
Municipal Solid Waste Forecasting in
China Based on Machine Learning
Models
Liping Yang1,2, Yigang Zhao3, Xiaxia Niu1, Zisheng Song4, Qingxian Gao5 and Jun Wu1*

1School of Economics and Management, Beijing University of Chemical Technology, Beijing, China, 2School of Management,
University of Science and Technology of China, Anhui, China, 3Beijing Institute of Petrochemical Technology, Beijing, China,
4Department of International Exchange and Cooperation, Beijing University of Chemical Technology, Beijing, China, 5Chinese
Research Academy of Environmental Sciences, Beijing, China

As the largest producing country of municipal solid waste (MSW) around the world, China
is always challenged by a lower utilization rate of MSW due to a lack of a smart MSW
forecasting strategy. This paper mainly aims to construct an effective MSW prediction
model to handle this problem by using machine learning techniques. Based on the
empirical analysis of provincial panel data from 2008 to 2019 in China, we find that the
Deep Neural Network (DNN) model performs best among all machine learning models.
Additionally, we introduce the SHapley Additive exPlanation (SHAP) method to unravel the
correlation between MSW production and socioeconomic features (e.g., total regional
GDP, population density). We also find the increase of urban population and agglomeration
of wholesales and retails industries can positively promote the production of MSW in
regions of high economic development, and vice versa. These results can be of help in the
planning, design, and implementation of solid waste management system in China.
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INTRODUCTION

Over the past decade, the urban population in China has reached up to 900 million residents with an
urbanization rate of over 60% (NBSC, 2021), which significantly challenges the existing urban
sources (e.g., water, air, and energy) related to residents’ life quality (Hoornweg and Bhada-Tata,
2012). The municipal solid waste (MSW), as renewable energy, is considered an essential part of the
Waste-to-Energy (WtE) system (Ouda et al., 2013; Kuznetsova et al., 2019; Mukherjee et al., 2020). It
is reported that the production of MSW in China was around 242 million tons in 2020 compared
with that of 8.17 million tons in 2008 (NBSC, 2020). In other words, the efficient management of
municipal solid waste is becoming an important concern for urban sustainability governance.
However, the utilization efficiency of MSW was merely about 45% in China, which was much lower
than that in other advanced countries, such as over 80% in Japan (Ding et al., 2021). Therefore, how
to increase the utilization efficiency of MSW would impact both central and local governments in
China to promote urban sustainable development (He and Lin, 2019).

In general, an integrated decision-support methodology for waste-to-energy management
systems (WtEMS) design is mainly composed of three modules: 1) the waste modeling and
prediction, 2) optimization of WtEMS, and 3) a multi-dimensional assessment, as shown in
Figure 1 (Kuznetsova et al., 2019). Among these three modules, waste modeling and its
prediction of MSW play a fundamental role in effectively conducting urban planning and
energy management. Many international scholars have carried out extensive studies on this
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module by using group comparisons, time series analysis, and
system dynamics (Beigl et al., 2008). Recently, with the popularity
of machine learning (ML) methods, alternative methods were put
forward to forecast the quantity of generated municipal solid
waste effectively (Guo et al., 2021). For instance, based on the
example of Suzhou (Niu et al., 2021), constructed the long short-
term memory (LSTM) neural network, autoregressive integrated
moving average (ARIMA), and traditional neural network to
predict the MSW production. They found that the LSTM played a
vital role in predicting MSW production but did not reveal the
correlation between the production of MSW and socio-economic
variables. Nguyen et al. (2021) selected residential areas in
Vietnam as a case of study and figured out that both the
random forest (RF) and the k-nearest neighbor (KNN)
approaches performed effectively in predicting the amount of

urban waste. Birgen et al. (2021) developed a Gaussian Processes
Regression (GPR) method to predict the daily lower heating value
of MSW by combining the historical data of a WtE plant and the
weather and calendar data. In addition, other ML methods, such
as the support vector machine (SVM) (Kumar et al., 2018) and
decision tree (Kannangara et al., 2018) have also been employed
to predict the MSW production.

