure, it is widely used to deal
with and predict highly time-related and strongly coupled events.
Yuan et al. (Yuan et al., 2016) studied the problem of utilizing
standard LSTM to estimate the residual service life of an
aeroengine. Similarly, Shahid et al. (Farah et al., 2020)
employed LSTM and Gauss, Morelet, Ricker, and Shannon
activation kernels to predict the power of various wind farms

and compared the results with those of existing mature
technologies. An improvement of up to 30% was observed in
the mean absolute error, which verified the effectiveness and
robustness of the model. LSTM is not only widely used in time
series prediction, but also has proven to be effective in various fault
diagnosis problems involving time series data. For example, Yin
et al. (Yin et al., 2020) proposed a method based on a cosine loss
function to optimize an LSTMneural network for fault diagnosis of
a wind turbine gearbox. Yang et al. (Yang et al., 2018) used LSTM
spatial and temporal correlations to detect faults and to classify the
corresponding fault types considering the complexity and
uncertainty of rotating machinery. Further, Lei et al. (Lei et al.,
2019) employed LSTM for wind turbine fault diagnosis, effectively
classifying the original time-series signals collected by a single
sensor ormultiple sensors. Therefore, the LSTMalgorithm can also
be applied to the fault diagnosis of chillers in heating, ventilation,
and air conditioning systems to solve the problems of complex
faults and strong time coupling.

However, when building a chiller fault diagnosis model, the fault
feature redundancy cannot always reveal the most important
information. With more manual intervention, the LSTM model
can easily enter local minima during parameter optimization rather
than achieving global optimization. To solve the above problems, we
adopted a method based on automatic machine learning (AutoML)
for determining the optimal solution of the model automatically.
AutoML mainly includes data preparation, feature engineering,
model generation, and model evaluation [i.e., neural architecture
searching (NAS)] (Yao et al., 2018). Model generation involves
model selection and hyperparameter optimization (HPO) (Kanter
and Veeramachaneni, 2015; He et al., 2021). With the development
of machine learning, increasingly complex network models have
been constructed. The popularization of AutoML methods is
particularly important (García-Domínguez et al., 2021).
Compared with traditional machine learning methods, AutoML
simplifies the model generation process by automating some general
steps (such as data preprocessing, hyperparameter adjustment, and
NAS). As it does not involve manual intervention, AutoML can
achieve more effective application of machine learning models.
Moreover, AutoML has been widely applied in various fields
such as medical science (Tan et al., 2020; Waring et al., 2020),
power prediction (Zhao et al., 2021), and signal recognition (Li,
2020). Therefore, AutoML can also be utilized in chiller fault
diagnosis to improve the efficiency and level of fault diagnosis
and promote the practical application of diagnostic algorithms.

In summary, AutoML has become a research hotspot in
artificial intelligence and can automate the entire machine
learning process, from construction to application. LSTM
networks can be used to mine the time correlations of time
series data and map the input to the output to obtain the correct
classification results. Based on these advantages, this paper
proposes a chiller fault diagnosis method based on AutoML.
The main contributions of this report are as follows.

1) A fault diagnosis model utilizing an LSTM network optimized
using a GA is proposed. The GA is employed for
hyperparameter optimization and the NAS of the LSTM.
The advantages of the LSTM mining time correlation and
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GA spatial search ability are used to achieve efficient and
stable chiller fault diagnosis.

2) Based on the GA-optimized LSTM model, a chiller fault
diagnosis method based on AutoML is proposed. Unlike
the traditional FDD method for chillers, this method has
an end-to-end network structure and can directly identify
specific fault types in a time series. Firstly, taking the fault data
as the input time series, the most important fault feature
information is obtained using the improved max-relevance
and min-redundancy (mRMR) algorithm, and the fault data
label is marked. Then, the GA-optimized LSTM model is
constructed, and the diagnosis model training is accelerated
based on graphics processing unit parallel technology to
construct the optimal fault diagnosis model. Finally, the
fault data are sent into the model, and the softmax
function outputs the fault label to diagnose the fault of a
specific chiller.

3) A transient co-simulation platform for a water chiller based on
the engineering equation solver (EES) and MATLAB,
thermodynamic model of the unit, and dynamic dataset
simulation performed to obtain the required data for the
experiment are presented.

4) Detailed experiments considering different degrees and types of
faults are presented. An evaluation of the proposed fault
diagnosis strategy is provided in terms of both training
performance and fault diagnosis performance. To verify the
effectiveness and superiority of the proposed method,
comparisons with other FDD methods such as RNNs, back-
propagation neural networks (BPNNs), and SVMs are
presented. The comparison results demonstrate that the
performance improvement of the proposed method is
significantly greater for low severity faults than for high
severity faults. The diagnostic accuracy of this method is
much higher than those of the other considered methods in
cases of complex fault types and chaotic severity. Therefore, the
proposed AutoML method effectively improves the diagnostic
level in chiller fault diagnosis and its superiority was verified.

The remainder of this paper is structured as follows. Research
Basis introduces the basic theory underlying the methods used in
this study. Chiller Fault Diagnosis Strategy Based on Automatic
Machine Learning elaborates on the fault diagnosis strategy based
on AutoML. Transient Co-Simulation Platform of Water Chiller
Based on MATLAB + Engineering Equation Solver describes the
joint simulation platform constructed and discusses the specific
situation of the simulation dataset, and Experimental Results and
Comparison presents the experimental results and compares the
proposed method with the existing models. Finally, Conclusion
summarizes the findings and provides recommendations for
further research.

