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With the development and expansion of the power grid, the load frequency control (LFC)
scheme receives sensor signals and outputs control signals through an open
communication network with a mass of data and extensive information exchange,
which may introduce constant, and time-varying delays. This paper considers the
optimization and H., performance problem for LFC of power systems with time-
varying delays. Some improved criteria for guaranteeing the stability and H,,
performance of the closed-loop system with unknown external load disturbances via
the Lyapunov stability theory application. An unique delay-dependent proportional-integral
(PI) controller and an optimized PI controller are designed for a specified H,, performance
index and set, respectively. The criteria proposed in this paper are based on linear matrix
inequalities (LMIs), which can be easily solved by the MATLAB LMI-Toolbox. Finally, in case
studies, the effectiveness of our method is demonstrated.

Keywords: optimization and control, power system, smart grids, H .. control, load frequency control, time delays

1 INTRODUCTION

LFC strategy is equipped to guarantee the power grid frequency, an important index of power quality,
stability (de A. F. Mello et al., 2020). With the development and expansion of the power grid, the
dedicated independent communication network has been unable to meet the operation of the power
grid (Khalil and Swee Peng, 2018). Recently, LFC scheme transmits sensor and control signals based
on an open communication network, where random delays and data packets will be introduced into
the LFC scheme (Shen et al., 2021). These network factors may cause the LFC system performance
degradation and even instability. Thus, it is necessary to study the influence of time-varying delays on
performance of the LFC system in an open communication network.

The network controlled LFC system involves two main cases of time-varying delays: 1) the
communication time-varying delay from the control center to the governor (Ramakrishnan and Ray,
2015; Yang et al.,, 2018; Chen et al., 2020; Manikandan and Kokil, 2020), where delay-dependent
stability analysis and controller design are investigated by using single delay to model all time delays;
2) In fact, not only the communication time-varying delay from the control center to the governor
but also from the sensor to the control center (Jiang et al., 2012; Xu et al., 2017; Shen et al., 2019a),
where general delay-dependent stability analysis is studied by using additive time-varying delays to
model two different time delays. In a word, the LFC scheme with communication channels can be
treated as a typical delayed system. For the stability analysis of the system, it is significance to seek the
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maximum allowable time delay upper bounds to guarantee the
stability of the power system based on LFC scheme, which has
attracted more and more scholars’ attention (Ali et al., 2020; del
Giudice et al., 2021; Ladygin et al., 2020; Baykov et al., 2019). The
stability conditions and controller design are obtained mainly by
the Lyapunov stability theory. For further reducing the
conservatism of stability criteria, two updates are in progress.
On the one hand, the Lyapunov-Krasovskii functional (LKFs) are
improved via some novel approaches. Duan et al. (2019a); Duan
et al. (2020a); Hua et al. (2021) constructed new LKFs by using
the delay decomposition method. The LKFs were modified in
Duan et al. (2016); Duan et al. (2017); Scopus et al. (2020);
Gholami (2021) by intruducing some multiple integral items.
Duan et al. (2020b) augmented the LKF with some augmented
vectors. On the other hand, the upper bounds of the derivatives of
the LKFs are estimated using some novel tight inequality
techniques. Jensen inequality and B-L inequality were
proposed in Gu (2000) and Seuret and Gouaisbaut (2015),
respectively, where a tight upper bound of the derivative of
the LKFs was obtained. Zhang et al. (2017a); Duan et al.
(2018); Duan et al. (2019b); Feng et al. (2020); Kwon and Lee
(2021) reduced the conservatism of the stability criterion via
some relaxed integral inequality techniques. Recently, a novel
negative definite inequality equivalent transformation lemma was
proposed in Fulvia et al. (2020), which improved the degree of
freedom for solving the LMI in the main theorem without
introducing extra conservatism. Thus, there is still room to
further reduce the conservatism of stability criteria for the
LFC power system along with the update of stability methods
for general time-delayed systems.

