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With the rapid development of renewable energy, the lithium-ion battery has become
one of the most important sources to store energy for many applications such as
electrical vehicles and smart grids. As battery performance would be highly and directly
affected by its electrode manufacturing process, it is vital to design an effective solution
for achieving accurate battery electrode mass loading prognostics at early
manufacturing stages and analyzing the effects of manufacturing parameters of
interest. To achieve this, this study proposes a hybrid data analysis solution, which
integrates the kernel-based support vector machine (SVM) regression model and the
linear model–based local interpretable model-agnostic explanation (LIME), to predict
battery electrode mass loading and quantify the effects of four manufacturing
parameters from mixing and coating stages of the battery manufacturing chain.
Illustrative results demonstrate that the derived hybrid data analysis solution is
capable of not only providing satisfactory battery electrode mass loading
prognostics with over a 0.98 R-squared value but also effectively quantifying the
effects of four key parameters (active material mass content, solid-to-liquid ratio,
viscosity, and comma-gap) on determining battery electrode properties. Due to the
merits of explainability and data-driven nature, the design data–driven solution could
assist engineers to obtain battery electrode information at early production cases and
understand strongly coupled parameters for producing batteries, further benefiting the
improvement of battery performance for wider energy storage applications.

Keywords: lithium-ion battery, battery electrode property prediction, battery parameter analysis, data-drivenmodel,
energy storage system

INTRODUCTION

Recently, the lithium-ion (Li-ion) battery has become a popular energy storage technology for many
sustainable energy applications, such as transportation electrification (Su et al., 2011; Chen et al.,
2016) and a smart grid (Chen and Su, 2018; Hu et al., 2020; Hu et al., 2021a), due to the advantages of
a low discharge rate and high energy density (Wang et al., 2020; Xie et al., 2020). However, Li-ion
battery performance would be highly influenced by its related manufacturing process especially for
the electrode component (Liu et al., 2021a). To further improve battery performance and save the
battery cost for wider battery applications, efforts are urgently required to accurately predict battery
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electrode properties in the early manufacturing stage and in-
depth understand key parameters within a battery electrode
manufacturing process.

Unfortunately, the battery electrode manufacturing process
involves multidisciplinary operations from electrical, chemical,
thermal, and mechanical engineers, which would contain
numerous individual manufacturing stages with lots of
strongly coupled parameters, over 600 in total (Wu et al.,
2019). The current solutions to analyze the contributions and
importance of these parameters are still mainly dependent on
long-term experimental experiences and trial and error
approaches (Kwade et al., 2018). These conventional solutions
are significantly time-consuming and labor-intensive. In light of
this, it is very meaningful to design a suitable data analysis
solution that could efficiently and automatically perform an
interpretable analysis for explaining the contributions and
importance of parameters within the battery manufacturing
process.

With the rapid development of artificial intelligence and
machine learning technology, data-driven strategies have been
widely used as an efficient tool in the field of battery management
(Liu et al., 2019a; Li et al., 2019). Numerous research studies have
been carried out to design suitable data-driven solutions to
benefit battery internal-state estimation (Feng et al., 2020;
Zhang et al., 2020), lifetime, or future aging prognostics in
both cycling (Lucu et al., 2020; Tang et al., 2020) and calendar
modes (Liu et al., 2019b), fault diagnostics (Yang et al., 2018;
Wang et al., 2021), cell equalization (Ouyang et al., 2019; Liu et al.,
2020; Song et al., 2020), charging control (Ban et al., 2021; Wei
et al., 2021), thermal management (Xie et al., 2021a; Xie et al.,
2021b), and energy management (Liu et al., 2019c; Wu et al.,
2020; Chen et al., 2021). Overall, after deriving these data-driven
solutions, a more efficient and smarter battery management can
be achieved. However, these research studies mainly focus on the
performance improvement of battery products, while relatively
little has been carried out to benefit their related production
chain. It should be known that battery performance actually is
determined or affected by its manufacturing stage, which should
be also well analyzed and managed (Kwade et al., 2018; Liu et al.,
2021a).