RESEARCH BASIS

Long Short-Term Memory
The long short-termmemory (LSTM) network was first proposed
in (Hochreiter and Schmidhuber, 1997) and is an improved

algorithm for RNNs, which compensates for the shortcomings
of RNNs in dealing with nonlinear time problems (Ma et al.,
2015). The LSTM model can process large-scale parameters and
provides the versatility of using nonlinear activation functions in
each layer. It can capture nonlinear trends in data and save long-
term information (Shi et al., 2021). The LSTM structure is
advantageous in that it contains three types of doors: input,
forgetting, and output doors, as shown in Figure 1.

Mathematical methods can describe the main information
flow of the LSTM hidden layer cell unit (Figure 1) (Barthwal
et al., 2020). In Figure 1, xt, ct, and ht are the input unit, cell
state, and output unit at time t, respectively; ct–1 and ht–1 are
the cell state and output unit at time t–1, respectively; σ is the
softmax function; ⊗ represents multiplication in the model;
and the arrow represents the direction of information flow. A
tanh-shaped network layer creates a new candidate value
vector, c1t , which can be added to the cell state. The
forgetting gate determines how much of ct–1 is retained in
ct, which means that one can decide which necessary
information to save to the cell state using

ft � σ(Wf × [ht−1, xt] + bf), (1)

where ft is the forgetting threshold at time t,Wt is the weight, and
bf is the bias.

The input gate determines how much of xt of the current
network is saved to ct. The specific expressions are as follows:

it � σ(Wi × [ht−1, xt] + bi) (2)

c1t � tanh(Wc × [ht−1, xt] + bc), (3)

where it is the input threshold at time t; Wi, Ui, Wc, and Uc are
weights; and bc is the bias.

The following expression is used to update the cell states at
time t:

ct � ft × ct−1 + it × c1t . (4)

FIGURE 1 | Cell unit diagram of LSTM hidden layer.
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As the output information generation unit in the current time
step, the output gate controls how much ct outputs to ht of the
LSTM. The specific expression is as follows:

ot � σ(Wo × [ht−1, xt] + bo). (5)

In this equation, ot represents the output threshold of time t,
Wo and Uo are weights, and bo is a bias. Then, the cell output can
be described as

ht � ot × tanh(ct), (6)

where tanh represents the activation function. After the data pass
through three doors, the effective information is output, and
invalid information is forgotten.

Genetic Algorithm
A Genetic Algorithm (GA) (Denkena et al., 2021) is a heuristic
random search method that was developed from natural
evolution law, which is used to find the near-optimal solutions
of optimization problems with large search spaces. This algorithm
is easy to parallelize and is not blindly exhausted, but rather is a
heuristic search. Simultaneously, this algorithm has an excellent
global search ability and superior scalability, utilizing past
performance evaluation, and is easy to combine with other
algorithms (Ng et al., 2015; Ogunjuyigbe et al., 2021).

TheGA operation principle can be divided into six stages:
initialization, termination condition check, fitness calculation,
selection, crossover, and mutation (Kim and Shin, 2007). In the
initialization phase, a chromosome is randomly selected in the
search space to be solved, and the fitness of each selected
chromosome is calculated according to the predefined fitness
function. In optimization methods, such as GAs, the fitness
function is an indicator used to measure chromosome

performance (Domingos, 2012). After calculating the fitness,
chromosomes are selected, those with excellent performance
are retained for the next replication process, and the genetic
operators of natural genetics are utilized for combinatorial
crossover and mutation to produce new chromosomes. Finally,
it is determined whether the termination condition is met until
the desired result is output.

CHILLER FAULT DIAGNOSIS STRATEGY
BASED ON AUTOMATIC MACHINE
LEARNING
This section describes the principle of the water chiller fault
identification method based on AutoML. As shown in Figure 2,
this method mainly includes four stages: data preprocessing,
feature selection, model training, and fault identification. The
model training process involves HPO and NAS. The basic idea of
this strategy is as follows. Firstly, the input training dataset for
chillers is preprocessed and written into the allowed format for
the model input, and the mRMR algorithm selects the key
features in the fault data to reduce the model input. Then, the
fault diagnosis training model based on the LSTM network is
constructed, and the GA is used to optimize the model
hyperparameters and neural architecture to obtain relatively
optimal parameters and establish the optimal fault diagnosis
model. Finally, the test dataset is sent to the best model to
obtain the final classification label and complete the fault
diagnosis. Data Preprocessing, Feature Selection,
Hyperparameter Optimization, Neural Architecture Searching,
and Model Training, and Fault Identification Analysis provide
analyses of the specifics of each phase. To improve the
comprehensibility of the proposed method, we further make a
flowchart as shown in Figure 3.

Data Preprocessing
A chiller fault dataset containing L features is utilized as the
original sample and labeled to form a fault label. The samples are
then divided into training samples, verification samples, and test
samples in a 6:2:2 ratio. The training samples are used to train the
fault diagnosis model, which can be employed to fit the model.
The verification samples are the sample sets left alone in the
model training process, which can be used to adjust the
hyperparameters of the model and evaluate its ability. The test
samples are utilized to evaluate the generalization ability and
accuracy of the final model. In the training samples, each feature
contains M data, and the sample is described as

xl � (x1, x2, x3, . . . , xL) ∈ RM×L, (7)

where R is the real number set.
Owing to the large differences in the orders of magnitude of

the original data, larger value changes will cover smaller value
changes. Therefore, it is necessary to require the input data to
have similar orders of magnitude to avoid the effects of load
forecasting owing to large individual input values. The specific
calculation formula for data normalization is as follows:

FIGURE 2 | Principle diagram of AutoML fault diagnosis strategy.
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Xnormal � X −Xmin

Xmax −Xmin
, (8)

where X and Xnormal are the data before and after normalization,
respectively, and Xmax and Xmin are the maximum and minimum
values, respectively, among the original sample data.