Similar to other energy forecasting research topics (e.g., crude
oil prices, gas consumption), MSW production is also was highly
influenced by various socio-economic factors (Zhang et al., 2009;
Liang et al., 2019; Huang et al., 2021a). However, previous studies
neither revealed the correlation between each factor and MSW
production nor identified their interaction in different socio-
economic circumstances (Kannangara et al., 2018; Niu et al.,
2021; Nguyen et al., 2021). In the context of China, existing

FIGURE 1 | Integrated decision support method for WtEMS design: methodology flowchart.
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studies scarcely discussed the performances and applications of
different ML methods in predicting MSW. Therefore, this paper
mainly aimed to construct a prediction model by using machine
learning models by using provincial panel data of 2008–2019 in
China. Besides, it also discussed the comparison of the
performances of six different ML models in predicting China’s
municipal solid waste generation. Considering that data input
form and model hyperparameters have a great influence on
prediction results, we tested different preprocessing strategies
to ensure robust estimation and prediction of the ML model.
Finally, this paper provided some potential implications for both
policy-makers and other industry stakeholders in terms of
convincing evidence concluded from the ML prediction model.

The initial contributions of this paper are threefold. First, it
emphasized the good performance of machine learning

approaches in predicting MSW production and extended the
existing literature to construct a prediction model by comparing
six supervised learning algorithms. These models varied from
linear, non-linear to ensemble methods and artificial neural
network methods, including a body of discussions on data
preprocessing, resampling, model training, testing, and
interpretation steps. Therefore, the constructed prediction
model of MSW would theoretically shed light on other similar
research related to prediction issues in the future. Second, this
paper estimated the impacts of diverse socio-economic factors on
MSW production, such as the regional economic development
level (e.g., regional GDP, population density, per capita
disposable income), industrial structure (e.g., wholesale and
retail values added), and waste generation characteristics.
Third, to improve the interpretations of ML models, this
paper employed the SHapley Additive exPlanation (SHAP)
approach and visualized the SHAP value of each explanatory
variable. This technique would also provide good evidence to
explain the outcomes of ML models for other researchers in the
future.

The remaining sections of this paper are organized as follows:
Materials and Methods describes the models adopted in this
paper and the process of data acquisition. Results reports the
results of comparison among six ML models, via presenting the
predictive capability and SHAP analysis. Conclusion provides
conclusions and some implications.

MATERIALS AND METHODS

Figure 2 outlines the main steps of the methodology used in
this study. In this paper, we first preprocessed the original
database and selected critical variables for MSW prediction.
Second, this paper focused on comparing with six ML models,
including the multiple linear regression (MLR), support vector
regression (SVR), Random Forest, extreme gradient boosting
(XGBoost), k-nearest neighbor, and deep neural network
(DNN). Thirdly, three evaluation metrics are used to
compare the prediction performance of each algorithm.
Finally, the SHAP method is employed to analyze and
discuss the output.

ML-Based Models and Applications for
Waste Prediction
The Multiple Linear Regression Liner Model
The multiple linear regression is a commonly used MLmethod to
estimate the marginal effects of independent variables (or called
feature vector in machine learning techniques) on the dependent
variable. It is widely applied to waste prediction of desirable
explanatory power in different regions and countries (Beigl et al.,
2008). In China, this approach is also employed to predict the
MSW production in “Calculation and Prediction Method of
Municipal Solid Waste Production (CJ/T 106-1999)”, which is
the official guide compiled by the Ministry of Construction,
China.

The model can be expressed as Eq. 1:

FIGURE 2 | Procedures of methodology.
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Y � β0 + β1X1 + . . . + βkXk + ϵ, (1)

where Y is MSW generation in this paper, β0 denotes regression
constant, β1 ∼ βk are regression coefficients, X1 ∼ Xk are
explanatory variables, ϵ marks the regression residuals.