In comparison with battery management activities with
fruitful achievements, just a few research studies have been
carried out so far through deriving advanced data–based
strategies to improve battery manufacturing (Zwicker et al.,
2020). For instance, using the cross industry standard process
(CISP), a linear data–driven model and a neural network–based
data-driven model are derived by Schnell et al. (2019) for
predicting battery properties and identifying dependencies of
the battery manufacturing chain. Turetskyy et al. (2019)
adopted the tree-based techniques to analyze the importance
of manufacturing parameters and predict the maximum capacity
of the manufactured battery. In Cunha et al. (2020), after plotting
2D graphs from data-driven models and experiment data, the
dependencies of three mixing parameters are analyzed. After
designing a random forest–based framework, an interpretable
data-driven model is designed in Liu et al. (2021b) to analyze
parameters within a battery manufacturing chain. For the

aforementioned studies, through designing data-driven
solutions, reasonable analyses of parameters within the battery
manufacturing chain can be obtained. However, most research
studies still use the conventional data-driven methods without
explainability to only achieve battery property predictions.
Moreover, few studies have been carried out through deriving
data-driven solutions to quantify and explain the effects of
manufacturing parameters from key stages such as mixing and
coating on battery electrode property predictions. In order to
obtain battery electrode property information at the battery’s
early production stages and optimize the related manufacturing
parameters for smarter battery production, it is vital to perform
an effective parameter effect analysis with respect to the mixing
and coating specifications of battery manufacturing.

Given the aforementioned consideration, this study proposes a
hybrid data analysis solution by combining the benefits of the
SVM and LIME to benefit battery electrode property predictions
and a parameter effect analysis. The main focus of this study is on
two early but important manufacturing stages: mixing and
coating. Several main objectives of this study are 1) to perform
accurate battery electrode mass loading predictions at the
battery’s early manufacturing stage via an effective data-driven
model and 2) to evaluate the contributions of some
manufacturing parameters of interest from mixing and coating
on electrode mass loading predictions, where their contributions
and importance will also be quantified and explained effectively.
All these efforts could help engineers to better understand their
manufactured battery, further benefiting the improvement of
battery performance, and achieve smarter battery production
for wider battery-based applications.

The reminder of this article is organized as follows: Battery
Early Manufacturing Stages and Electrode gives a brief
introduction to the battery early manufacturing stages,
especially for electrode production. Methodology details the
fundamental of the SVM with different kernel functions, the
LIME with the linear model to explain parameter contributions
and effects, the derived hybrid data–driven model structure, and
some typical performance indicators to quantify the performance
of battery electrode mass loading predictions. Then, the detailed
results and discussion of mass loading predictions and the
parameter effect analysis are given in Results and Discussions.
Finally, Conclusion concludes this study.

BATTERY EARLY MANUFACTURING
STAGES AND ELECTRODES

As a complicated progress that involves many electrical, chemical,
thermal, and mechanical operations, battery electrode
manufacturing plays a vital role in determining the electrode’s
properties, further affecting battery performance in energy
storage applications. In light of this, the parameters and
variables in the early manufacturing stages of the battery must
be well monitored and analyzed.

Figure 1 summarizes several key individual battery early
manufacturing stages to produce battery electrodes.
Specifically, proper materials such as active materials

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 7543172

Chen et al. Data-Driven Analysis for Battery Prognostics

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


(Li–NCM oxide and graphite), conductive additives (carbon
black), a solvent (N-methyl-2-pyrrolidone), and a binder
(polyvinylidene-difluoride, hydrogenated-nitrile, or ethyl-
acrylate-co-maleic anhydride) will be first prepared. Then,
these materials will be mixed within soft blenders to produce
slurries during the mixing stage. After that, a coating stage will be
performed to coat these slurries onto the surface of metal foil. In
general, the anode electrode would use the copper foil and the
cathode electrode will adopt the aluminum foil. The coating speed
would be set to a constant value, and the coater’s comma-gap will
be adjusted to generate the shear force which could mainly
determine the coating thickness. Then, the wet coating
product would be dried within ovens through presetting
suitable temperature. After that, a calendering stage will be
conducted to further evaporate the residual solvent of the dry-
coated product. Finally, after cutting the calendered products into
suitable sizes for different types of batteries, the battery electrode
could be obtained.