After normalizing the training samples, the samples are
represented as

X′normal � (X′1, X′2, X′3, . . . , X′L) ∈ RM×L, (9)

where X´normal is the normalized sample data, M is the
training sample data quantity, and L is the characteristic
quantity.

When using machine learning to solve classification problems,
labels as well as discrete independent variables must be encoded.
Therefore, it is necessary to expand the dimensions of the fault
tags, and one-hot coding is effective for this purpose. It represents
classification variables as binary vectors; for instance, the first
type of fault is 1 at the corresponding position and 0 at the other
positions.

Feature Selection
In supervised machine learning problems, features are
explanatory variables used by data scientists to describe certain
salient properties of faults, which are key to fault classification. It
is worth noting that feature engineering is an important, complex,
and time-consuming step in machine learning. On the one hand,
the quality of the input features seriously affects the performance
of machine learning algorithms. On the other hand, feature
creation requires theoretical knowledge in numerous areas,
and manual completion by experts is generally necessary.

To reduce the difficulty of feature engineering, the proposed
method uses automatic feature engineering to select the most
critical data features automatically and to construct a new feature
set to improve the performance of the subsequent machine
learning tools. Hence, a feature selection method for chiller
fault data is utilized, namely, improved max-relevance and
min-redundancy (mRMR) algorithm (Sun et al., 2016b).

Peng et al. (HanchuanPeng et al., 2005) proposed a feature
selection method based on mutual information (MI) in 2005. The
principle is shown in

FIGURE 3 | Flow chart of the proposed method compared with other methods.
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MI(x;y) � ∫∫p(x, y)log p(x, y)
p(x)p(y) dxdy (10)

In the formula, x and y are the two given variables, p(x) and
p(y) are their respective probability density, and p (x, y) their joint
probability.

The mRMR method is realized based on the MI method, and
the correlation between features and target classes must be
calculated first. Because the Max-Dependency criterion is
difficult to achieve, feature selection method based on Max-
Relevance criterion is chosen. A feature set S can be obtained
using the MI feature selection method, which has m features and
is most dependent on the target class c, named xa.
Simultaneously, the average value of all mutual information
values between the individual feature xa and target class c is
calculated, as shown in

maxD(S, c), D � 1

|S| ∑xa∈SMI(xa; c) (11)

When the two features are strongly dependent on each other,
removing one of them will not affect their class discrimination
ability. Therefore, the Min redundancy condition can be added to
select mutually exclusive features. The specific mechanism can be
expressed as

minR(s), R � 1

|S|2 ∑
xa,xb∈S

MI(xa;xb) (12)

After data preprocessing, feature selection is required for the
sample data. Therefore, the mRMR feature selection algorithm
is used to reduce the L feature quantities in the data set to N,
extract important fault feature information, and reduce the cost
of fault diagnosis. The sample after feature selection can be
expressed as

X′n � (X′1, X′2, X′3, . . . , X′N) ∈ RM×N, (13)

where X´n is the sample data after feature selection.

Hyperparameter Optimization, Neural
Architecture Searching, and Model Training
The LSTM network model has two types of parameters:
hyperparameters and conventional parameters. Conventional
parameters can be automatically optimized through model
training. Hyperparameters are the parameters that the model
designer must manually set before training, and the performance
of the LSTM method depends heavily on the specific
hyperparameter settings. The most basic task of AutoML is to
realize the optimal selection of these hyperparameters
automatically to optimize the model performance. Therefore,
HPO is one of the most critical steps in AutoML-based LSTM
model optimization.

In addition, LSTM is a learning process that uses a neural
network to solve feature expressions. It contains a neural network
structure consisting of multiple hidden layers, learns the input
data representation, and maps the input data to the relevant

output. To improve the effectiveness of LSTM training, it is
necessary to adjust the connection method and activation
function of neurons to establish an excellent LSTM neural
network architecture. Therefore, NAS is another research focus
of AutoML, which can find the best neural network structure for
the LSTM method. The efficient spatial search ability of the GA
can be employed to search the hyperparameters and neural
network architecture parameters, find the most effective
parameter combination, and construct the optimal LSTM
networkmodel. The specific implementation process is as follows.

Firstly, the LSTM fault identification model is constructed,
where the model structure is mainly composed of input, hidden,
and output layers. The loss function employs the cross-entropy
loss function, and the model training process is optimized
utilizing the Nadam algorithm optimizer. The network model
was built using the Keras framework.

The specific steps of model training are as follows.
Step 1: Import the sample data into the input layer after data

preprocessing and feature selection.
Step 2: The hidden layer contains two LSTM layers. Train the

LSTM layer by layer with the data transmitted by the input layer,
and send the output of the neurons in the hidden layer of the
LSTM network in the upper layer to the next layer for calculation.

Step 3: Send the final result of the output sequence to the
softmax classifier as the output layer.

Step 4: Compare the output predicted fault label with the
actual label, and continuously optimize the model through loss
function calculation. Perform network training based on graphics
processing unit parallel computing to realize rapid construction
of the LSTM model.