Moreover, the growing power system based on network
control leads to the complexity and uncertainty. Many
important control algorithms, such as robust control (Shayeghi
et al.,, 2008), genetic algorithm (Rerkpreedapong et al., 2003),
sliding mode control (Vrdoljak et al., 2010) and H,, control (Dey
et al.,, 2012; Shen et al,, 2021), are used to ensure the operation
stability and disturbance rejection capability of large-scale power
systems. However, in many studies, especially in controller
design, the influence of time delays, especially time-varying
delays, is ignored. Based on the above discussion, the H,, LFC
problem of power systems with time-varyig delays and load
disturbances is studied in this paper. The contributions of this
paper can be summarized as follows:

e H,, performance problem for the LFC power systems with
time-varying delays is considered in this paper, where fixed and
optimized controller gains for an given H,,, performance index y
and an performance index set [y, ] are respectively proposed;

¢ An augmented LKF combining delay-dependent non-integral
terms with some single-integral terms under different time-
varying delay subintervals are constructed, which reduces the
conservatism caused by the LKF structure;

e A novel negative definite inequality equivalent
transformation lemma proposed in (Fulvia et al., 2020) is
used to transform the nonlinear inequality to the LMI
equivalently, which can be easily solved by the MATLAB
LMI-Toolbox.

Optimization, Hoo LFC Power Systems

This paper is organized as follows. Section 2 gives the models
of LFC schemes; Section 3 provides stability assessment and H,
controller design for the LFC system. Section 4 shows cases
studies. Conclusions are drawn in Section 5.

Notation: Throughout this paper, the notations are standard. R"
denotes the n-dimensional Euclidean space; R™ is the set of all n x
m real matrices; For P € R™", P> 0 (respectively, P < 0) mean that P
is a positive (respectively, negative) definite matrix.
diag{a,,as,...,a,} denotes an n-order diagonal matrix with
diagonal elements ay, a5, ..., a,. € (i = 0, 1, ..., m) are block
entry matrices. For example,e; = [0 I 0---0]. For a real matrix

—_——

m—2
B and two real symmetric matrices A and C of appropriate

. . A B . .
dimensions, [ . C] denotes a real symmetric matrix, where *

denotes the entries implied by symmetry. Sym{A} = A+ AL

2 SYSTEM DESCRIPTION AND PROBLEM
PRELIMINARIES

In this section, the model of one-area power system
equipped with PI controllers and taking into account the
time-varying delays is given. The
basic diagram of the simplified LFC of one-area power
system is shown in Figure 1, where ¢™*? is time delay,
arising during the control signal sent from the control
center to the governor.

According the LFC system as shown in (Bevrani, 2014) and
Figure 1, the common LFC scheme model of one-area can be
expressed as follows:

communication

{k(t) = AX(t) + BAP(t) + Fa (¢), "
y(t) = Cx(t),
where
- D 1 :
-— = 0
M M
Af (1) o
x(t)= |AP,(t) | y(t)=ACE(t), A=| 0 T T |
AP, (t) o 1
| RT, T, ]
0 1
M
B=| | F=| o | C=1Bo0]
1
T, 0

and explanations of some terms are shown in Table 1. The
following PI controller is used as the LFC scheme:

u(t) = -KpACE(t) - K; J ACE ((t)dt. (2)
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Control center Network
Af
Q
1 sl 1
Y 1y
5] R E\D+sM
ACE PI controller Time delay Governor Turbine
K ] AP, 1 |ap 1 |ap,
(KP+ I)___> e—_sd +f><) | o
s 1+sT 1+sT,
g c
FIGURE 1 | The basic diagram of the simplified LFC of one-area power system.
- D 1 -
TABLE 1 | Explanation of terminologies. M M 0 0 0
Terminology Meaning 1 1
0 —F 70 0 BOOO
Af(t) frequency deviation A= Ty Ten ,B= 1 |,C= s
APt mechanical output change 1 1 _T_ 0001
AP(t) valve position change -— -— 0 9
AP(f) setpoint RTﬁ Tg 0
w(t) load disturbance ﬁ 0 0 0
ACE(t) area control error T -
D generator damping coefficient _M
M moment of inertia of the generator
R speed droop F= 0
B frequency bias factor
Ty time constant of the governor 0
Ten time constant of the turbine 0
Kp proportional gain -
K integral gain

Due to the existence of the time-varying delay, in the feedback
channel, the following is obtained

APc(t) =u(t - h(t)), ACE(t) = BAS (1), (3)

where h(f) represents the time-varying delay, and 0 < h(f) < h,
| H(t) | <p with h and p being positive constants.