Usually, MLR uses the ordinary least squares (OLS) method to
estimate the parameters that can achieve the lowest sum-of-
squared errors between the observed and predicted responses.
Under the OLS estimation, MLR’s results could be easily
interpreted. However, some drawbacks have to be considered
in MLR. For instance, the multicollinearity among the predictors
can result in estimation errors, as well as the omitted variables
could induce a biased estimation. In this paper, we mainly
concentrated on the performance of each ML model and
considered the variables selection based on earlier studies
(Kannangara et al., 2018; Namlis and Komilis, 2019; Niu et al.,
2021; Nguyen et al., 2021). The multicollinearity and omitted
variables problems are not our concerns.

Support Vector Regression
SVM was originally used to deal with pattern recognition
problems, and recently extended to estimate regression models
due to its properties of the sparse solution and good
generalization (Demir and Bruzzone, 2014). By introducing an
ε-tube to reformulate the optimization problem, the SVM model
could be transformed to an SVR model and finds the optimal
approximation of the continuous-valued function while
balancing the complexity and prediction error of the
prediction model (Huang et al., 2021b). In addition, the
accuracy of an SVR model heavily relies on three parameters:
a penalty parameter (C), the kernel width (c) and the precision
parameter (ε) (Abbasi and El Hanandeh, 2016; Li et al., 2021).
Specifically, the smaller C is, the smaller the fitting error and the
weaker the generalization ability would be. The larger c is, the
more support vectors; and vice versa. ε is a precision parameter
representing the tube’s radius located around the regression
function. In other words, the choice of ε donates the
magnitude of errors that can be neglected. Since the above
three parameters are critical to the adaptability of the model,
we will tune them using a grid optimization approach in Results to
optimize the SVR model.

A great body of literature has discussed the SVR and SVM
models in predicting the generation of MSW. For example
(Abbasi and El Hanandeh, 2016), adjusted the hyper-
parameters of SVR by combining the grid search method and
applying the model with the optimal parameters to the monthly
prediction of MSW in Logan City, Australia. They found that
SVR can effectively reduce the mean absolute error (MAE) and
root-mean-square error (RMSE), and improve prediction
performance (R-square). Besides (Nguyen et al., 2021), applied
SVM to the prediction of MSW production in Vietnam with an
MAE of 131.07, which confirmed that the SVMmodel performed
a better prediction. Kumar et al. (2018) applied it to the prediction
of the production rate of plastic waste, and found that the
prediction result of SVM (R2�0.74) is better than RF
(R2�0.66) and lower than artificial neural network (ANN)
(R2�0.75). Mehrdad et al. (2021) argued that SVM was

superior to both the adaptive neuro-fuzzy inference system
and artificial neural network models in predicting methane
generation.

Random Forest
Random Forest is an evolution of Bagging which aims to reduce
the variance of a statistical model, simulates the variability of data
through the random extraction of bootstrap samples from a single
training set and aggregates predictions on a new record (see
Breiman, 1996). It performs amore stable and better prediction of
explained variables than other machine learning models (Huang
et al., 2021b). Generally, the RF algorithm implementation can be
expressed as follows:

1) Bagging is used to randomly generate sample subsets;
2) Use the idea of random subspace by randomly extracting

features, splitting nodes, and building a regression sub-
decision tree;

3) Repeat the above steps to construct T (the number of decision
trees) regression decision subtrees to form a random forest;

4) Take the predicted values of T sub-decision trees and take the
mean as the final prediction result.

The RF model was widely used in the prediction of waste.
Kumar et al. (2018) used RF for the prediction of plastic waste
generation rate that showed an R-square of 0.66. The size of the
random forest, that is, the number of decision trees (Ntrees) and
the number of features tried in each segmentation (Nfeatures)
have a significant impact on the predictive ability of the RF model
(Hariharan, 2021). When Ntrees exceed a certain value, the
prediction performance of the model converges. In this case,
increasing the number of decision trees will not improve the
model performance, but will result in model redundancy. In
addition, using a smaller number ofNtrees reduces the similarity
in the forest, but also reduces the complexity and strength of the
model. Conversely, the increase in Ntrees can make each tree
more powerful, but also increase the correlation between the
trees. Therefore, in the following section, we will optimize these
two hyper-parameters to acquire better results.

