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In order to improve the proton exchange membrane fuel cell (PEMFC) working
efficiency, we propose a deep-reinforcement-learning based PID controller for
realizing optimal PEMFC stack temperature. For this purpose, we propose the
Improved Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, a tuner
of the PID controller, which can adjust the coefficients of the controller in real time. This
algorithm accelerates the learning speed of an agent by continuously changing the soft
update parameters during the training process, thereby improving the training
efficiency of the agent, and further reducing training costs and obtaining a robust
strategy. The effectiveness of the control algorithm is verified through a simulation in
which it is compared against a group of existing algorithms.
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INTRODUCTION

The proton exchange membrane fuel cell (PEMFC) (Cheng and Yu, 2019a), as a high-efficiency
energy conversion device, has a high hydrogen energy utilization rate, and is expected to become a
widely used electric power source in the future (Cheng et al., 2018).

The PEMFC converts chemical energy into electrical energy. During this process, the remaining
energy is dissipated as heat due to the limited conversion efficiency of the fuel cell (Cheng et al.,
2020). In order to maintain the necessary temperature required for sustaining the reaction inside the
fuel cell, two heat dissipation inputs are usually used: cooling water, and air. These inputs differ in
terms of the increase in power generation with increasing heat load. If the heat is not dissipated
timeously, the heat will accumulate in the stack and the temperature will become excessive, which in
turn will have an adverse effect on the working performance of the stack, even endangering
operational safety (Cheng and Yu, 2019b).

Low-power stacks require air-injecting cooling equipment such as cooling fans, while high-power
stacks require cooling water circulation systems with larger specific heat capacity (Ai et al., 2013).

However, the inclusion of auxiliary equipment in the thermal management system complicates
the water-cooled fuel cell arrangement.

Control methods for fuel cell stack temperature control systems proposed by domestic and
foreign scholars in recent years include proportional integral (PI) and state feedback control (Ahn
et al., 2020; Liso et al., 2014; Zhiyu et al., 2014; Cheng et al., 2015a), Model Predictive Control (MPC)
(Pohjoranta et al., 2015; Chatrattanawet et al., 2017), Fuzzy control (Wang et al., 2016; Hu et al., 2010;
Cheng et al., 2015a; Ou et al., 2017), and Neural Network Control (NNC) (Li et al., 2006; Li and Li,
2006). However, the inherent nonlinearity of the PEMFC system and the uncertainty of model
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parameters greatly limit the effectiveness of these control
methods (Li and Yu, 2021b). Since these algorithms cannot
adapt easily to the nonlinearity of the PEMFC environment,
and in many cases possess an overly complex architecture, the
scope for their application in practice is greatly restricted (Li et al.,
2015; Sun et al., 2020; Li and Yu, 2021a). For these reasons, the
PEMFC requires a model-free algorithm that can perform
parameter tracking independent of the PEMFC, which is
guided by simple control principles (Li et al., 2021; Yang et al.,
2021a; Yang et al., 2021b; Yang et al., 2021c). The Deep
Deterministic Policy Gradient (DDPG) algorithm in deep
reinforcement learning (Lillicrap et al., 2015) is a model-free
method (Yang et al., 2018; Yang et al., 2019a; Yang et al., 2019b;
Yang et al., 2021). Due to its strong adaptive ability, the DDPG
algorithm can adapt to the uncertainty inherent in nonlinear
control systems, and it is applied in various control fields (Zhang
et al., 2019; Zhao et al., 2020; Zhang et al., 2021). However, due to
its low robustness, DDPG is rarely used in the PEMFC
control field.

In recognition of the low robustness of the DDPG algorithm,
in this paper we propose an enhancement of the DDPG algorithm
which can be used for PEMFC stack temperature control. We can
improve the DDPG algorithm by combining it with the PID
algorithm-based deep-reinforcement-learning based PID
controller in order to realize more accurate stack temperature
control in the PEMFC environment. For this purpose, an
improved Twin Delayed Deep Deterministic Policy Gradient
algorithm operates as a tuner of the PID controller, thereby
adjusting the coefficients of the controller in real time. The
algorithm accelerates the learning speed of an agent by
continuously changing the soft update parameters during the
training process, thereby improving the training efficiency of the
agent, and further reducing training costs and thus obtaining a
robust strategy.

The innovations detailed in this paper are as follows:

1) A deep-reinforcement-learning based PID controller for
realizing optimal stack temperature control in the PEMFC
is proposed.

2) The Improved Twin Delayed Deep Deterministic Policy
Gradient (ITD3) algorithm is proposed as a tuner of the
PID controller as it can adjust the coefficients of the
controller in real time.