By defining virtual state and measurement output vector as
¥(t) = col{ACE(?), JACE(t)dt} and x(t) = col{Af(t), AP,(1),
AP (1), fACE(t)dt}, K = [Kp Kj], the closed-loop LFC system
can be expressed as the following linear system with time-
varying delays:

x(t) = Ax(t) + BKCx (t — h(t)) + Fw(t),
y(t) = Cx (1), 4)
x(t) = ¢(1), t € [-h,0],

where ¢(f) denotes its initial condition which is a vector
continuous function of te€[-h, 0] and the system parameters
are listed in the following form

A definition and some lemmas need to be displayed here before
we proceed with the next step of calculation and discussion.

Definition 1. (Shen et al., 2019b) the system is considered to be
asymptotically stable and meets the H, performance index y if
the following conditions are met.

e The system is asymptotically stable when the disturbance
input is not taken into account (i.e., w(t) = 0).

e For any nonzero disturbance, given a positive scalar y, the
following inequality is satisfied under zero initial conditions
(x(t) =0, t € [~ d, 0]):

Q= J:o [y (@)y (@) - Yo" ()0 (2)]da<0. (5)

Lemma 1. (Seuret and Gouaisbaut, 2015). For a positive definite
matrix R and differentiable function x in [a,b] > R", the
followings hold

b
J %7 (s)Rx (s)ds > 1 0w Rw,
a b —a
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Input system parameters, scalars
h, p, &, (i=123)and an H,
performance index set [y1,¥2];

Set an accuracy coefficient y,.

Ye=1+7v2)/2

LMIs (6)-(8) are feasible?

End

FIGURE 2 | Binary search optimization for solving optimal
performance index.

where R = diag{R, 3R, 5R}, w = col{w;, w,, w;} with w; = x(b) -

x(a),b wy = x(b) +x(a) - 3% ,x(8)ds, w3 = W —
5 [ x(ds + 25 [ (b - 9)x(s)ds.

Lemma 2. (Zhang et al., 2017b). For positive definite matrices R;,
R, € R™" vectors vy, v, € R" and a scalar « € [0, 1], if there exist
symmetric matrices X;, X, € R and any matrices S, S, € R™"
such that

R -X & >0, R-X, S >0,
* Rl * Rz
the following inequality holds
1 1
—V{Rlvl + 1—V§R2V2 > V’f [Rl + (1 - (X)Xl]vl + Vg [RZ
a -
+aX,]v, + 21/{ [aS; + (1 — a)S,]vs.

Lemma 3. (Fulvia et al., 2020). Let symmetric matrices Ay, Ay,
A, e R™™ and a vector ( €R”. Then, the following
inequality

TR A, + b Ay + A <0

Optimization, Hoo LFC Power Systems

TABLE 2 | Parameters of one-area LFC system.
Ten(s) B R Tq(S) D M(s)

Area 1 0.3 21 0.05 0.1 1 10

TABLE 3 | MAUBs h for u = 0 under one-area LFC system.

Kp Methods \ K| 0.2 0.4 0.6

0 Ramakrishnan and Ray, (2015) 6.69 3.12 1.91
Yang et al. (2017) 7.33 3.38 2.04
Jiao et al. (2021) 11.70 6.15 417
Corollary 1 7.331 3.382 2.045

0.1 Ramakrishnan and Ray, (2015) 6.94 3.29 2.02
Yang et al. (2017) 7.79 3.61 2.19
Jiao et al. (2021) 10.96 5.83 4.05
Corollary 1 7.790 3.610 2.193

holds for all &, € [0, K] if and only if there exist a positive definite
matrix D € R™ and a skew-symmetric matrix G € R®* such that

IR b

where C = [%I 0] and J = [%I -1I].