It should be noted that all these individual stages (mixing,
coating, drying, calendaring, and cutting) require the specific
equipment (i.e., mixer, coater, and dryer) and would involve
numerous process parameters and variables. Some parameters
particularly from battery electrode early manufacturing stages
such as mixing and coating are crucial for determining electrode
property and must be well monitored and analyzed. Therefore, to
explore the effects and contributions of some interested battery
early manufacturing parameters on predicting battery key
electrode properties, three parameters including the active
material mass content (MC) with the unit of %, solid to
liquid-ratio (StLR) with the unit of %, and viscosity with the
unit of Pas from the mixing stage and a process parameter called
comma-gap (CG) with the unit of mm from the coating stage are
chosen as the explored parameters of interest. Then, a hybrid data
analysis solution would be designed to perform battery electrode
mass loading predictions at early manufacturing stages and also
quantify the contributions of these selected manufacturing
parameters. Theoretically, the mass ratio between a solid
component and slurry mass can be reflected by StLR. The

coating stage, especially for the coating shear rate, would be
highly affected by the viscosity of slurries. CG represents the gap
between comma and coating rolls. This parameter could highly
affect both weights and thickness of the coated product. Electrode
mass loading has a unit of mg/cm2. In order to perform effective
battery mass loading predictions and analyze these important
battery manufacturing parameters, the well-collected dataset
from Franco Laboratoire-de-Reactivite-et-Chimie-des-Solides
(LRCS) is explored in this study. It should be known that the
effectiveness of this type of dataset has been verified by Cunha
et al. (2020). Due to page limitations, detailed information
regarding the related design of experiments and data
descriptions are provided in Cunha et al. (2020) for readers of
interest. Based upon this dataset, the hybrid data analysis solution
combining the kernel-based SVM and linear model–based LIME
could be derived to predict battery electrode mass loading at the
early manufacturing stage, where the contributions of these four
battery manufacturing parameters of interest could also be
explained.

METHODOLOGY

In this section, the fundamental of the support vector machine
regression model with three different kernels are first presented,
followed by the descriptions of a linear model–based local
interpretable model-agnostic explanation technique. Some
performance indicators to evaluate the prediction performance
are also given.

Support Vector Machine Regression Model
With Different Kernels
The support vector machine (SVM) belongs to the supervised
machine learning method and is powerful for classification and
regression (Pisner and Schnyer, 2020). To achieve effective
regression, a structural risk minimization way is utilized in the
SVM to generate the upper bound on the generalization error

FIGURE 1 | Key early stages during the battery electrode manufacturing progress.
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(Zendehboudi et al., 2018). Using a high-dimension linear
function, the approximated regression function of the SVM
could be expressed as follows:

Y � ω · θ(X) + c, (1)

where Y and X represent the output and input vectors,
respectively; θ(X) means the higher dimension feature spaces;
and ω stands for the weight vector, while c is a constant parameter
to reflect bias. Both these parameters could be identified through
minimizing a regularized risk function (Rrf) as follows:

Rrf � ‖ω‖2/2 + Cp∑M
k�1

Lε(xk, yk, f), (2)

with

Lε(xk, yk, f) � { ∣∣∣∣yk − f(xk)
∣∣∣∣ − ε,

∣∣∣∣yk − f(xk)
∣∣∣∣≥ ε

0, otherwise
, (3)

where ‖ω‖2/2 is a regularization term to measure the function
flatness; Cp represents a cost parameter to determine the trade-
off between training errors and model flatness; εmeans tube sizes;
and Lε(xk, yk, f) is an ε-insensitive cost function to penalize the
errors larger than ε. After involving slack variables ξk and ξpk,
Eq. 2 could be further expressed with the constrained formation
as follows:

min⎡⎣‖ω‖2/2 + Cp∑M
k�1

(ξk + ξpk)⎤⎦. (4)

subject to ⎧⎪⎨⎪⎩ yk − [(ω × xk) + c]≤ ε + ξk
[(ω × xk) + c] − yk ≤ ε + ξpk
ξk, ξ

p

k ≥ 0
. (5)

For this quadratic programming issue, the way of adopting the
Lagrangian multiplier β could be utilized to handle the issue.
Then, f(x) could be finally obtained with the explicit form as
follows:

f(x) � ∑M
k�1

(βk − βpk)K(xk, x) + c, (6)

where βkβ
p
k � 0, βk, β

p
k ≥ 0, and K(xk, x) represents a kernel

function that could be formulated by K(xk, x) � θ(xk)Tθ(x) in
feature spaces.