Then, the GA is used for the HPO and neural network
architecture search of the LSTM model, and the
hyperparameters and neural network architecture parameters
can be described as

Ps1 � (P1, P2, P3, . . . , Pn) ∈ R1×n, (14)

where Ps is the model parameter vector set.
In this study, chromosomes were represented by a binary

array, and the fitness function of the GA was expressed as

fitnessi � 1
2
⎡⎢⎢⎣1
p
∑p
p−1

yp − y′p
yp

+ 1
Q

∑q
q−1

yq − y′q
yq

⎤⎥⎥⎦, (15)

where P and Q are the numbers of training and validation
samples, respectively; yp and y´p are the true and predicted
values of the training samples, respectively; and yq and y´q are
the true and predicted values of the validation samples,
respectively.

The process of optimizing LSTM parameters by using a GA
can be summarized as follows.

1) Establish the basic framework of the LSTM neural network to
determine relevant parameters such as the population size and
maximum genetic algebra.

2) Initialize the population and set the loss and accuracy function
values to 0.
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3) Code parameters such as the initial batch processing
capacity, learning rate, iteration number, discard rate,
and number of neurons in the hidden layer into
chromosomes.

4) Randomly generate a complete LSTM neural network from
the chromosomes in (Eq. 3), and perform the related model
training by employing graphics processing unit parallel
technology.

5) Calculate the chromosome fitness value; if it meets the
optimization criterion, then enter (Eq. 7).

6) Perform chromosome selection, mutation, and crossover.
7) Check whether the new individuals meet the optimal criteria

or reach the maximum evolutionary algebra if they satisfy the
next requirement; otherwise return to step (5).

8) Update the LSTM neural network as a new network training
model by using the optimal initial batch processing, learning
rate, iteration number, discard rate, and number of hidden
layer neurons obtained by the GA.

Fault Identification Analysis
Before chiller fault diagnosis, new test samples are input into the
trained AutoML model. In the fault diagnosis process, the
AutoML model is used to identify the specific fault types in
each test time series. In chillers, different types of faults have
corresponding fault feature information. Further, in the model
training, it is necessary to ensure that the model learns the fault
labels corresponding to the fault types as much as possible. The
AutoMLmodel outputs fault labels through the softmax function,
thus identifying the fault type. The softmax function can be
expressed as

softmax(xi) � exp(xi)∑xkexp(xk), (16)

where xi is the output value of node i, and k is the number of
output nodes, that is, the number of categories classified. Using
the softmax function, the output value of multi-classification can
be converted into a probability distribution with a range of (0, 1)
and a sum of 1.

TRANSIENT CO-SIMULATION PLATFORM
OF WATER CHILLER BASED ON MATLAB +
ENGINEERING EQUATION SOLVER
Introduction of Joint Simulation Platform
Figure 4 depicts the transient co-simulation platform of the water
chiller based onMATLAB + EES. The water chiller systemmainly
includes four components: the compressor, condenser, expansion
valve, and evaporator (Hua, 2012). These four components are
interrelated and form three parts: the freezing water, cooling
water, and refrigerant circuits. The failure of any component
affects the thermodynamic states of the other components.

The thermodynamic model of the water chiller was built
utilizing the EES, which provides many built-in mathematical
and thermophysical functions very useful for engineering
calculations. According to any two physical parameters, other
physical parameters can be obtained by calling a built-in function.
The model can simulate chiller operation in normal mode and
various fault modes, and the changes of the physical parameters
are used to characterize each fault and the fault severity. Under
the premise of setting the fixed parameters of the components, we
simulated different fault modes by changing the corresponding
physical parameters. To address the problem that the algorithm
model cannot be trained in the absence of real data, we
established a transient co-fault simulation platform for chillers.
First, the steady-state thermodynamic model of the chiller unit is
constructed on EES software, and MATLAB is connected with
EES through an interface; then, MATLAB is used to control the
input parameters to drive the chiller unit model and obtain
simulation data from EES for algorithm training and testing;
finally, interactive joint simulation and fault diagnosis are realized
in the control system software environment. Among them, the
interface is the channel for the two software to establish the
connection, which is the key to realize the joint simulation and
can be realized by programming. The experimental process is an
off-line process. Drawing on the idea of segmented linearization,
we discretize the dynamic fault process of the chiller plant into
multiple steady-state processes according to the customized step
length, and use the output of the previous steady-state process as

FIGURE 4 | Co-simulation platform-thermodynamic model of chiller.
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the input of the next steady-state process to simulate the dynamic
fault data by simulating the steady-state process. At the same
time, the consistent step length of the two software is a key part to
ensure the success of the platform co-simulation, which is very
important for the accuracy of the simulation data.

Thermodynamic Analysis of Chiller System
The flow path of the refrigerant in the chiller was the same as that
in most steam compression equipment. The most important
aspect of the chiller simulation model in Figure 4 is the
thermodynamic process of the refrigerant cycle. As shown in
the figure, the thermodynamic reverse cycle is mainly divided into
four processes. Firstly, the low-temperature and low-pressure
refrigerant vapor (state point 1) is compressed in the compressor
and converted into high-temperature and high-pressure vapor
(state point 2). Secondly, the steam enters the condenser and
releases heat to the cooling water to become a high-temperature
and high-pressure liquid (state point 3). Thirdly, the refrigerant
liquid passes through the expansion valve, reducing the pressure
and temperature, and becomes a low-temperature and low-
pressure vapor-liquid mixture (state point 4). Finally, the
refrigerant enters the evaporator, absorbs the heat of the
chilled water, becomes low-temperature and low-pressure
vapor (state point 1), and is sucked into the compressor to
repeat the cycle. During the refrigerant compression process in
actual chiller system operation, there is friction between the gas
and the cylinder wall, and there is heat exchange between the gas
and the outside. Hence, the compression process not isentropic.
The refrigerant also experiences pressure loss in the condenser
and evaporator, and there is heat exchange with the outside, so
condensation heat release and evaporation heat absorption are
not equal-pressure processes (Howard and James, 2016). The
pressure data in the graph represent the pressure difference
between the two sides of the compressor and the pressure
difference between the two sides of the expansion valve,
respectively.