* A,

3 MAIN RESULTS

In order to make the calculation process more concise, some
expressions are given in advance as below

h, =h(t), b, =h-h(t), hy=1-h(t),
o (1) = col{x (t), x(t — he), x (t — h)},

n,(t) = colyx(t),x(t—hy), J’t,h x(s)ds]»,
' t=he

1, (t) = colyx(t—hy),x(t-h), J’ x(s)ds},
t-h
1 (6:8) = cold 5 (), x (), 7, (1), J x(6)d6, J

t=h
t

" x(0)d6, J ’ x(@)d@},
t—hy —h

t—hy s
174(1‘,5):col«)'c(s),x(s),no(t),J x(e)de,[ x(@)dG,J x(@)d@},
s t—hy t—h
_ t=he x(s) ~ the (t—hy —s)x(s)
p = he0=] R
[ B GRDEO)
P () -jm hl,mt)-j% .
EO = colf(0x(t~ h)x(t — I £(0,5( - B~ 1., (0,9, 0,y (0, (.0 (1)

3.1 H.. Performance Analysis

Theorem 1. Given positive scalars h, i, ¢ and y, system (4) is
stable and meets the H,, performance index y, if there exist
positive definite matrices S € R¥3", Q; € R¥® R, e R™",
D; € RU0m+Dx(10n+1), symmetric matrices S;;, X; € R*", skew-
symmetric  matrices  G; € RUODXA0MD gy matrices
Y, eR™3" (i=1,2j=1 2 3), UeR™, such that the
following matrix inequalities hold for hy 2y € {~p b

Frontiers in Energy Research | www.frontiersin.org

October 2021 | Volume 9 | Article 762480


https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Su et al.

TABLE 4 | MAUBs h for 1 = 0.9 under one-area LFC system.

Optimization, Hoo LFC Power Systems

K = (UB)'K,, )

Ke Methods \ K 0.2 0.4 0.6 where the generalized inverse of (UB) is expressed as (UB)".
0 Ramakrishnan and Ray, (2015) 6.25 2.85 1.68
Yang et al. (2017) 6.43 2.91 1.71 Proof. Construct an LKF candidate as
Jiao et al. (2021) 9.98 4.44 2.80
Corollary 1 713 321 1.92 V() =Vi(t)+ V() + V5 () (10)
0.1 Ramakrishnan and Ray, (2015) 5.93 2.87 175 b
Yang et al. (2017) 6.59 3.11 184 Wt
Jiao et al. (2021) 917 4.31 2.83 T T
Corollary 1 7.14 3.25 1.96 Vi) =, (08 (O () + 1, (DS (O, (0
Ve = [ b9 @ 9ds+ [l 9Qun, 6. 9ds
toh - ¢
V() = h J (h—t + )&% ()R % (s)ds + hJ (h—t + 93" ()Ro% (s)ds,
t=h thy
hSiu + 812> 0, (0)  \here ,(t) = 1Sy, + Si and S, (£) = 7Sy + S
R -X; Y, Calculating the derivative of V(f), we can obtain the following
>0, (7)
* R; formulas
1 . . :
Qo (u;) 591 (u) c1r-o; Gre Vi(t) = 2’7{'(1?)81 (O, (1) + ’7? (jf)sl .(t)’71 (t)
- < 0, (8 +217, (£)S2 ()1, (8) + 17, (£)S, (D)7, (2)
o o | PTILE DAL = 28T (DA, 1Sy + Sp) (A + Ap)E(2) )
+ ETT(t) (A +ﬁhtA12)ThrSn (A + hAR)E(R)
where the notations of other symbols and matrices can be found in +28" (VA7 (heS1 + S2) (Do + b A)E (1)
Appendix A. Thus, the controller gain matrix calculated by — &1 (8) (A + MeDyn) BeSan (Agy + BeAR)E (1),
2.5 T T T T T T I
2 —
15
= A A
2 . a Gk Ry
w ; i
< L
il
ERE R
B R B At
A WY e b
15 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800
time (Sec.)
0.15 T T T T T T T
a
—————— b
R e c |-
----------------------- d
g 0.05 {53y
w— i':
0
5 ]
ik
-0.05 = g -
1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800
time (Sec.)
FIGURE 3 | Frequency deviation and control error responses of one-area LFC scheme under p = 0.
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T T T T T
a
———-b
_______ c [
-------------- d
15 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
time (Sec.)
0.06 T T T T T T T T T
a
0.04 — b |
———= c
ook B 4N e all
=)
o
= 0 —
<
-0.02 -
-0.04 -
0.06 1 1 1 1 1 1 1
30 40 50 60 70 80 90 100
time (Sec.)

FIGURE 4 | Frequency deviation and control error responses of one-area LFC scheme under = 0.9.