Extreme Gradient Boosting
XGBoost algorithm, proposed in 2016, is a relatively new
approach (Chen and Guestrin, 2016). Different from RF
model using bagging integration method, XGBoost model is
an integration tree model using boosting method to integrate
classification and regression tree (CART). It has the advantages of
fast training speed and high prediction accuracy. The result of
XGBoost is the sum of prediction scores of all CARTs (Chen and
Guestrin, 2016) as formed in Eq. 2:

ŷ � ∑N

n�1 fm(X), (2)

where N represents the number of trees in the model, fm

represents each CART tree and ŷ is predicted result.
Since its introduction, the XGBoost model has been widely

used in the prediction of oil price (Costa et al., 2021) and energy
usage (Feng et al., 2021). However, up to date, XGBoost model
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has not been applied to the research of MSW generation
prediction. Similar to RF, the number of integrated CARTs
(Ntrees) in XGBoost has a great influence on the prediction
performance. Therefore, in order to increase the model’s
performance in predicting the MSW generation, it is necessary
to optimize this hyper-parameter. In Results, we also use the grid
search method to confirm the different combinations of these two
parameters to obtain the optimal model structure.

K-Nearest Neighbor
KNN algorithm is a non-parametric learning method first
proposed by Cover and Hart (Cover and Hart, 1967). Since its
introduction, it has been widely used in regression and
classification due to its simple and intuitive mathematical
form (Wu et al., 2008). It is essentially a supervised learning
technique that via the clustering algorithm classify the similarity
between the test sample and K nearest training samples (Zheng
et al., 2020). Here, K is a user-defined number, normally an odd
number, and the similarity is measured by the commonly used
Euclidean distance. The test sample is classified based on the most
frequent classification among the training samples. The mean
value of the K nearest training samples is regarded as the
predicted value. The mathematical measurement of Euclidean
distance is expressed in Eq. 3:

d(x, y) � ����������������������������������(x1 − y1)2 + (x2 − y2)2 + . . . + (xn − yn)2√
�

����∑n

i�1

√ (xi − yi)2 (3)

One drawback of KNN approach is the pre-selected number of
K, a hyperparameter, because it would greatly influence the
numbers of nearest samples (Wu et al., 2008; Zheng et al.,
2020). In the following section, we first limit K to positive
integers between 1 and 30, and then cross-verify them on a
10-fold sample to avoid this drawback.

Several studies applied the KNN approach into the prediction
of MSW. For example, (Abbasi and El Hanandeh, 2016) first
attempt to evaluate the ability of KNN to forecast MSW
generation. They concluded that KNN can give good
prediction performance and may be applied to establish the
forecasting models that could provide accurate and reliable
MSW generation prediction. Nguyen et al. (2021) predicted
the MSW production in Vietnam and the R-square was over
0.96, which indicated that more than 96% of MSW production
would be explained by the KNN model.

Artificial Neural Network
The ANN model is a computational system composed of
multiple layers of neurons (input-hidden-output) (Al-Dahidi
et al., 2019). This model is widely used in waste management
because of its strong fault-tolerant ability to describe the
complex relationship between variables in a multivariate
system. (Abbasi and El Hanandeh, 2016; Mehrdad et al.,
2021; Nguyen et al., 2021; Niu et al., 2021). The deep neural
network is a branch of ANN based on a perceptron model.
Indeed, an ANN model with multiple hidden layers is called a
DNN since it has to train and process through multiple layers

(Liu et al., 2017). The structure of DNN also includes input
layer, hidden layer, and output layer. In general, the structure of
DNN and ANN is similar, and their training algorithm is not
different. However, studies showed that DNN tends to provide
better performance and accuracy than conventional ANN
models (Yang et al., 2021).

