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Natural gas has been attracting increasing attentions all around the world as a relatively
cleaner energy resource compared with coal and crude oil. Except for the direct
consumption as fuel, electricity generation is now another environmentally-friendly
utilization of natural gas, which makes it more favorable as the energy supply for urban
areas. Pipeline transportation is the main approach connecting the natural gas production
field and urban areas thanks to the safety and economic reasons. In this paper, an
intelligent pipeline dispatch technique is proposed using deep learning methods to predict
the change of energy supply to the urban areas as a consequence of compressor
operations. Practical operation data is collected and prepared for the training and
validation of deep learning models, and the accelerated predictions can help make
controlling plans regarding compressor operations to meet the requirement in urban
natural gas supply. The proposed deep neutral network is equipped with self-adaptability,
which enables the general adaption on various temporal compressor conditions including
failure and maintenance.
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INTRODUCTION

Natural gas has been recognized as an important energy source for urban energy supply and industry
fuel. Thanks to the high-quality, efficient and low-carbon advantages, increasing the consumption
proportion of natural gas in primary energy will help to control air pollution and improve the quality
of ecological environment (Wood, 2020). According to the BP Statistical Review of World Energy
2021 (Statistical Review of World Energy, 2021), global energy consumption in the year 2020
decreased by 4.5% compared with the previous year, which is also the largest decline since the end of
World War II. The main reason for the decline in energy consumption is the unprecedented
reduction in oil demand. In order to control the spread of the epidemic, different levels of blockade
measures have been taken all over the world, resulting in a sharp decline in energy demand related to
transportation. The decline in oil consumption accounted for about three-quarters of the total
decline in energy demand. Thanks to China’s continued strong growth, natural gas consumption has
shown greater flexibility (Qin et al., 2018). In 2020, global natural gas consumption decreased by 81
billion cubic meters year-on-year, a decrease of 2.3%. Nevertheless, the proportion of natural gas in
primary energy consumption continued to rise, reaching a record high of 24.7% (Che et al., 2021).
The largest year-on-year growth in consumption was China and Iran, with an increase of 22 billion
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cubic meters and 10 billion cubic meters respectively. Except for
the direct consumption as fuel, natural gas can also be used for
combined heat and power generation. It has been reported that in
terms of NOx emissions (average), gas-fired power plants are 55%
lower than coal-fired power plants, and in terms of smoke
emission (average value), gas-fired power plants are 70% lower
than coal-fired power plants. Thus, considering the smaller
pollutant emission, emission reduction cost, energy
consumption and water consumption of gas-fired power
generation compared with those of coal-fired power
generation, natural gas has been welcomed as the electricity
supply to urban areas with more economic and environmental
benefits (Rey et al., 2021).

The natural gas industry chain is usually divided into three
parts: upstream exploration and production, midstream
transportation and downstream distribution. As the bridge
connecting upstream and downstream areas, transportation
plays an important role in ensuring both the economic
production and safe supply for urban consumption (Zhang
et al., 2019). Pipeline transportation takes the pipeline as the
carrier and uses pressurized facilities to pressurize natural gas, so
that it flows from high pressure to low pressure and thus
transported to the destination. Compared with other
transportation carriers, pipeline has the advantages of low
transportation cost, large transportation volume, high safety
performance and low transportation loss. Especially, the less
land occupation using buried pipelines and less impact from
the bad weather/traffic conditions makes pipeline transportation
more suitable for urban energy supplies (Li et al., 2020). The huge
natural gas pipeline system constitutes the main artery of urban
operation. Because natural gas has the characteristics of
flammability and explosion, whether the pressure and flux in
the pipeline are always maintained in a reasonable range during
its transmission and consumption is the key consideration for
safe, stable and continuous gas supply to urban users. Therefore,
the accurate monitoring and regulation of the flow and pressure
values in the gas pipeline is the key approach to reduce the safety
risk of the natural gas pipeline network system and improve the
management and regulation efficiency.