Vo) = 1l (60Quy, (1) — 1) (6t = h)Quny (£t = hy)

—hwanl (t,t = h)Qun, (¢t — hy)
+hanh (t,t = h)Qon, (8t — hy)

¢ o]
+2 J 171T (¢, S)Q1a—7’11 (t,s)ds
he t

t—

t—hy . 0
+2 J 1, (8, s)Qza—;y2 (t,s)ds
h t

= E (O] (As + D) Qi (s + hAsy)
— (Mg + 1A) Qy (Mg + BiAp) E(E)
—hiat" () [ (Ass + 1 Asa) ' Q1 (Ass + hyAsy)
—(Ags + 1eBaa) Qo (Ags + b Asa) |E(2)
+28 (O] (Aro + BAyy + B AR) QA
+(Ago + My + 1] M) Qo JE (1),

(12)

According to R; > 0, (i = 1, 2), letting 8 = %, it follows from
Lemmas 1 and 2 that

- h< Jtih‘ ()R % (s)ds +jt £ (s)Ryt (s)ds>

t-h t-h
1 — 1 _
< —BET (t)F?erlf(t) - qf—r (f)Fngrzf(t) (14)
< =& O[] (R + X)) + 2L [(1= B, + BY,]T,
+IT[Ry + (1 - PXLIL]E(8).

For an appropriately matrix U € R™”, y = [1---1] e R", ¢; >
0, (i =1, 2, 3), we can get
0=2[x"(t) %" (t = h) X" (t) " (1) |col{U, &,U, &,U, e3xU}x

[Ax(t) + BKCx (t - h,) + Fw(t) — x ()]
= 28" () AT{UMTL & (1). (15)

Finally, from the above derivation (11)-(15) and definition 1, we

Vi(t) = B°x" (t)szh)'c(t) + hhghx" (t - iit) (Ry = Ry)x (t - hy) have
- h(J xT ()R x (s)ds + J %7 (s)Ryx (s)ds). .
t—h t=hy E=V({)+y" By () - yzagT N (t) (16)
(13) <& (1) [ Qo (he) + hQy () + B} Qs (R) |E (1)
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According to Lemma 3, the LMI (8) implies that £ < 0. Due to
0 < t < 00, associating with (5), it has

V(oco) -V (0) + joo yT (s)y(s)ds - yz joo o’ (s)w(s)ds <0.
0 0
(17)
Since V(oc0) > 0, V(0) = 0, then

Jm yT (s)y(s)ds - yz ro 0’ (s)w(s)ds<0, (18)
0 0

which can guarantee that system (4) meets the H,, performance
index. This completes the proof.

3.2 Optimization of the Controller Gain
Obviously, the matrix inequalities in Theorem 3.1 are
LMIs, which can be easily solved by the MATLAB
LMI-Toolbox. That is, for a given H, performance index
y, the acquisition of the controller gain K can be processed
simply by the convex optimization algorithm described as
follows:

Algorithm 1: Acquisition of the Controller Gain.

Input:  System parameters, scalars h, u, &, (i = 1,2,3) and Hy performance index 7.
Output: The controller gain K.

1: Construct LMIs (6)-(8);

2: Run the LMI solver to solve the LMIs (6)-(8);

3: if LMIs (6)-(8) are feasible, then proceed to the step 6;

4: else reset the Input;

5: end if

6: Solve the controller gain K by using the formula (9);

7 Return K.

For a given H,, performance index set [y;, y.], the
controller gain K can be optimized via the binary search
technique shown in Figure 2. Algorithm 2 is used to
further illustrate the method.

Algorithm 2: Optimization of the Controller Gain.

Input: System parameters, scalars h, p1, &, (i = 1,2,3),
H,, performance index set [y1,72] and an accuracy coefficient 7.
Output: The controller gain K.
1: Construct LMIs (6)-(8);
2: Set v = 2, Count = 0;
3: Run the LMI solver to solve the LMIs (6)-(8):
4: if LMIs (6)-(8) are feasible, then proceed to the step 7;
5 else
6: if Count = 0, then cannot find a suitable solution,
end algorithm;
else go to step &;
end if
end if
T Set Count =1 and solve the controller gain K by using the formula (9);
Ymin = Vi3
8: M=
9: if |71 — 72| < 7, then go to step 12;
10: else 74 = |11 + 72//2, and reverse back to step 3;
11: end if
12: Return K.