Dynamic Fault Data Simulation
Firstly, this subsection introduces the types of faults studied and
their implementations in the simulation model. In the simulation,
the refrigerant was set as R134a, the parameter of the centrifugal
chiller was set as 90 tons (316 kW), and the condenser and
evaporator were both shell and tube equipment. Considering
factors such as fault frequency, severity, and maintenance cost,
the platform simulated five faults with four severity levels (SLs), as
shown in Table 1. Comstock and Braun (Comstock and Braun,

1999) proved these failures to be themost likely and costly failures
associated with centrifugal chillers.

In the centrifugal chiller fault simulation experiment, 13
parameters were selected as the characteristic parameters of
the FDD (Table 2). The dynamic fault data simulated by the
platform were divided into six datasets according to the fault type,
and each dataset was divided into four small datasets according to
the SL. Each small dataset consisted of 13 characteristic
parameters and had 2000 sampling points.

The following description provides the details of different fault
modes considered by the simulation platform and the symbols
used to represent these faults.

1) Reduced condenser water flow (FWC)

In an actual unit, the water flow in the condenser can be
adjusted by changing the head pressure of the pump through the
electronic valve. Corresponding to the simulation model, the
FWC fault can be simulated by changing the condenser water
flow parameters. The basic water flow was 49.96 m3/h, and each
fault level reduced the water flow by 10%. Different severities of
FWC faults were considered, as shown in Table 1.

2) Reduced evaporator water flow

Similar to the FWC fault principle, the parameter values can be
changed to adjust the water flow in the evaporator. The basic
water flow level was 49.05 m3/h, and each fault level reduced the
water flow by approximately 10%. Different severities of
evaporator water flow faults were considered, as shown in
Table 1.

3) Refrigerant leak

The refrigerant flow from the system was reduced to simulate
the RL fault. The basic refrigerant weight in the system was 300
pounds (136 kg). Each fault level reduced the refrigerant charge
by 10%, and each continuous test reduced the refrigerant mass by
13.6 kg. Four fault SLs were simulated. Different severities of RL
faults were considered, as shown in Table 1.

4) Refrigerant overcharging

Similar to the RL fault simulation principle, we simulated
refrigerant overcharging by continuously increasing the
refrigerant flow in the model system. The basic refrigerant

TABLE 1 | Fault types and SLs.

Fault name Symbol Severity level

SL1 (%) SL2 (%) SL3 (%) SL4 (%)

reduced condenser water flow FWC 10 20 30 40
reduced evaporator water flow FWE 10 20 30 40
refrigerant leakage RL 10 20 30 40
refrigerant overcharge RO 10 20 30 40
condenser fouling CF 6 12 20 30
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mass in the model was 136 kg. Each failure level increased the
refrigerant charge by 10%, and various degrees of failure were
considered, as shown in Table 1.

5) Condenser fouling

In the condenser, the fouling layer on the heat transfer surface
was uneven and changed with the running time. The thermal
resistance of the fouling layer is mainly related to the thickness
and composition of the fouling layer, according to the following
relationship:

r � δ/λ, (17)

where r is the thermal resistance of the fouling layer in m2 h °C/J;
δ is the thickness of the fouling layer in m; and λ is the thermal
conductivity of the fouling layer in J/m h·°C.

The most common finned tube condenser is used in the joint
simulation platform:

K � 1
K0 + B(r − r0), (18)

where K is the total heat transfer coefficient of the finned
condenser; B is the fouling resistance amplification factor,
which is a constant related to the structure of the heat
transfer unit; and K0 is the value of the fouling thermal
resistance r0 corresponding to a certain water quality
condition.

In summary, condenser fouling significantly affects the heat
transfer coefficient of the condenser. Fouling faults with different
severities were simulated by changing the total heat transfer
coefficient. Different severities of condenser fouling failures
were considered, as listed in Table 1.

EXPERIMENTAL RESULTS AND
COMPARISON

Comparison Methods
To verify the superiority of the proposed LSTM-based AutoML
model further, it was compared with RNNs, BPNNs, and SVMs,
which have been widely studied and applied in fault diagnosis.

Recurrent Neural Network
The RNN method (Liu et al., 2018) considers the correlation
between samples and is reflected by the neural network
architecture. Its essence is that there is a feedback or feed-
forward connection within the unit layer. This structure can
effectively retain the information in the data transmission
process, that is, the hidden layer node of the RNN retains
its state, memory, and other information. Therefore, the RNN
can retain the sequence context information in the fault
diagnosis process and has good dynamic characteristics and
fault diagnosis levels. The forward propagation model of the
RNN is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
zlh � ∑I

i�1
wilx

t
i + ∑L

lp
wlp la

t−1
lp atl � fl(ztl)yt

k � ∑L
l�1

wlka
t
hi � 1, ..., I; l

� 1, ..., L; k � 1, ..., K.

(19)

In this formula, xti and at−1l* are the i neurons in the input layer
and l neurons in the hidden layer at time t, respectively; zlh is the
value of the l neurons in the hidden layer before the activation
function acts at time t; ytk is the k neurons of the output layer at
time t; wih is the weight between the input and hidden layers; wl*l

TABLE 2 | Characteristic parameters.