It should be noted that for various real applications, different
kernel functions could provide various performances and need to
be carefully determined. In this study, to perform satisfactory
battery electrode mass loading predictions, three classical and
effective kernel functions are derived. The first kernel function is a
typical Gaussian kernel as follows:

KGaussian(xk, x) � exp[ − ����xk − x2
����/2σ2], (7)

where σ is the hyperparameter of the Gaussian kernel.
Next, two polynomial kernel functions including the cubic-

based kernel and quadratic-based kernel are also adopted with the
following forms as:

KCubic(xk, x) � (ac · xT
k · x + bc)3, (8)

KQuadratic(xk, x) � (aq · xT
k · x + bq)2, (9)

where ac and bc are the hyperparameters for the cubic-based
kernel and aq and bq stand for the hyperparameters of the
quadratic-based kernel

Local Interpretable Model-Agnostic
Explanations
After deriving the SVM-based regression model for battery
electrode mass loading prediction, to further explain these
related predictions, the local interpretable model-agnostic
explanation (LIME) is utilized. It should be known that LIME
belongs to a model-agnostic solution which could mimic the
underlying behaviors of a black box model for generating the
explanation of the related prediction (Zafar and Khan, 2021).
Based upon the derived SVM-regression model, detailed
workflow to develop related LIME is shown in Table 1.

To sum up, LIME would perform four key steps to provide
the explanation of an instance as follows: 1) LIME would
randomly generate samples around the observation of
interest, as illustrated in line 3; 2) LIME would adopt the
SVM-based regression model to perform predictions of the
generated random samples, as shown in line 4; 3) LIME
would construct a local regression model based on the
generated random samples and related prediction points
from the SVM-based regression model, as illustrated in line
5; and 4) the coefficients from the local regression model within
LIME quantify the contributions and importance of parameters
of interest on the predictions of observation from the SVM-
based regression model.

Model Structure and Performance Indicator
For battery electrode production, key parameters from mixing
and coating stages would highly affect the performance and
property of the manufactured battery electrode. In this study,
to effectively analyze the contributions and effects of mixing and
coating’s parameters of interest on the early manufacturing
predictions of battery electrode mass loading, a hybrid SVM-
LIME–based data-driven model is derived, with the structure
shown in Figure 2. Specifically, four battery manufacturing
parameters including MC, StLR, CG, and viscosity are utilized
as SVM-based regression model inputs, while their related
electrode mass loading is adopted as the model output. The
linear model–based LIME is integrated within the SVM to give
the explanation of these predictions.

In order to quantify battery electrode mass loading prediction
results of using various kernel-based SVM regression models,
several classical performance indicators (Hu et al., 2021b) are
utilized in this study.

1) Mean absolute error (MAE): suppose N stands for the total
number of observations, Massi represents the real tested
battery electrode mass loading values, and ^Massi stands for
the predicted mass loading points from the SVM, then the
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MAE to quantify the accuracy of the SVM can be expressed as
follows:

MAE � 1
N

∑N
i�1

∣∣∣∣Massi − M̂assi
∣∣∣∣. (10)

2) Mean square error (MSE): following the same assumption, the
MSE could be calculated with the following form to reflect the
deviation between predicted electrode mass loading and real
values as follows:

MSE � 1
N

∑N
i�1

(Massi − M̂assi)2. (11)

3) Root mean square error (RMSE): The RMSE is a popular
performance indicator derived from the MSE as follows:

RMSE �

�����
1
N

∑N
i�1

√√ (Massi − M̂assi)2. (12)

4) R-squared: suppose Mass means the average point of all
predicted electrode mass loadings, R-squared can be calculated
with the following form to reflect how much the predicted
electrode mass loading gets close to the real values as follows:

R − Squared � 1 −∑N
i�1

(Massi − M̂assi)2/∑N
i�1
(Massi −Massi)2

.

(13)

For our battery electrode mass loading prediction
cases, when the predicted mass loading points match well
with the real test points, MAE, MSE, and RMSE would
become close to 0, while R-squared would get close to 1.
Based on these performance indicators, the electrode mass
loading predictions from SVM regression models with
different kernels can be evaluated.

RESULTS AND DISCUSSION

In this section, to evaluate the prediction performance of the
derived SVM models with different kernel functions, the battery
electrode mass loading predictions are first carried out using three
kernel-based SVM regression models. To further analyze the
parameter effects, the case studies of using LIME to quantify
the importance of three mixing parameters and one coating
parameter are then carried out and discussed.