PEMFC HEAT MANAGEMENT SYSTEM

Heat Management System
To maintain the operation of the fuel cell stack in a safe, stable
and efficient state, it is necessary to sustain a suitable temperature
range. This is the core principle of the PEMFC heat management
system. We propose a heat management system model for a
water-cooled PEMFC, the design parameters of which reflect the
law on the conservation of energy.

The principle of the heat management system in the water-
cooled PEMFC stack is to adjust the internal temperature of
the fuel cell by controlling the temperature and flow rate of the

cooling water entering and leaving the stack, thus determining
the heat taken away by the cooling water. It comprises a
cooling water circulating pump, radiator fan, controller and
sensor. The cooling water pump drives the cooling water into
circulating in the stack at a certain flow rate. When it passes
through the stack, the cooling water absorbs and removes heat,
and so its temperature will increase. Then, when the cooling
water from the stack flows through the radiator, the radiator
fan rotates in order to create a convection flow between the air
and the cooling water, so that excess heat can be eliminated,
and the inlet temperature of the cooling water is restored to an
acceptable level. In the method proposed in this paper, the
cooling water flow rate is treated as the control quantity, the
stack temperature is controlled by adjusting the cooling water
flow rate, and the radiator is set to run at a fixed speed to meet
the heat dissipation requirements.

PEMFC Stack Temperature
According to the law of the conservation of energy, when the
hydrogen in the PEMFC reacts with oxygen, all the chemical
energy released is converted into electric energy and heat. Then,
according to the heat balance equationQ � CMΔT, excluding the
effective power generation and heat from various channels, the
remaining energy of the generated chemical energy will affect the
internal temperature of the reactor, and so the temperature
change of the reactor per unit of time is closely related to the
heat generation and heat dissipation of the reactor [44]:

CstMstΔT � Qche − Pst − Qgas − Qwater − Qrad (1)

Chemical Energy
According to Figure 1, The chemical energy converted by
hydrogen per unit time is:

Qche � ΔH ×Nwedd
H2

� ΔHNIst
2F

(2)

FIGURE 1 | PEMFC control framework.
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Electric Power
The output electric power of the PEMFC stack is:

Pst � NVcellIst (3)

Gas Cooling
The stack gas cooling system is designed in accordance with the
laws of conservation of energy and matter. The gas and water are
consumed and generated in the stack. Based on the energy
difference between the intake and the exhaust, the heat caused
by the exhaust can be calculated as follows:

Qgas � Tout ∑
i�H2 ,N2 ,O2 ,H2O

Cout
i Wout

i − Tin ∑
i�H2 , N2 ,O2 ,H2O

Cin
i W

in
i

(4)

Circulating Cooling Water for Heat Dissipation
Circulating cooling water is the main method for dissipating heat
in the PEMFC stack. The circulating water pump provides
pressure, which drives the cooling water through the stack at a
certain flow rate, thus removing excess heat, so that the stack can
operate at a safe and efficient temperature. The heat dissipation is
calculated as follows:

Qwater � CwaterWwater(Tout − Tin) (5)

The cooling water absorbs heat when it flows through the stack,
and so the outlet temperature is much higher than the inlet
temperature. In order to ensure that the inlet temperature
remains at 339.15K, a cooling fan supplies air flow sufficient
for transferring heat from the cooling water to the air. The
relationship is as follows:

Qwater � CwaterWmater(Tst − Tin) � CairWair(Tfan,out − Tatm) (6)

Heat Radiator
Any material of a sufficient temperature will radiate heat in the
form of electromagnetic radiation, and the same is true for the
PEMFC stack. The heat radiated by it is related to the temperature
of the stack:

Qrad � δσbArad(T4
st − T4

atm) (7)

INTELLIGENT CONTROL OF STACK
TEMPERATURE BASED ON ITD3
ALGORITHM

DDPG
The Deep Deterministic Policy Gradient (DDPG) is an improved
algorithm based on Deep Q-learning (DQN), which effectively
solves the problem of multi-dimensional continuous action
output. In addition, similar to other model-free reinforcement
learning algorithms, the DDPG algorithm is capable of black-box
learning. It only needs to pay attention to the state, action, and

reward value at runtime, rather than rely on a detailed
mathematical model of the system.