Num Description Designation units

1 compressor power CP kW
2 temperature of condenser water out TCO °C
3 temperature of evaporator water in TEI °C
4 temperature of condenser water in TCI °C
5 temperature of evaporator water out TEO °C
6 evaporator pressure PRE kPa
7 condenser pressure PRC kPa
8 subcooling TRC_sub °C
9 chiller efficiency kW/ton kW/ton
10 evaporator approach temperature TEA °C
11 tons of cooling delivered by the evaporator coil EvapTons kW
12 condenser approach temperature TCA °C
13 discharge superheat Tsh_dis °C

TABLE 3 | Fault types and one-hot coding.

Fault type Fault label One-hot coding

normal 0 100 000
FWC 1 010 000
FWE 2 001 000
RL 3 000 100
RO 4 000 010
CF 5 000 001

FWC, reduced condenser water flow; FWE, reduced evaporator water flow; RL,
refrigerant leakage; RO, refrigerant overcharge; CF, condenser fouling.
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is the weight of the hidden and hidden layers; wlk is the weight of
the hidden and output layers; and fl (▪) is a nonlinear activation
function.

Back-Propagation Neural Networks
BPNNs (Li et al., 2019b) are widely used neural network
algorithms, especially for fault diagnosis. The entire structure
of a BPNN is divided into three layers: input, hidden, and output
layers, from top to bottom. This three-layer structure is closely
linked and can guarantee the processing ability of BPNN
information. The general working principle of this method is
as follows.

The input layer sends the external information to the hidden
layer through each neuron, and the hidden layer subsequently
processes and converts the received information and acts on the
next neuron to generate the output signal. When there is an error
between the response and the expected value, it is distributed to
each unit layer by layer for reverse propagation. Continuous
learning and correction of the network is performed until the
error of the output layer of the entire network is lower than the
previously established value or the set number of iterations is
reached.

Support Vector Machines
The SVM approach (Zhao et al., 2019a) is among the most
influential fault diagnosis methods. The core idea is to
maximize the distance between samples by constructing a
mapping Ψ : R→H to obtain a classification hyperplane.
Suppose that the sample set is

G � {(ci, di)}gi�1, i � 1, · · ·, g. (20)

Then, ci is the input vector, namely, the fault pole data; di ∈ {1,
–1} is the category label, and g is the number of samples. The

necessary and sufficient conditions for the dual quadratic
optimization are satisfied through the following transformation:

minM(β) � 1
2
∑p
i,j�1

βiβjdidjK(ci, dj) −∑p
i�1

βis, t ∑n
i

βidi

� 0, i, · · ·, p 0≤ βi ≤C i � 1, · · ·, p (21)

h(x) � sgn(b +∑p

i,j�1βiyiK(ci, di)) (22)

K(ci, di) � ϕ(ci)ϕ(di), (23)

where βi is the introduced Lagrange multiplier, C is the penalty
factor in the radial basis function, Eq. 22 is the decision function,
and Eq. 23 is the kernel function. Then, the decision function is
solved, and finally, the linear separability of the sample is
achieved through the nonlinear transformation Φ(•) in the
kernel function.

Experimental Configurations

1) Data preprocessing

According to the fault severity, five fault data points and one
normal data point in the dynamic fault data of the joint simulation
platform were selected for establishing five data sets including SL1,
SL2, SL3, SL4 and MSL (Mixed Severity), and each data set was
composed of 6,000 groups of data. Faults are represented in the form
of 0–5 tags, as shown in Table 3 after one hot coding.

2) Feature selection

As listed in Table 2, the fault dataset included 13 characteristic
parameters, which were reduced to six by the mRMR algorithm.
These six were the most representative and correlated
characteristic quantities in the fault data, which are CP, TCO,
TEI, TCI, TEA and Evap Tons.

3) Hyperparameters and neural network architecture

Like other neural network models, LSTM networks have many
hyperparameters that must be modified by researchers and neural
network structures that need to be searched. However, the time
required and computational constraints make it impossible to sweep
a parameter space and find the optimal parameter set. Therefore, we
used a GA to optimize these model parameters. In this study, nine
parameters requiring optimization were finally identified, as shown
in Table 4, which respectively present the specific content of the
parameters and the optimization search results.

TABLE 4 | Hyperparameter optimization results and Neural network search
results.

Num Symbol Value

1 learning rate (lr) 0.0036
2 batch size 38
3 dropout 0.1
4 epochs 300
5 hidden layers 2
6 number of neural units (two layers) 50, 200
7 activation function Softmax
8 optimizer Nadam
9 loss function cross entropy

TABLE 5 | Method implementation details.

Comparison model Method implementation details

RNN epochs: 300; hidden layers: 2; number of neural units: 30, 61; batch size: 35; optimizer: Nadam; Lr: 0.007
BPNN epochs: 500; hidden layers: 3; number of neural units: 50, 50, 50; batch size: 32; optimizer: Adam; Lr: 0.006
SVM kernel function: Gaussian; kernel scale: 2; box constraint: 300; standardize: true; C: 1.02; c: 1.14

RNN, Recurrent Neural Network; BPNN, Back-Propagation Neural Network; SVM, Support Vector Machines.
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4) Comparison model configuration

All models in this study were implemented on the
configuration of NVIDIA GeForce MX150 using the Keras
architecture of the Python platform. Table 5 lists the setting

details of the compared fault diagnosis methods, which are the
best parameters chosen during the experiment.

Evaluation Indices
1) Training performance indices

We used the cross-entropy loss function to evaluate the
model training performance of the proposed method. The
specific principles of this evaluation method can be expressed
as follows.