In this paper, a DNN with four layers of structure is
constructed, namely the input layer, the first hidden layer, the
second hidden layer and the output layer with one neuron. The
number of neurons in the hidden layer has a great influence on
the prediction performance of DNN. The smaller the number of
neurons, the more likely it is to lead to insufficient fitting. On the
contrary, an excessive number of neurons may lead to over-
fitting. Therefore, selecting the appropriate number of neurons
for DNN is also one of the bases to improve the model
performance. In this paper, the number of neurons in the first
hidden layer (Nh1) and the number of neurons in the second
hidden layer (Nh2) are optimized to gain better results.
Specifically, we first specify the numerical space of the number
of neurons, and then test on the train and test samples, taking the
optimal result as the optimal network structure.

Data Collection
In this paper, we aim to construct a ML-based prediction model
of MSW production that is the predictor in all ML models.
However, because there are no relevant statistics of MSW
production in China at present, we utilize a proxy indicator of
the MSW removal volume (Niu et al., 2021; Namlis and Komilis,
2019). More specifically, we obtained this annual statistical data
for all provinces in mainland China from 2008 to 2019 to support
our research.

The input variables of this paper in predicting MSW
production are collected from provincial panel databases of
the China Statistical Yearbook 2008–2019. Nine diverse socio-
economic factors on MSW production, such as the regional
economic development level (e.g., regional GDP, population
density, per capita disposable income), industrial structure
(e.g., wholesale and retail values added), and waste generation
characteristics are obtained (Nguyen et al., 2021). Table 1
reported the variable definition and descriptive statistics. As
plotted in Figure 3, the skewness and kurtosis of each variable
existed noticeable differences. To mitigate the influences in
predicting the MSW production, we employ three different
data preprocessing methods and proceed to explore the
model’s performance under different circumstances in the
following sub-sections.

Machine Learning Techniques
Data Preprocessing and Re-Sampling
The preprocessing methods adopted include linear normalization
(Range) and standard deviation normalization (Scale), as shown
in Eq. 4 and Eq. 5 respectively. For ML models (such as KNN)
that need to calculate the distance between samples, different
orders of magnitude between variables will greatly affect the
performance of the model. We retained the original input data
in this paper (Raw), and conducted two normalization strategies
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of Range and Scale to reduce the influence of data’s dimensions
and skewness on the predictions. Thus, the results of the three
preprocessing methods would be comparable.

x � x − xmin

xmax − xmin
, (4)

x � x − �x

σ2
, (5)

where xmin represents the minimum value of variables while xmax

represents the maximum value. �x represents the numerical
average value and σ2 is the variance of each variable.

Tominimize the deviation caused by sampling and prevent the
model from over-fitting, we adopted the 10-folds cross validation
method of resampling technique to create a random sample
subset of input data as a training set. The remaining data was
used as test set to obtain the generalization ability of the
algorithms.

Metrics of the Model
To evaluate the performance of each machine learning
algorithm, we use three metrics of the MAE, RMSE and
the coefficient of determination (R2) (Chai et al., 2021;

TABLE 1 | Definition of variables and descriptive statistics.

Category Variable Description Mean Median Maximum Minimum Std.Dec Unit

Explained variable MSW Total solid waste collected amount 8343.85 6125.25 42951.80 130.00 7767.28 10,000 tons
Explanatory
variables

InGDP Total Regional GDP. 20265.24 14580.35 107986.90 398.20 18414.77 100 million RMB
InTSP Value added by transportation, warehousing, and

postal services
932.68 727.80 3658.00 20.60 746.80 100 million RMB

InWAR Wholesale and retail value added 1955.78 1250.85 11000.20 23.40 2097.82 100 million RMB
InAAM Value added by the accommodation and catering

industry
379.55 284.75 1880.50 13.10 339.47 100 million RMB

Ca City area 6065.09 4625.75 23206.32 295.00 5135.54 Square
kilometers

Upd Urban population density 2788.65 2584.46 5967.00 515.00 1193.25 people/
square km

Nup The number of urban populations. 601.03 493.97 3347.32 16.30 477.08 10,000 people
Dip Urban per capita disposable income 2393.92 2112.35 8226.00 64.89 1601.20 RMB
Scg Total retail sales of consumer goods 26277.49 25027.32 73848.51 9746.80 11190.64 100 million RMB

FIGURE 3 | Histogram plots for the different inputs and output variables used to train the MLmethods. (A) is InGDP, (B) is InTSP, (C) is InAAM, (D) is InWAR, (E) is
Ca, (F) is Upd, (G) is Nup, (H) is Dip, (I) is Scg, (J) is MSW.
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Nguyen et al., 2021). These measurements are formulated as
Eqs 6–8.