Optimization of the Controller Gain.

Input: System parameters, scalars h, y, €, (i = 1, 2, 3), Hy,
performance index set [y;, ¥,] and an accuracy coefficient ..

Optimization, Hoo LFC Power Systems

TABLE 5 | Controller gains for h = 10 under different p.

u\K Kp K

0 ~0.0167 0.0824
05 -0.0158 0.0889
0.9 -0.0233 0.1027

TABLE 6 | Controller gains for h = 10 under different p.

7] \K Kp K, Ymin
0 -0.0175 0.0957 0.30
0.5 -0.0194 0.1008 0.37
0.9 -0.0237 0.1191 0.4

Output The controller gain K.

Construct LMIs (6)-(8);

Set y; = y,, Count = 0;

Run the LMI solver to solve the LMIs (6)-(8);

if LMIs (6)-8) are feasible, then proceed to the step 7;
else

if Count = 0, then cannot find a suitable solution,

end algorithm;

else go to step 8;

AN S e

end if

end if

7:  Set Count = 1 and solve the controller gain K by using
8  yi=1ys

9: if |y; — y2| < y. then go to step 12;

10:  else y; = |y, + y2|/2, and reverse back to step 3;

11:  end if

12: Return K.

3.3 Delay-Dependent Stability Criterion for

One-Area System

Remark 1. When dealing with unknown external load
disturbances in power systems, it can be modeled as a
nonlinear perturbation in the current and delayed state vectors
(Ramakrishnan and Ray, 2015):

Fw(t) = g(x(2), x (¢t - h(1))) (19)
meets the following condition
g O < ellx @ + Ollx (¢ = h (DI, (20)

where ¢ and 0 are known non-negative scalars. A more generalized
form of the condition is adopted, as follows:

9 (g () <ExT (M Mx (t) + 0x" (t = h()NTNx(t - h(t)),
@1

where M and N are known constant matrices with appropriate
dimensions. The non-negative scalars ¢, 8 and matrices M, N
can be used to quantify the impact of load disturbances on
power systems.
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FIGURE 5 | Frequency deviation and control error responses of one-area LFC scheme under y = 0.4.

Corollary 1. Given positive scalars h, y, ¢, 0 and A system (4) is
asymptotically stable, if there exist positive definite matrices
Sn, Qi e R R, e R™, D, G e RM"™M"  symmetric
matrices Sij, X; € R¥*", any matrices Y; € R*™, (i = 1, 2;
j=1,2,3), U € R*™ such that LMIs (6), (7) and the following
LMIs hold for fltéyi € {—u, u}.

T
—[5] [_? %.H;]w (22)

s:20 (I‘,‘) = SYm{AngsuAn + A;r; (hSy1 + 852) A + A1T(;Q1A1 + A;Qz/\z} + thlTlsuAn
= h A o1 801 + AL Q1 Ay = AL Q Ay = haAT Qi Ay + haA QoA
+ej (WRy)eq + Whgel (R, — Ry)es + I Ry + 175 (R, + X,)T,
+ Sym{ITY]FZ} + Sym{Ag[jTHO} + /\QZETNTNQ + )Lszeg)tszMTMez - e'lrl/Ue“

~ 1
Qo (Mi) 5011 (Hi)

* Oy (.“,-)
with

and other symbols see Theorem 1.

Proof. The proof process of Corollary 1 is similar to Theorem 1,
so it is omitted here.

Remark 2. Compared with the literature (Ramakrishnan and Ray,
2015; Yang et al,, 2017; Jiao et al,, 2021), the results in this paper reduce
the conservatism via the augmented LKF application. The LKF

proposed in this paper contains more information of the time-
varying delay and the coupling information between the state
variables and the delay than the literature (Ramakrishnan and Ray,
2015; Yang et al, 2017; Jiao et al, 2021), which reduces the
conservatism caused by the LKF structure.

4 CASE STUDIES

In this section, firstly, the effectiveness of the delay-dependent
stability criterion for one-area LFC system proposed in this
paper is shown. For given different Kp and Kj values, the
maximum allowable time-delay upper bound values (MAUB)
can be obtained by solving the LMIs in Corollary 1 via Matlab
LMI-Toolbox. The LEC system parameters are described as
Table 2 (Jiang et al, 2012), one-area LFC systems will be
discussed and comparatively analyzed in the following
subsections.