Battery Electrode Mass Loading Prediction
Results
We first consider the results and discussion of battery electrode
mass loading predictions. Based upon the model structure as
illustrated in Figure 3, three mixing parameters, including slurry
MC, StLR, and viscosity, and one coating parameter, CG, are
inputted into the SVM regression model, while battery electrode
mass loading is used as the output of the SVMmodel.Without the
loss of generality, sevenfold cross-validation solution is utilized to

TABLE 1 | Detailed workflow to develop LIME for prediction explanation.

Inputs
SVM represents an established black box model
X stands for an observation point that needs to be explained
NI represents several randomly generated observations, while L is the length of interpretation

Output: CT stands for a set of contribution of battery manufacturing parameters of interest on the predictions of the observation point X .

Start procedure
1 D � ∅
2. for j in { 1, . . . , NI } do
3. dj � sample around(X )
4. y’j � predict
5. D � D ∪ dj , yj′
6. end
7. l � K − Lasso(D, L)
8. CT � get coefficients(l)
9. return CT

End procedure

The bold and italic values means sample index.

FIGURE 2 | Hybrid data–driven model through combining the SVM and
LIME to predict battery electrodemass loading and analyze parameter effects.
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evaluate battery electrode mass loading prediction performance
of all SVMs. Their corresponding predicted response versus
actual response plots are also presented.

Figure 3 and Table 2 illustrate the mass loading prediction
results and the corresponding performance indicators for all
three kernel-based SVMs, respectively. Obviously, the most
predicted battery electrode mass loading points from these
three SVMs in Figure 3 agree well with the real observations.
Quantitatively, the SVM regression model with the cubic kernel
achieves the best performance for electrode mass loading
prediction with 1.02mg/cm2 MAE, 4.13mg/cm2 MSE, and

2.03mg/cm2 RMSE, which are 12.8, 25.7, and 13.8% smaller
than those from the SVM regression model with the
quadratic kernel, respectively. In contrary, the SVM
regression model with the Gaussian kernel gives the worst
prediction results of battery electrode mass loading with
1.57mg/cm2 MAE, 1.56mg/cm2 MSE, and 1.25mg/cm2

RMSE. However, the R-squared values of all these three
SVMs are all larger than 0.98, which implies that Gaussian,
quadratic, and cubic kernels could provide enough prediction
accuracy for battery electrode mass loading. In summary, using
MC, StLR, viscosity, and CG as the inputs of SVM regression
models, satisfactory battery electrode mass loading prediction
could be obtained.

To further evaluate the deviation results of battery electrode
mass loading prediction, the predicted response versus actual
response plots (PvAPs) for all three SVMs with different kernels
are illustrated in Figure 4. Theoretically, for the observations on
both the left and right of PvAP, the furthest from the mean point
will generate the most leverages and make the prediction line
close to that observation. In this context, the observations
should become close to the perfect prediction line for a good

FIGURE 3 | Prediction results for battery electrode mass loading using different kernel-based SVMs.

TABLE 2 | Performance indicators for mass loading prediction using different
kernel-based SVMs.

Kernels Gaussian Cubic Quadratic

MAE [mg/cm2] 1.57 1.17 1.02
MSE [mg/cm2] 4.13 2.10 1.56
RMSE [mg/cm2] 2.03 1.45 1.25
R-squared 0.98 0.99 0.99

FIGURE 4 | Predicted versus actual plots using different kernel-based SVMs: (A) Gaussian kernel, (B) quadratic kernel, and (C) cubic kernel.
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prediction model. From Figure 4, almost all observations
become close to their perfect prediction lines for all these
three SVM models with different kernels. These results
signify that the Gaussian-based SVM model, cubic-based

SVM model, and quadratic-based SVM model could all give
satisfactory performance without outliers for battery electrode
mass loading prediction.

Parameter Effect Analysis
After deriving SVM models with three different kernel
functions for the predictions of battery electrode mass
loading, this part would then focus on the effect analysis of
four battery manufacturing parameters of interest toward
determining battery electrode mass loading. To perform the
parameter effect analysis of different battery electrode
manufacturing cases, six randomly selected observations
listed in Table 3 are selected as the query points for further
investigation in this study. Then, the LIME with the linear
model is integrated with the most accurate SVM regression

TABLE 3 | Case studies of randomly selecting query points to analyze parameter
effects.