The urban energy supply through natural gas pipelines is
usually carried out by contracts, plans and assignment (Lv and
Ding, 2020). The contract is the annual purchase and sales
volume and price agreement signed between the sales
company and the user, which is more the determination of
macro resources. Monthly plan is the specific plan and
arrangement for the user’s gas consumption in the next
month, which is clearer and more instructive. Daily
assignment is the basis for the user to extract the gas
consumption of the next day. After the sales company agrees
and is approved by the dispatching center, it will be transported
according to the daily designated quantity as the basis for
measurement and handover. It is the direct voucher for the
transfer of property rights between the buyer and the seller
and the main content of daily production of the user and the
sales company. Thanks to the complex station systems in urban
natural gas supply networks, the control center should learn the
information of important stations in time and accurately, and the

dispatching personnel should make correct evaluation and
decisions of the overall operation to issue accurate guidance
instructions. Therefore, building a pipeline dispatch scheme
with rapid response and intelligent regulation is conducive to
the long-term, effective, economic and stable operation of urban
natural gas supply system.

Pipeline dispatching systems are usually suggested by
numerical modeling and simulation of flow and transport
behaviors in the pipeline flow, by which the computed
pressure and flux information is essentially required in the
decision makings (Ahmadian Behrooz and Boozarjomehry,
2015; Madoliat et al., 2016; Sundar and Zlotnik, 2018). Due to
the complex topological structure and hydrodynamic
mechanisms of natural gas pipeline network, researchers have
been focusing on the accelerated numerical methods to quickly
predict the key operation features (Steinbach, 2007; Liu et al.,
2020). A reduction technique was proposed in (Grundel et al.,
2013) using proper orthogonal decomposition and radial basis
function surrogates to reduce the pipeline network complexity as
well as the CPU time used for computations. Similarly,
orthogonal collocation technique was used in (Ahmadian
Behrooz and Boozarjomehry, 2015) to solve the governing
equations considering energy balance properties. The
electronic circuit concepts of resistance, capacitance, and
inductance were proposed in (Ke and Ti, 2000) to construct
ordinary differential equations (ODEs) with the first order
accuracy, which significantly reduces the computational cost
compared with conventional governing equations. Meanwhile,
the conventional governing equations were linearized in (Zhou
et al., 2017) and the Laplace transform was carried out to
implement the temporal problems, for which the explicit finite
difference method was adapted to solve the discretized
formulations. On the contrary, the fully implicit discretization
was carried out in (Madoliat et al., 2016), in which the particle-
swarm optimization method was adapted to accelerate the flow
rate calculations. Implicit solvers were also developed in
(Behbahani-Nejad et al., 2019; Bermúdez and Shabani, 2019),
where the high-order Finite Element (FE) method was used to
implement the discretization. The implicit Euler method was
adapted in (Steinbach, 2007; Liu et al., 2020) to implement
pipeline simulation considering temporal conditions, which
was then further used to suggest energy supply with
uncertainties of gas components and energy demand. Pipe
inclinations were incorporated in the governing equations in
(Herrán-González et al., 2009), in which the Crank–Nicolson
scheme was used to implement the numerical discretization.
Practical natural gas mixing phenomena with different
components was investigated in (Guandalini et al., 2017), and
the conventional volume-based approach was used to solve the
governing equations incorporating the energy formulation
considering calorific value. The effect of simplifying
assumptions and comparisons among isothermal and non-
isothermal models were carried out in (Brouwer et al., 2011),
as well as a thorough investigation on different gas pipeline
models.

The recent popularity on deep learning methods has opened a
new window for fast and accurate gas pipeline simulations. A
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breakthrough study was reported in (Zhang et al., 2021), using
deep learning technique to predict the transportation flux at
certain key stations as a consequence of compressor operations.
The simplified engineering scenario, as well as the self-adaptive
deep neural network, was proved to be effective in the flux
estimations. Other applications of data-driven techniques and
deep learning algorithms in energy transportation systems have
been reported in (Zheng et al., 2021) and (Su et al., 2021). In this
paper, a more realistic engineering scenario will be proposed to
mimic the practical dispatching process so as to suggest on the
proper dispatching plans for maintaining or changing natural gas
supply to the urban area. We will concentrate on the
consideration of compressor failures and offline status, and
generate a possible dispatching plan involving the controllable
compressors to meet certain goal. The remainder of this paper is
organized as follows. In Engineering Scenario Section, the
engineering scenario is described with details on the decision
making process, and explanations on the dispatching diagram is
presented. The deep learning technique for energy supply
prediction is introduced in Deep Learning Method Section
with self-adaptability, followed by an example case in Results
and Discussion Section, showing the detailed implementation of
making pipeline dispatching plans assisted by the proposed self-
adaptive deep learning techniques. Remarkable conclusions are
provided in the end, with expectations on the further
investigations in the future based on the authors’ working and
research experience.