4.1 Conservativeness Comparison

In order to compare with the existing results, Table 3 and Table 4
give the MAUB values of the case of given Kp and K] values, ¢ = 0,
0=0,M=N=0.11, |h(t)| <0 or |h(t)| <0.9. From these tables,
we can observe the results of Corollary 1 are less conservative

Frontiers in Energy Research | www.frontiersin.org

October 2021 | Volume 9 | Article 762480


https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Su et al.

Optimization, Hoo LFC Power Systems

10 T T T T T
a
—_———— b n
——————— c
15 1 1 1 1 1
0 50 100 150 200 250 300
time (Sec.)
0.4 T T T T T
a
—_———— b ]
——————— c
=
o
< . _
1 1 1 1
100 150 200 250 300
time (Sec.)
FIGURE 6 | Frequency deviation and control error responses of one-area LFC scheme under y = 0.37.

than those of (Ramakrishnan and Ray, 2015; Yang et al., 2017).
And the MAUB increases as Kp increases whereas for a fixed K;
value, and the MAUB decreases as K; increases whereas for a fixed
Kp value.

Simple simulations are carried out under an increase step load
of 0.1 pu happening at 1s and the following assumptions. The
simulation results are shown in Figures 3, 4, in which the LFC has
achieve its objective and the control system is stable. In addition,
according to the red curve a of Figure 3, the LFC system closes to
critical stability with h(f) = 7.8, Kp = 0.1 and K; = 0.2, while
Corollary 1 in this paper obtains the MAUB h = 7.790. Thus, the
delay-dependent stability criterion proposed in this paper is
effective in estimating the upper bound of the maximum
allowable time delay.

e For Figure 3, different K; and fixed Kp = 0.1 and y = 0:
a. K1 =02, h(t) =7.8;
b. K; = 0.2, h(t) = 7.79;
c. K;=04, h(t) = 3.61;
d. K; = 0.6, h(t) = 2.193;
e For Figure 4, different Kp, K; fixed g = 0.9:
a. Kp =0, K; =02, h(t) = ZE2sin(ME 1) + 2%
b. Kp = 0, Kp = 0.6, h(t) = 22sin(355t) + 192,
c. Kp=01,K, =02, h(t) = 71451n(714t)+ ;
d. Kp=0.1, K; = 0.6, h(t) = S8sin(FE 1) + 12

1.96

4.2 Optimization and H.. Performance

Discussion
In this subsection, much attention is focused on the following two aspects.

1) Design of the Controller: the MAUB is preset as 10 s and h(t)
is considered as constant (4 = 0) and time-varying delay (4 =
0.9), respectively. For a given H,, performance index y = 0.4,
the controller gains can be obtained in Table 5 by referring to
the process given in Algorithm 1;

2) Optimization of the Controller: the MAUB is preset as 10 s and
h(t) is considered as constant (4 = 0) and time-varying delay (¢ =
0.9), respectively. For a given H,, performance index set [0, 100]
and y, = 0.5, the controller gains can be obtained in Table 6 by
referring to the process given in Algorithm 2.

Simple simulations are carried out under an increase step
load of 0.1 pu happening at 1s and the following assumptions.
The simulation results are shown in Figures 5, 6, in which the
LFC has achieve its objective. This scenario suggests that, the
use of optimized controller has the merit of improving the
performance of the LFC system in terms of its transient
response characteristics as well as disturbance rejection
capabilities over the tuned local PI controllers acting alone
in the system.
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e For Figure 5, h = 10 and y = 0.4:

a. Kp = - 0.0167, Kp = 0.0824, h(t) = 8;
b. Kp = — 0.0158, Kp = 0.0889, h(t) = Lsin(Lt) + L}
c. Kp=—-0.0233, Kp = 0.1027, h(t) = Lsin(:31) + L%

e For Figure 6, h = 10:
a. Kp=-0.0175, Kp = 0.0857, h(t) = 8, y = 0.3;
b. Kp=—-10.0194, Kp=0.1008, h(t) = Lsin({5t) + 1, y = 0.37;
c. Kp=-0.0237,Kp=0.1191, h(t) = Ysin(:3t) + L,y =0.37.