MAE � ∑n
i�1
∣∣∣∣yi − xi

∣∣∣∣
n

, (6)

RMSE �
������������∑ n

i�1
(yi − xi)2

n

√
, (7)

R2 � 1 − ∑n
i�1(yi − xi)2∑n
i�1(yi − �x)2 , (8)

where n is the number of samples, xi is the predicted response by
the model, yi is the actual value of the response, xi is average
estimated value.

Model Interpretation
Model interpretability is a major challenge to applications of ML
methods, which has not been given enough attention in the field of
ML andMSW forecasting research. To improve the interpretations
of machine learning models, this paper employed the SHAP
method that assigned each input variable a value reflecting its
importance to predictor (Lundberg and Lee, 2017).

For socio-economic factor subset S4F (where F stands for the
set of all factors), two models are trained to extract the effect of
factor i. The first model fS ∪ {i}(xS ∪ {i}) is trained with factor i
while the other one fS(xS) is trained without it, where xS ∪ i}{ and
xS are the values of input features/socio-economic factors. Then
fS ∪ {i}(xS ∪ {i}) − fS(xS) is computed for each possible subset
S4F\ i .}{ The Shapley value of a risk factor i is calculated
using Eq. 9.

ϕi � ∑
S4F\{i}

|S|!(|F| − |S| − 1)!
|F|! (fS ∪ {i}(xS ∪ {i}) − fS(xS)), (9)

However, a major limitation of Eq. 9 is that as the number of
features/socio-economic factors increases, the computation cost
will grow exponentially. To solve this problem (Lundberg et al.,
2020), proposed a computation-tractable explanation method,
i.e., TreeExplainer, for decision tree-basedMLmodels such as RF.
The TreeExplainer method marks it much more efficient to
calculate a risk factor’s SHAP value both locally and globally
(Ayoub et al., 2021).

The SHAP combines optimal allocation with local
explanations using the classic Shapley values. It would help
users to trust the predictive models, not only what the
prediction is but also why and how the prediction is made
(Ayoub et al., 2021). Thus, the SHAP interaction values can be
calculated as the difference between the Shapley values of factor i
with and without factor j in Eq. 10:

ϕi,j � ∑
S4F\{i,j}

|S|!(|F| − |S| − 2)!
|F|! (fS ∪ {i,j}(xS ∪ {i,j})

− fS ∪ {i}(xS ∪ {i}) − fS ∪ {j}(xS ∪ {j}) − fS(xS)). (10)

For this superiority, we employ it to explain RF models which
is based on decision trees. Therefore, compared with the existing
methods (Nguyen et al., 2021), SHAP can reflect the influence of
features in each sample, show the positive and negative effects of
the influence, and thereby improve the explanatory of the model
output.

RESULTS

Comparison of Model Results
The programming environment used in this study is Python
(version 3.8.3) with additional support packages namely scikit-
learn (version 0.24.1), Tensorflow (version 2.2.2) to calculate and
run the ML algorithms.

Tuning
In this section, parameters of machine learning models are tuned,
excluding multiple linear regression approach because it doesn’t
involve any hyper-parameters. Specific adjustment for
parameters is shown in Table 2.