ENGINEERING SCENARIO

In the modern natural gas pipeline dispatching systems, the
dispatchers working in the controlling center may work on the
intelligent system to release instructions of opening or closing

certain compressors along the pipeline. The working status of all
the compressors are reflected on the central system, and the
transportation flux and pressure are monitored to ensure a safe
and economic energy supply. In order to maintain, increase or
decrease the energy supply to the urban area according to the
demand change and policy issues, the dispatchers need the flux
prediction as the consequence of possible compressor operations
to make decisions regarding the dispatching plans. Thus, an
intelligent dispatching process is proposed in this paper to
assist the practical plan decisions using deep learning
methods. As shown in Figure 1, the system will first check the
compressor status along the whole pipeline and convert it to
compressor Boolean values (CB). The open compressors will be
marked as “1” and the closed compressors will be marked as “0”.
Specifically, the compressors that cannot be accessed remotely or
controlled immediately will be noticed and exclude in the further
plan making process. Besides, the aimed energy supply to the
urban area should be determined as the dispatching goal, and an
error tolerance is also needed to check the performance of
suggested operation plans in the following steps. Based on
that, possible compressor operation plans can be generated as
a combination of all the proper opening/closing operations on all
the accessible and controllable compressors. Such constrains on
the uncontrollable compressors can significantly reduce the
number of generated plans. The deep learning model trained
from practical operation data will then be used to predict the
transportation flux for each plan, which holds the self-
adaptability for general working conditions. Afterwards, the
predicted transportation flux will be compared with the energy
supply demand of the urban area. The trial will end if the
prediction variance reaches within the acceptance criteria, and
the best operation plan will be determined with the least variation
from the dispatching goal, i.e., energy demand. This operation
plan as well as the prediction variation will be suggested to the
pipeline dispatcher to make decisions accordingly.

The digitalization of compressor working status and the
operations is carried out by introducing the concept of
compressor Boolean values. Furthermore, the compressor
working status is illustrated according to the Boolean values to
draw the schematic diagram of the pipeline dispatch scenarios to
benefit the dispatcher to quickly understand the compressor
operations. As shown in Figure 2, the compressor stations
along the pipeline is plotted as small houses and the
compressors are plotted as trapezoids. The working status of
each station is marked by the color of the corresponding flag. The
red flag means that this station is offline, which could be neither
accessible in the central monitoring system nor controllable by
the dispatchers. These stations may be under maintenance or
there could be failure in the data transmissions between stations
and controlling center. On the country, the online stations are
marked by green flags, which means that they are under normal
working conditions and the dispatchers can directly control the
inside facilities with an immediate response. Similarly, the
compressors in all the stations are marked as offline and
online by the color of red and green respectively, to illustrate
the accessibility and working status. Such information is required
after the first step of compressor status check, and can help the

FIGURE 1 | Flowchart of the intelligent dispatch process.
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dispatcher get a preliminary impression of the current pipeline
working status.

In general pipeline dispatch scenarios, compressors can be
either open or closed in the daily operations, and the color of
orange is defined in this paper to mark the closed compressors
along the pipeline. Compared with red compressors, the orange
ones are currently closed, but can be opened immediately as a
consequence of dispatcher’s command from the controlling
center. As shown in Figure 3, there could be online stations
and offline stations along the certain pipeline at the certain
moment, and there could be open compressors and closed
compressors in the online stations. It should also be noted
that in real pipeline operations, there might be offline
compressors in online stations due to the compressor failures
or maintenance. Such a three-color diagram of general pipeline
dispatch scenarios can help the dispatchers catch up with the
current working status of all the compressors and stations along
the pipeline, and make clear which compressors can be opened/
closed to reach the certain dispatching goal.