5 CONCLUSION

This paper focus on optimization and H, performance problem for
LFC of power systems with time-varying delays. For the one-area LFC
systems with single communication delays, stability criteria are obtained
via Lyapunov stability theory application. Firstly, the one-area LFC
system is described as linear systems with time-varying delays and load
disturbances; Secondly, a modified LKF is constructed, which contains
more coupling information between time-varying delays and state
variables than some previous published results to further reduce the
conservativeness of the stability criterion; Thirdly, an unique delay-
dependent PI controller and an optimized PI controller are designed for
a specified H,,, performance index and set, respectively. Finally, the
effectiveness of the proposed method is illustrated by comparison and
discussion in numerical examples, which shows that the use of
optimized controller has the merit of improving the performance of
the LFC system in terms of its transient response characteristics as well
as disturbance rejection capabilities over the tuned local PI controllers
acting alone in the system. However, the improvement of stability
results is in the cost of increasing computational complexity. The
derivation method of the stability criterion presented in this paper
can be extended to multi-area LFC system, which is one of our further
main topics.
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APPENDIX A

Notations of other symbols and matrices for Theorem 1:

Ay = colfe, ey, eq, e}, Iy = Ae; + BKCe, + Feyy —ey,
U= col{U,&,U, &U,eU},

Ay = colfer, er, e}, Arp = colfey, ey, 9}, Ays = col{ey, haey, e — haes},
Ay = col{ey, e3, hes}, Ay = colfey, ey, —e7}, Ayz = colfhyes, eq, haes — €3},
A3; = col{ey, er, e, e, 3, €, €9, hes}, Azy = colfey, e, €9, €9, €, €9, €9, —€7},
As; = colies, ey, €1, €3, €3, €, €9, hey}, Azy = colfey, ey, €9, €9, €, €9, €9, —€7},
Ay = colies, e3, e, e, €3, hes, e, €0}, Ayy = colfey, ey, €9, €, €9, —€7, €9, €},
Ay = colles, ey, €1, ey, €3, €0, €0, her}, Ay = col{ey, ey, €9, €9, €0, €0, €9, —€7},
Ay = colfe; — ey, e, €, €0, €0, €05 €0> €0}»

Ay = colfey, e, ey, €3, €3, €9, €9, hes},
Ay, = colfe, e, €, €9, €9, €9 — €10, €10, —€7},

2 2
Ay = colle, —es, hes, hey, he,, hes, i (e — eg), eo, Wes),

Ay = col{eg, —e7, —e1, —ey, —e3, —2h (e; — eg), hey, —2hes},

Ay = colfeg, e, €9, €9, €9, €5 — €7, —€9, €5},
A = col{eg, g, ey, haes, eg, €1, —hges, hge, — ez},
Ay, = colieg, €9, €4, hyes, g, haey, e1 — hyes, —es},
I'' = colfe, —es, e, +e;3 —2e7,e; —e3 + 6e; + 12eg},
I, = colfe, —ey e +e, —2e9, e, — ey + 6ey + 12e10},
C= 210], J = [gl - 1], R; = diag{R;,3R;,5R;}, K, = UBK,
Qo (1;) = Sym{AT .S An + AL (WS + S20) A1 + AL Qi AL + AL Qo A}
+ AL S AL~ AL Sy Ay + AT Qi Ay — AL QoA — hyAT, Qi Ass

+ha AL QA +el (HR,)es + Whyel (R, = Ry)es + ITR, Iy + I'T (R,
+X,)0,  +Sym{ITY,I5} + Sym{ALUIL } + el C'Ce, - el y*Ien, Qi (1;)
= Sym{AL S, Ay + AT SinAp + B AT Sy AL + AT (hSy +S2)An —AYSu Ay — I ALSn Ay + AL QAL + AL QoA }
+ALQIA, - ALQy AL — AL Q  Asy + hyAL,Q, Ay — Bhgel (R,
-Ry)es - % [ITX\I =TT X,00] + %Sym{ff (Y, - Y)ILh Qs ()
= Sym{AL S Ay — ALy Ay + ALQIA; + ALQA}  +RALSH AL
— AL Sy Ay + AL QA = AL QoA — haAL Qi Mgy + By AL, Qy A,
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