For two probability distributions p and q of the sample set, let p
be a real distribution and q be a fitting distribution. The expected

TABLE 6 | Confusion matrix.

Positive prediction Negative prediction

positive label TP (true positive) FN (false negative)
negative label FP (false positive) TN (true negative)

FIGURE 5 | Diagram of fault diagnosis results.

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 75373211

Tian et al. AML Based Chiller Fault Diagnosis

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


encoding length required to identify a sample, i.e., the
information entropy, is measured according to p:

H(p) � −∑c
i�1

p(xi)log(p(xi)). (24)

If q is used to represent the expected encoding length based on
p, that is, the cross-entropy, then

H(p, q) � −∑c
i�1

p(xi)log(q(xi)). (25)

The KL divergence, also called the relative entropy, can be used
to measure the difference between p and q:

D(p ‖ q) � H(p, q) −H(p) � ∑c
i�1

p(xi)log[p(xi)
q(xi)]. (26)

The objective of the classification problem inmachine learning
is to narrow the gap between the model prediction and label, and
the label set remains unchanged, so it is only necessary to pay
attention to the cross-entropy in the optimization process. In the
multi-classification task in this study, the cross-entropy loss
function used to describe the training performance of the fault
classification model was calculated as

Loss � −∑c−1
i�1

yi log(ui). (27)

where ui � (u0, . . ., uc–1) is a probability distribution, and each
element represents the probability that the sample belongs to category
i, and y � (y0, . . ., yc–1) is a one-hot representation of the sample label.

2) Diagnostic performance indices

A confusion matrix was used to evaluate the diagnostic
performances of the different methods and verify that of the
proposed approach. The confusion matrix, also known as the error
matrix, is a standard format for precision evaluation, which is
expressed in the form of n rows and n columns, as shown in Table 6.

Accuracy and precision are the performance indicators derived
from the confusion matrix. According to the form of the confusion
matrix, accuracy is defined as the ratio of the number of correctly
diagnosed samples to the total number of samples, expressed as a
percentage, and the calculation formula is as follows:

Accuracy � TN + TP

FP + TN + TP + PN
× 100%. (28)

In multi-classification problems, the accuracy can represent
the overall accuracy of the model. The higher the similarity of the
fault label output by the model and the actual fault label, the more
accurate the classification, and the higher the diagnostic accuracy.

Precision represents the proportion of correct positive predictions
among all positive predictions. The calculation formula is as follows:

Precision � TP

TP + FP
× 100%. (29)

In certain types of multi-classification problems, the precision
can be used to calculate the classification accuracy of the model.

Experimental Results
This section describes the samples from the fault datasets of
different SLs that were introduced into the trained model.
Figure 5 presents the confusion matrix of the experimental
results, where the rows and columns correspond to the
predicted and actual labels, respectively. The numbers in the
confusion matrix represent the numbers of correct/false
predictions for each case. It can be seen that the proposed
AutoML method achieves an ideal classification accuracy.

In addition, LSTM_AML was used to represent the LSTM
models based on AutoML. AML is an abbreviation for AutoML.
By utilizing the confusion matrix, the fault diagnosis performance
of the LSTM_AML method was analyzed for chillers with
different types and severities of faults. For this purpose, we
converted the numerical values into images.

Figure 6 shows the training and diagnostic performances of
the LSTM_AML model for different faults and SLs. Among the

FIGURE 6 | Model performance with different fault types.

FIGURE 7 | Model performance with different levels of severity.
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mixed SL (MSL) fault samples, the FWC fault diagnosis accuracy is
the highest at 93.86%, and the diagnosis accuracies for the other fault
types are above 86%. The accuracy ofMSL diagnosis is generally low,
which is due to the intersection of the different fault types and SLs,
resulting in very complex changes in the characteristic parameters.
In samples SL1, SL2, SL3, and SL4, the FWC and evaporator water
flow fault accuracies are higher than those of the other fault types.
The results show that in chiller fault diagnosis, the proposed method
has the best fault sensitivity and highest accuracy in terms of water
flow reduction. Overall, the accuracy for each type of fault is more
than 86%, and with increasing fault severity level, the accuracy
gradually increases to 100%. The results show that an increase in
fault severity will further decrease the system performance, and the
LSTM_AMLmodel has excellent diagnostic performance due to the
drastic changes of the system parameters. Therefore, the more
serious the fault, the higher the diagnostic accuracy.

When we used the loss function to evaluate the training
performance of the model, we found that the smaller the loss, the
better the training performance of the model. As shown in Figure 6, in
samples SL1, SL2, SL3, and SL4, the loss is not more than 10%, and the

training effect is good. TheMSL fault samples have higher loss function
values owing to complex parameter variations, but they are all below
11%. Overall, the loss decreases with increasing fault severity, and the
minimum is close to 0. Thus, the proposed method exhibits superior
training performance.

In fault diagnosis, the higher the accuracy, the smaller is the cross-
entropy loss, and the better the training performance of the model, the
higher is the diagnosis level. Figure 7 presents the recognition accuracy
and cross-entropy loss of the proposed method and LSTM network
with chiller faults of different SLs. Comparedwith the traditional LSTM
method, the proposed method has a better training effect and higher
accuracies in the MSL and SL1 datasets, which are increased by 10.2
and 10.5%, respectively. The recognition accuracies of faults with other
SLs increase with increasing fault SL, reaching 98.92%. The loss
function also decreases, with the lowest value being 1.24%, showing
a good training effect. The proposed method not only collects time-
related information and obtains important features in a sufficiently
normal time series, but also obtains the optimal fault diagnosis model
by HPO. Therefore, compared with LSTM, the proposed method is
more sensitive to chiller faults and has better diagnostic performance.