DEEP LEARNING METHOD

Data Preparation
One real natural gas pipeline is investigated in this paper, with 9
compressor stations along it and the number of compressors in
each station is listed in Table 1. The operation data of this

pipeline is collected in the period during 2017–2020, where
the compressor working status and transportation flux is
focused. In practical operations, the data collected in the
central controlling system may contain various labels
including “offline” and “no data”. Both the two labels indicate
either the non-accessibility or failure of corresponding
compressors, where maintenance may be carried out or there
is error in data transmission. An example of pipeline dispatching
diagram is illustrated in Figure 4, showing the offline stations A,
E and H on the date 2018.06.11. The transportation flux
outputted from Station I is the energy supply to one certain
urban area. An implicit assumption of the designed intelligent
natural gas pipeline dispatch system and the proposed deep
learning algorithm in this paper is the constant gas properties
in both thermodynamics and fluid dynamics. This assumption is
accepted by our industrial partner as the transported gas is always
resourced from certain production field for one certain pipeline,
and the dispatching system should be thoroughly renewed if the
transported gas is changed, which requires an additional data

FIGURE 2 | Schematic diagram of pipeline dispatch scenarios Left: All the compressors along the pipeline is offline (marked as red). Right: All the compressors
along the pipeline is online (marked as green).

FIGURE 3 | Schematic diagram of general pipeline dispatch scenarios.

TABLE 1 | Compressor information along the pipeline.

Station A B C D E F G H I

Number of compressors 4 4 3 3 3 4 3 3 4

FIGURE 4 | Schematic diagram of compressor working status on
2018.06.01.
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collection and deep learning work. There might be temporal
environmental changes along the pipeline like flooding or frozen
soil that may affect the transportation capabilities, and these
temporal impacts are expected to be eliminated if the deep
learning model is trained using a large-enough data set.

The main purpose of the proposed intelligent natural gas
pipeline dispatching system is to predict the transportation
flux at certain key stations as a consequence of compressor
operations. Suggestions on opening or closing the compressors
will be made after comparisons between the estimated
transportation capability and the notified energy demand in
the urban destinations. Dispatching plans will be decided if
the predicted variance is less than the error tolerance, and the
compressors operations as well as predicted flux and variance will
all be informed to the dispatchers in the central controlling
center. Thus, we need to first identify the direct relevance
between compressor operations and the transportation flux.
The idea was first proposed and verified in (Zhang et al.,
2021), in which a simplified engineering scenario was designed
to describe this relevance, and a deep learning model is trained to
calculate the implicit relevance by introducing the concept of
compressor Boolean values. Based on that, the proposed
intelligent dispatching system in this paper is expected to
illustrate the compressor working status and the

corresponding energy supply via this pipeline, to help the
dispatchers quickly get the information they need. As shown
in Figure 5, the station and compressor working status along the
pipeline during the period 2018.06.01-2018.06.11 is plotted in the
left, and the change of energy supply via this pipeline during the
period is plotted in the right. It can be referred from the
illustration that Station A is offline during the whole period,
which corresponds to the maintenance in the station at that time
in the recordings. Station C and H were offline on the first day,
and then back to normal status in the following days, which
indicates that the maintenance was completed or the error in data
transmission was fixed. Meanwhile, Station I was offline on the
last day, which might indicate the beginning of maintenance.
Besides, there were other offline compressors in normal-working
stations, and they should also be eliminated in making the
dispatching plan. With the different compressor working
status, the energy supply to the urban area, represented by the
transportation flux at Station I, had been changed during that
period. All the information illustrated in this image will be fed
into the deep learning step to train the model, in which the
network structure and deep learning techniques will be
introduced in the following sections. Finally, a similar
illustration is expected to be provided to the dispatchers, with
both compressor operations and predicted transportation flux as

FIGURE 5 | Compressor operations and the corresponding energy supply via the pipeline.