The loss function of the current value network is calculated as
follows:

J(θℓ) � 1
m

∑m
j�1

ωj(yj − Q(Sjt , Aj
i /θ

Q))2 (8)

Wherein,

yj � {Rj
t+1 end j is true

Rj
t+1 + cQ′(Sjt+1, Aj

t+1/θ
g) end j is false

(9)

The loss function of the real value network is calculated as follows:

J(θp) � − 1
m

∑m
j�1

Q(Sjt , Aj
t /θ

s) (10)

Among them, by using the gradient descent method to find the
minimum value of the loss function J(θp), the maximum action
value Q(Sjt , A

j
t /θ

Q) can be determined.
The target value network and target strategy network are

updated in the following ways:

θ
Q
′ ← τθℓ + (1 − τ)θℓ′

θ
n
′ ← τθπ + (1 − τ)θn′ (11)

Τ is the soft update coefficient, and thus the update speed of the
neural network can be controlled by adjusting τ. In order to avoid
excessive updating of the neural network, τ usually ranges
between 0.01 and 0.1. The update frequency of the target
value network and the target strategy network is specified by
the parameter f. Therefore, every time step t reaches an integer
multiple of f, the target network is updated once.

ITD3
Clipped Double Q-Learning
According to Figure 2, In ITD3, the Clipped Double Q-learning
method is used to calculate the target value:

y1
t � r(st, at) + cmini�1,2Qθi′ (st+1, πϕ1(st+1)) (13)

Policy Delay Update
After every d times of the critic network update, the actor network
is updated once to ensure that the actor network can be updated
with a low Q error, so as to improve the update efficiency of the
actor network.

Smooth Regularization of Target Strategy
The ITD3 algorithm introduces a regularization method for
reducing the variance of the target value, and smoothes the Q
value estimation by bootstrapping the estimated value of the
similar state action pair:

yt � r(st, at) + Eε[Qθ′(st+1, πϕ′(st+1) + ε)] (14)

Smooth regularization is achieved by adding a random noise to
the target strategy and averaging on the mini-batch:
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yt � r(st, at) + cmini�1,2Qθt(st+1, πϕ′(st+1) + ε) (15)

ε ∼ clip(N(0, σ),−c, c) (16)

Changeable Soft Update Coefficient
The DDPG algorithm uses a soft update method to update the
target deep neural network parameters; however, this method
undermines the training efficiency of the DDPG algorithm and
increases the training cost. In order to overcome this problem, the
soft update coefficient increases with the increase in episodes, as
detailed below:

τ �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.05 episodes< 1000
0.1 1000< episodes< 2000
0.15 2000< episodes< 3000
0.2 episodes> 3000

(17)

CASE STUDIES

The effectiveness of the proposed method is demonstrated in a
simulation in which the proposed algorithm is compared against
the following: Apex-DDPG, TD3 controller [6], DDPG controller

FIGURE 2 | ITD3 algorithm.
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[2], PSO tuned PID controller (PSO-PID) [8], PID controller and
NNC controller [3].

In the experiment, the operating time in the working condition
is 120s.

It is demonstrated in Figure 3 that when the load current
changes step by step, the ITD3 controller can more effectively
realize the stack temperature control and effectively control the
output characteristics of the PEMFC, compared with the other
algorithms. The overshoot of the output voltage is small, with
quick response. The ITD3 controller has better adaptive ability
and robustness, which makes it possible to obtain a faster
response speed for restoring the temperature at the midpoint
prior to the early stage of the disturbance, and thus obtain better
stability at the later stage of the disturbance, which leads to less
overshoot of the stack temperature, and no static error when the
system is stable. In addition, because the proposed method can
learn a large number of samples under different load conditions
during offline training, it has extremely high adaptive ability and
robustness, so it is able to automatically arrive at the best decision
in the current state according to the collected PEMFC state.
Therefore, the proposed method can smoothly control the stack
temperature and obtain better control performance under
variable load disturbances. By comparison, the TD3 algorithm,
DDPG algorithm and NNC algorithm are less robust due to their
low exploration ability and excessive reliance on samples. The
other conventional algorithms in the simulation lack the capacity

for adapting to the time-varying characteristics and nonlinearity
of the PEMFC environment.

The ITD3 algorithm has better static and dynamic
performance and is able to control the output voltage more
effectively than the existing algorithms involved in the
simulation.

CONCLUSION

In this paper, we have proposed a deep reinforcement learning-
based PID controller for optimal stack temperature of the
PEMFC. To this end, we have devised and tested what we
term the ITD3 algorithm. This serves as the tuner of the PID
controller by adjusting the coefficients of the controller in real
time. The algorithm introduces Clipped Double Q-learning,
strategy delay update, smooth and smooth regularization of
target strategy, and changeable soft update coefficients in the
training process, in order to speed up agent learning, thereby
improving agent training efficiency, reducing training costs, and
obtaining a robust strategy.

The simulation results indicate that the proposed control
algorithm can achieve effective control of the temperature of
the PEMFC stack. In addition, it has been compared with other
RL control methods, including adaptive FOPID algorithm,
adaptive PID algorithm and PID algorithm with optimized
parameters, and the neural network control algorithm. In
summary, the results demonstrate that the proposed control
method achieves better control performance and robustness.
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