FIGURE 8 | Comparison of methods with different fault types.
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Comparison With Other Methods
In this study, the LSTM_AMLmethodwas comparedwith the SVM,
RNN, and BPNNmethods to verify the effectiveness and superiority
of the proposed AutoML method in chiller fault diagnosis. We used
five datasets to conduct experiments using these four methods and
evaluated them in terms of accuracy and precision. Then, their
performances were compared and represented visually.

Figures 8, 9 present the test accuracies of different methods for
faults of different SLs in a givendataset. It isworthnoting that the higher
the fault severity, the higher is the accuracy of the method. Compared
with the othermethods, the proposed LSTM_AML approach improves
the diagnosis of faults with lower SLs more significantly than that of
faults with higher SLs. For sample SL1, the proposed method could
improve the diagnostic accuracy by up to 25.92%. Thus, the proposed
method can accurately diagnose faults in their early stages before they
become serious, further reducing the energy consumption and
maintenance costs. In addition, the diagnostic performance of the
proposed method in the MSL dataset is much higher than those of
the other methods, which demonstrates that the proposed method can
identify fault types with high accuracy in cases of more fault types and
complex severity. The reason for this performance improvement is that
the LSTM_AML model can learn and save the temporal correlation
information of data from a large number of temporal data. This
information facilitates sensitive judgment of the abnormal responses
of chillers by the classifier, enabling it to identify different fault types.

Therefore, compared with other FDD methods, the AutoML
method proposed in this paper not only can diagnose the faults of
low-severity chillers with much higher accuracy, but also has a
higher diagnostic level in complex fault cases.

CONCLUSION

This paper presented a chiller fault diagnosis method based on
AutoML, which can effectively improve the fault diagnosis
performance. The performance of the method was evaluated
using experimental data obtained through a simulation platform.
The main results of this study can be summarized as follows.

1) The proposed method can effectively extract important feature
information from training data. Using the mRMR method, 13

characteristic parameters in the experimental data were reduced
to 6, and the most critical data features were automatically
selected to reduce the number of redundant features and to
improve the fault diagnosis performance effectively.

2) The developed method can mine the time correlations between
fault data. The diagnostic accuracy of the proposed method can
reach 98.92%, and the diagnostic performance is significantly
improved comparedwith those of the other investigatedmethods.

3) A GA can automatically optimize and select the
hyperparameters and neural network architecture of the
LSTM model, obtain the optimal fault diagnosis model,
and select model parameters without human intervention.

4) The performance improvement achievable using this method
is significantly higher for less severe faults than for more
severe faults. Thus, faults can be accurately diagnosed in their
early stages before developing into serious faults.

5) In cases of complex fault types and chaotic severity, the
diagnostic accuracy of the proposed method is up to
20.86% higher than those of the other methods considered.

In addition, experiments and comparisons showed that the
training and fault diagnosis performance of the proposed method
are increasing, verifying the effectiveness of feature selection and
HPO. Further, the proposed AutoML method can improve the
training and fault diagnosis performance. However, this study is
limited in that the proposed method cannot effectively improve the
speed of fault diagnosis. In future research, we will study other
schemes or improved AutoML models to improve the fault
diagnosis speed of the model and the diagnostic performance.
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NOMENCLATURE

bc, bf biases

B fouling resistance amplification factor

βi Lagrange multiplier

ct cell state at time t

ct–1 cell state at time t–1

c1t the cell state of the first LSTM layer at t time

C penalty factor in the radial basis function

c the target class

δ thickness of the fouling layer

fl(▪) nonlinear activation function

ft forgetting threshold at time t

ht output unit at time t

ht–1 output unit at time t–1

i number of neurons in the input layer

k number of output nodes

K total heat transfer coefficient of the fin condenser

K0 fouling thermal resistance corresponding to a certain water

quality condition

l number of neurons in the hidden layer

L characteristic quantity

λ thermal conductivity of the fouling layer

MI(x; y) mutual information between x and y

m the number of features

M number of data

maxD(S, c),D max-relevance criterion

minR(S),R min-redundancy condition

N number of feature quantities after reduction

ot output threshold at time t

g number of samples

P number of training samples

p(x) probability density respectively of x

p(y) probability density respectively of y

p(x,y) crossover probability or joint probability of x and y

pi hyperparametric vector

Ps model parameter vector set

Φ(•) nonlinear transformation in the kernel function

p real distribution

q fitting distribution

Q number of validation samples

r thermal resistance of the fouling layer

R real number set

S the feature set

σ sigmoid function

tanh activation function

Uc, Ui, Uo weights

wih weight between the input and hidden layers

wl*l weight of the hidden and hidden layers

wlk weight of the hidden and output layers

Wc, Wi, Wo, Wt weights

X data before normalization

xi output value of node i

Xmax maximum value in the original sample data

Xmin minimum value in the original sample data

X´n sample data after feature selection

Xnormal, X´normal data after normalization

xt input unit at time t

xa/xb feature

ui the probability that the sample belongs to category i

y = (y0, . . ., yc–1] one-hot representation of the sample label

yi ∈ {1, –1} category label

yp true values of the training samples

y´p predicted values of the training samples

yq true values of the validation samples

y´q predicted values of the validation samples

ci input vector

di category label

xti i neurons in the input layer at time t

at−1l* l neurons in the hidden layer at time t-1

zlh value of the l neurons in the hidden layer before the activation function acts
at time t

ytk k neurons of the output layer at time t
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