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 7594985

Zhang et al. Intelligent Natural Gas Pipeline Dispatching

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


energy supply. This scenario has also been accepted by our
industrial partner.

Network Structure
One highlight of the proposed intelligent system is the self-
adaptability, which means that we can use one trained model
to predict the transportation flux under different working
status. For example, Station A, E and H were offline on
2018.06.01, which caused the 10 corresponding compressors
eliminated from the data on that day. Meanwhile, Station A
and Station I were offline on 2018.06.11, and the first
compressor in Station C was also offline, which caused 9
corresponding compressors eliminated from the data on
that day. Thus, the effective data size of compressor
Boolean values are different, which challenges the general
adaption of the deep neural network designed for this
pipeline. In order to resolve the difference in data size, the
concept of “ghost compressors” is introduced to fulfill the
input data according to the pipeline information. If one certain
pipeline is constructed with M compressors located in S
stations, M-N ghost compressors will be padded into the
data point after the compressor check step is finished with
N reported normal working compressors. As shown in
Figure 6, all the compressor Boolean values are marked as
CBi,j, where the subscript i denotes the i th station (i≤ S), and j
denotes the j th compressor in that station. The recorded
compressor Boolean values will then be checked on the data
size, and data padding may be carried out to uniform the data
dimension with M-N ghost compressor Boolean values
(marked by the subscript g). This data check and padding
is completed within the Self-adaptive Compressor Boolean
Network, also known as SCBN. The output of SCBN,
i.e., the padded compressor working status data will then be
used as the input of CBNN, namely the Compressor Boolean
Neural Network, for further training and testing. This self-
adaptive technique ensures the general adaption of the trained
model on complicated practical compressor working status,
which can significantly reduce the cost of considering temporal
compressor failures or data transmission errors. It should be
noted that the padded ghost compressors, corresponding to
the offline compressors, will be eliminated in the final plan
decisions based on the “ghost” labels.

The structure of CBNN is illustrated in Figure 7. The
compressor Boolean values as well as dispatch conditions
are inputs in the first layer, and the output layer will inform
us the output flux (FS) of this pipeline and the dispatch
variance(ϕ). The compressor Boolean values are padded
from SCPN introduced above, while two variables are
needed for the dispatch conditions. FSS denotes the
scheduled supply to the urban area, which plays the role of
dispatching goal. FVT denotes the variance tolerance of the
expected operation plans, which helps to check the
performance of generated compressor plans. The output
flux at each data point and the corresponding variance
compared with the dispatching goal are selected to be the
network output, with direct relevance to the input and critical
information needed by the dispatchers. A number of hidden
layers are placed between the input and output layers, where a
number of nodes are placed on the hidden layers. The complex
hydrodynamic and thermodynamic rules governing flow and
transport behaviors within the natural gas pipeline are now
described by the weighted combination of the nodes.

Deep Learning Technique
The neural network mimics the information transmission in
human brains to make decisions, while the computation in
each node is carried out according to the following equation:

oi � fi(Wi*CBi + bi) , (1)

where oi denotes the output of this layer,CBi denotes the input of
this layer, fi denotes the activation function used in this layer,Wi

denotes the trained parameters describing the performance of
each compressor and bi denotes the introduced bias for a better
prediction. The training process mainly aims to obtain a good set
of weight parameters, evaluated by the decreasing of loss function
formulated as:

L � 1
N

∑N
n�1

||P − P̂
2|| + λ||W||22 , (2)

where L denotes the loss, P denotes the prediction, P̂ denotes
the ground truth and λ||W||22 denotes the L2 penalization term
of weight parameters with the regularization coefficient λ.
Overfitting is a common challenge in deep learning
research, which means that the perfect performance of the
model has been achieved for the training data, but only poor
performance can be obtained when verifying the prediction
performance of the test data. Usually, this problem occurs if
too many parameters are included in the deep learning model.
Usually, we use an additional constraint to reduce the degree of
freedom of our model to prevent the over fitting problem from
damaging the performance of our deep learning algorithm. An
important feature of overfitting is that the norm of coefficient
parameters is very large, which may be an angle to add this
additional constraint. The penalization term has been verified
to be a good choice in adding this constraint in (Zheng et al.,
2021).