Query points MC StLR CG Viscosity

1 96 66.908 75 1.64
2 96 68.923 50 1.71
3 94 64.992 75 3.33
4 95 65.024 50 1.71
5 92.7 59.986 100 3.89
6 92.7 55.006 100 2.17

FIGURE 5 | Parameter effect analysis results using LIME with the linear model for six query points: (A) query point 1, (B) query point 2, (C) query point 3, (D) query
point 4, (E) query point 5, and (F) query point 6.
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model with the quadratic kernel to explain the parameter
effects on battery electrode mass loading predictions of
these six query points.

To reflect the effects of these four battery manufacturing
parameters (MC, StLR, viscosity, and CG) on determining
mass loading of these six query points, their parameter effect
analysis results using LIME with the linear model are shown in
Figure 5. The predicted results of using the SVM regression
model and a simple model within LIME are also given to reflect
the output difference between these twomodels. From Figure 5, it
can be observed that all these query points provide the same
parameter effect trends of four predictors. Quantitatively, CG
achieves the largest negative effect with around −9×10−3, which is
over ten times larger than that from slurry viscosity (the
parameter gives the smallest negative effect). Slurry StLR
provides the second largest positive effect with around
2.5×10−3, which is 13.6% larger than MC (the parameter gives
the third largest positive effect). These results signify that the
effects of all four key manufacturing parameters can be
successfully obtained by LIME. Besides, it can be noted that
the mass loading prediction results from the LIME’s simple
model get close to the prediction results from the quadratic
kernel–based SVM model, indicating that the LIME with the
linear model can present the accurate predictions of mass loading
for all query points. Therefore, our proposed hybrid solution
could also well explain the effects of all these four manufacturing
parameters.

On the other hand, in this study, we follow the same flow from
some feature engineering applications (Dong and Liu, 2018; Liu
et al., 2021c) to derive a hybrid data analysis solution for
analyzing four key battery manufacturing parameters from
mixing and coating stages. Based upon MATLAB 2020 with a
2.40 GHz Intel Pentium 4 CPU, the efficient calculation process
can be achieved with a low computational burden of less than 5s
computational time for all tests. Then, the derived hybrid method
is capable of providing effective battery electrode mass loading
predictions and reliable effect analyses of interested
manufacturing variables. As battery manufacturing is a highly
nonlinear and strongly coupled process with numerous
parameters in total, monitoring and controlling all these
parameters are significantly time-consuming and laborious. In
the light of this, the merits of using our proposed hybrid data
analysis solution will be more obvious when more datasets to
reflect other parameters within battery manufacturing become
available. Then, this hybrid solution could assist engineers to
predict battery electrode properties with satisfactory accuracy and
understand the effects of battery manufacturing parameters of
interest.

CONCLUSION

As battery electrode manufacturing plays a pivotal role in
determining the performance of related battery products, the
reliable electrode mass loading predictions and effect analysis
of manufacturing parameters of interest are presented in this
article. An explainable data-driven solution, based on the

integration of different kernel-based SVM models and LIME
with the linear model, is derived to perform effective battery
electrode mass loading predictions. Besides, the effects of four
involved manufacturing parameters from mixing and coating
stages are also analyzed. Based upon the comparative
prediction results and parameter effects analysis, some
conclusions could be obtained as follows: 1) The SVM
regression models could well predict battery electrode mass
loading with over a 0.98 R-squared value after inputting four
key manufacturing parameters, while the quadratic
kernel–based one is able to achieve the best prediction
performance with only 1.25mg/cm2 RMSE. 2) The LIME
could generate similar parameter effect trends for all six
selected query points. CG would give the largest effect,
while viscosity provides the smallest effect. 3) The outputs
from the linear model within LIME get close to the predicted
values from the quadratic kernel–based SVM regression model
for all six query points, indicating the effectiveness of
integrated LIME. This is the first known application by
combining the SVM regression model and LIME to design a
hybrid data analysis solution for accurately predicting battery
electrode mass loading and analyzing key battery
manufacturing parameter effects of interest. As the derived
data analysis solution in this study has merits of data-driven
characteristics, flexibility, and explainability, it could be
extended to predict other battery properties and analyze
other manufacturing parameter effects when the related
dataset becomes available.
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