One typical difficulty in the dispatch of long-distance
natural gas pipeline is to use the large-scale coefficient

FIGURE 6 | Self-adaptive compressor padding network (SCPN).
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matrix to evaluate the work of alongside compressors, which
requires us to reasonably give the initialization coefficient to
improve the convergence speed in training, so as to improve
the performance and reliability of the deep learning algorithm.
If the coefficient parameters are overestimated during initialization,
a rapid increase in variance will be observed during training, which
may further lead to gradient explosion or disappearance. In this
case, the training will never converge. On the contrary, if the
coefficient parameters are underestimated during initialization, the
variance may quickly decline to a very small value, which will lead
to damage to the complexity of the model and even the
performance of the final evaluation. The commonly used
initialization method is to initialize the coefficient parameters
with a certain variance according to the Gaussian distribution
to ensure that the input and output variance of each layer will
remain unchanged. This is the commonly used Xavier initialization
technology, which is also applied to the design of deep learning
algorithm for the purpose of pipeline transportation prediction in
this paper. Dropout is another technique often used to improve the
training speed and learning performance, by which some nodes in
the network is discarded to eliminate the corresponding
connection relationship, so as to significantly reduce the degree
of freedom of the model. As shown in Figure 7, the dotted circle in
the hidden layer represents the node deleted by dropout, and the
corresponding training model is changed to:

yi � fip(WipripCBi + bi), (3)

where ri is a Boolean vector. Each node j on layer i will be
independently evaluated with the retained probability p or the
discarded probability 1-p. If the node is retained, the
corresponding rij will be 1, if discarded, then rij will be zero.
After evaluating all nodes and connections, the training of the

model will be carried out on the simplified network after dropout.
It should also be noted that all the discarded nodes via dropout
should be put back into effectiveness in the next training batch, to
ensure the system robustness and consistency.

Due to the complexity of pipeline transportation prediction
model containing a large number of compressors and the huge
amount of training data, the training of deep learning model is
very time-consuming. In addition, the gradient descent process
will change the weight parameters and dropout nodes of each
layer, which will further affect the distribution of linear and
nonlinear calculation results in each layer. The next layer keeps
adapting to this distribution change, which slows down the
learning rate of the whole network. In addition, when we use
certain activation functions such as sigmoid and tanh, it is
common to make the model training fall into the gradient
saturation region, where the gradient will become very small
or even close to 0. As a result, the update speed of parameters will
be slowed down, which may further affect the convergence speed
of the network. Such phenomena is called internal covariate shift
(ICS) problem, a common seen challenge in machine learning.
The popular solution is whitening, even if the input feature
distribution has the same mean and variance, so as to slow
down the impact of ICS problem. However, the computational
cost of whitening technology is too high, especially for each layer
in each round of training, which is not preferred for the training
efficiency. In addition, the whitening process changes the
distribution of each layer of the network, thus changing the
expression capability of the own data in the network. The
parameter information learned by the underlying network will
be lost by whitening operation. Therefore, this paper adopts the
more advanced batch normalization (BN)method to calculate the
mean for each batch of data samples, and then standardize.

FIGURE 7 | Compressor boolean neural network (CBNN).
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Learning parameters are introduced to linearly transform the
normalized data to recover the information expressed by the data
itself.

RESULTS AND DISCUSSION

Scheme Verification
The complex nonlinear correlations among the compressor
operations and transportation flux is modeled by the
combination of computations in each node. Nonlinear
hydrodynamic and thermodynamic analysis is often
required in conventional numerical studies of pipeline
transportations, while a elaborate discretization and matrix
solver is needed to get accurate and reliable results, especially
when temporal compressor failure or error occurred. Thus,
hyperparameters in the neural network structure should be
carefully tuned to better describe the physical rules underneath
the correlations among input and output features. The
changing curve of loss function with respect to different
number of nodes in hidden layers is plotted in Figure 8. It
can be easily referred from the plot that generally more nodes
in the hidden layers can accelerate the convergence of loss
function, but there remains a threshold number of nodes,
above which the loss function converges much slower with
more training time. Thus, 300 nodes in the hidden layers is
enough for a quick training convergence and acceptable
CPU time.

The choice of activation function used in the hidden layers is
also of critical importance to the accurate representation of the
underneath physical rules within the deep neural network.
Especially, the nonlinear correlations among the input
compressor operations and the output transportation flux
should be recovered by the usage of activation functions. The
convergence of loss function using different activation functions
is compared in Figure 9. The mathematical models of the four
common-used activation functions, namely ReLU, Sigmoid,
Softplus and Softsign (Ramachandran et al., 2017; Dubowski,
2020) are formulated as follows:

ReLU: f(x) � { 0, if x< 0
x, if x≥ 0 , (4)

Sigmoid: f(x) � 1
1 + exp(−x) (5)

Softplus: f(x) � log(1 + ex) (6)

Softsign: f(x) � x

1 + |x| (7)

It can be referred from Figure 9 that the convergence
performance of Sigmoid function performs the worst in
representing the physical rules, while the performance of
ReLU and Softplus functions looks similar. The Softsign
function performs the best in the training of deep learning
models predicting natural gas pipeline transportation, with
respect to both the convergence rate and prediction accuracy,
that is represented by the least converged loss. It is interesting to
note that the performance of activation functions varies in
different problems, after comparisons with the
hypaerparameters tuning in phase equilibrium calculation
problems presented in (Zhang et al., 2020).

The optimized network structure after hyperparameters
tuning is then verified to check the prediction performance in
realistic operation conditions. As shown in Figure 10, operations
are conducted on compressors along the pipeline in the daily
dispatching, while certain stations and compressors are not
controllable. All the compressors in Station A, E and H were
offline on 2018.06.01, and all the compressors in Station A
remained offline on 2018.06.05, but the compressors in Station
H were back to normal online operations. Meanwhile, the second
compressor in Station E was still offline on that day, but both the
two other compressors were marked as online. Besides, the
second compressor in Station G was opened, as well as the
fourth compressor in Station I. On 2018.06.09, all the
compressors in Station A remained offline, but the second
compressor in Station E was back to normal online
operations. Meanwhile, the status of the first compressor in
Station C was changed to offline, and the open/close
operations can be captured on many other compressors along

FIGURE 8 | Loss function decreasing curve with different number
of nodes. FIGURE 9 | Loss function decreasing curve with different activation

functions.
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the pipeline. On 2018.06.13, all the compressors in Station A and
the first compressor in Station C were still offline, and all the
compressors in Station I were also changed to offline. The open/
close operations can also be detected in other compressors. The
change of corresponding transportation flux via this pipeline
during this period can be referred from the right figure, where the
real operation data and deep learning prediction on each day are
both plotted. It can be easily referred from the plots that the
transportation flux as the energy supply to certain urban areas
changes significantly with the different compressor working
status and operations. The deep learning prediction results,
marked as orange, meet well with the practical operation data,
marked as blue. The training and testing procedures are verified
to be effective to generate and optimize a model that successfully
describes the correlations among the input and output features,
namely, the complex physical rules among compressor
operations and the transportation flux. Compared with
conventional numerical simulation methods with discretizing
governing equations and iterative solvers, the trained deep
learning model can significantly reduce the CPU time. Only a
few seconds are needed for this forwarding model, and we can
always expect a robust result without worrying about divergence.
Another shortcoming of conventional iterative solvers is the
variance between the current numerical model and the

practical physical rules. The developing models are
continuously approaching real conditions including multi-
component, multi-phase fluid flows under various
environmental conditions. The pipeline corrosion and
temporal compressor failures are also challenging the accurate
and complete modeling, while the long distance brings more
difficulties. However, the developed deep learning model is
directly trained from the operation data, thus the
simplifications of the current numerical models can be
avoided. Furthermore, many more parameters are involved in
the deep learning model, enabled by the hundreds of nodes in
hidden layers, compared with the limited number of parameters
involved in the conventional numerical models. As a result, it is
easier to approach the real data by adjusting the parameters.

Plan Decision
The fast prediction of pipeline transportation flux at certain key
station as the consequence of compressor operations makes it
possible to go through the many potential operation options for
each compressor and then select the best combination to meet the
dispatching goal. As shown in Figure 1, compressor working
status is first checked to eliminate the offline compressors, and
dispatching plans are generated to control the online ones. An
example is provided as follows.

FIGURE 10 | Prediction performance in realistic operation conditions.
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On 2020.06.01, the compressor check reported that all the
compressors are working in normal online conditions.
Meanwhile, the dispatching conditions were collected,
including the energy supply that was expected to be
FSS � 10508.76 × 104m3/day, and the dispatching supply
variance tolerance that should be less than
FVT � 100 × 104m3/day. To suggest the possible dispatching
plans to the dispatcher in the controlling center, trial
operations are generated using our system and illustrated in
the schematic diagram as shown in the left of Figure 11. For
each trial, the transportation flux is estimated and compared
with the dispatching goal, and the output dispatching variance
calculated by the deep learning model is an important
reference for the dispatchers to select the best plan. Both
the two information is illustrated in the right of Figure 11.
The transportation flux predictions are plotted by the blue bars
for each case, while the corresponding dispatching variance is
plotted by the red diamonds. It can be easily referred from the
plotting that the open/close command organized in Case 4
performs best in meeting the dispatching goal, with the lowest
variance in the transportation flux compared with the aimed
energy supply to the certain urban area. The dispatching
variance of Case 4 lays under the variance tolerance, so that

this dispatching plan is finally suggested to our industrial
partners.

CONCLUDING REMARKS

An intelligent natural gas pipeline dispatch system is proposed in
this paper, using deep learning techniques to train a model that
can quickly predict the transportation flux via the pipeline as a
consequence of compressor operations along this pipeline. A
clear engineering scenario is presented with a flowchart, where
the compressor working status is illustrated by different colors in
the schematic diagram showing the stations and compressors
along the pipeline. The information regarding compressor
working status can be quickly captured by the dispatchers in
this way, while the digitalized compressor Boolean values are
collected to be further analyzed. A self-adaptive pipeline network
is designed to uniform the dimension of data by adding “ghost
compressors” to replace the offline ones, so that the trained deep
learning model can be widely adapted to general scenarios where
temporal compressor failures or error in data transmission may
occur. A compressor Boolean neural network is also designed to
train the model predicting transportation flux as a consequence of

FIGURE 11 | Plan selection on 2020.06.01.
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compressor operations. Except for the compressor Boolean
values, the dispatching conditions including dispatching goal
and variance tolerance are also chosen to be the input
features, by which the dispatching variance is outputted
besides the transportation flux as an index showing
dispatching performance. Network hyperparameters are
carefully tuned for a better training convergence and
prediction accuracy. The optimized network structure is then
utilized to train the model, and further verified to recover the
realistic data in practical working conditions. The verified model
with both good accuracy and efficiency can help the fast
prediction of transportation flux under various trial
operations, which may suggest the most suitable dispatching
plan to the pipeline dispatchers in the controlling center with
the corresponding dispatching variance.

Compared with conventional dispatching systems using
iterative numerical simulations, the proposed intelligent
dispatching system can significantly reduce the
computational cost of predicting the transportation flux via
certain pipeline. Only seconds of CPU time needed for the
prediction of one combination of the operations on all the
compressors, which enables the generation and selection of
many trials. Without the risk of divergence during the
iterations and with less simplifications on the numerical
model, the trained deep learning model is believed to better
reflect the correlations among compressor operations and
transportation flux. The operation data is directly utilized in
the training, and there are hundreds of parameters that can be
tuned to approach the realistic data. Certain deep learning

techniques are used to overcome the problem of overfitting.
The self-adaptability on general pipeline working status is
more preferred by our industrial partners who are working
on the pipeline dispatching decisions, where the challenge of
temporal compressor failures is a big problem. Moreover, no
specific knowledge regarding thermodynamics or fluid
dynamics is required in the system construction and model
generation, which can benefit a large of pipeline dispatching
engineers.
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