In the tuning process of SVR, we conduct the aforementioned
three data preprocessing strategies (the Raw, Range, and Scale)
respectively. As shown in Table 3, in the Raw strategy, that is to
retain the original form of input data, the penalty parameter (C)
varies from 1 to 4000, compared with that in the Range strategy of
0.01–10. The precision parameter (ε) is an interval between
0.0001 and 0.001 in the Range and Scale strategies, compared
with that of an interval from 0 to 5000. The kernel width (c)
doesn’t show any differences among the three strategies. The
processing strategies of Range and Scale can effectively improve
the normalization and scaling of the distributions of input
variables.where Scaled and Auto in c represent the results of
Eq. 11 and Eq. 12 as the c value of the SVR.

Scaled: c � 1
NS × S2

, (11)

Auto: c � 1
NS

, (12)

where NS represents the number of sample features and S2

represents sample variance. The optimization results are
shown in Figure 4.

The hyper-parameters in other ML models are also
tuned. For RF, the number of variables tried in each

TABLE 2 | Hyper-parameters optimization.

Algorithm Hyper-parameters Other parameter settings

SVR (C, c, ε) Kernel � Gaussian Kernel
KNN K Using Default Parameters
RF (Ntree,Nfeatures) Using Default Parameters
XGBoost Ntree Learning Rate � 0.05
DNN (Nh1,Nh2) Activation Function � Relu

TABLE 3 | Hyper-parameters search space of SVR.

Strategy C c ε

Raw (1, 4000) (Scaled,Auto) (0, 5000)
Range (0.01, 10) (Scaled,Auto) (0.0001, 0.001)
Scale (0.01, 10) (Scaled,Auto) (0.0001, 0.001)
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segmentation (Nfeatures) is set as positive integers between 1
and 9 in terms of nine input variables in this paper. The forest
size (Ntree) is set as positive integers between (50,400). The
optimization results of hyper-parameters are shown in
Figure 5. In Figures 4, 5, the redder the color is, the higher
the R2 of the parameter combination (therefore, the better the
prediction), and vice versa. For KNN, the number of neighbors
K is set as a positive integer between 1 and 29. For the XGBoost,
the number of trees (Ntree) is set to 23 positive integers
between 50 and 490. For DNN, the number of neurons in
the first hidden layer (Nh1) is set as a positive integer increasing
by 16 between (16,240), and the number of neurons in the
second hidden layer (Nh2) is set as one half of the number of
the first hidden layer.

Moreover, the Adma method is used as the optimization
method, MAE is set as the loss function and the

maximum number of epochs is set to 200. Meanwhile, to
prevent over-fitting of the DNN, the EarlyStop mechanism
is introduced, and the minimum learning rate is set as 0.003
and the tolerance is set as 20. The hyper-parameter selection
results of KNN, XGBoost, and DNN are shown in Figure 6.
The hyper-parameters adopted by each method are shown
in Table 4.

Model Application and Generation Ability
Figure 7 presents the prediction performance of different ML
models by using three preprocessing strategies. Several findings
can conclude from the comparison among models. First, the
prediction performance of MLR is the worst among all the
methods because it doesn’t involve hyper-parameter and
responding adjustments. Second, the overall performances of
SVR and KNN are similar, but the prediction ability of SVR is

FIGURE 4 |Grid search results of SVR under different preprocess methods and different c. (A) is Raw & c � Auto, (B) is Scale & c � Auto, (C) is Range & c � Auto,
(E) is Raw & c � Scaled, (F) is Scale & c � Scaled, (G) is Range & c � Scaled.

FIGURE 5 | Grid search results of RF under different preprocess methods. (A) is Raw, (B) is Scale, (C) is Range.
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slightly higher than that of KNN except for results in Scale
processing. Normally, the conducting SVR model needs a
more complex process than KNN. By inputting different forms
of data, the KNN only needs to adjust one super parameter, which
requires less work than SVR. Third, the RF and XGBoost models
present significant and similar advantages in predicting MSW
production compare with MLR, SVR, and KNN according to the
performance measurement of R2. Fourth, the DNN has the best
predictive performance among all the algorithms.

In this study, the RF and DNNmodels showed high R2 values
( > 0.9) during all preprocessing methods. That means the

developed ML models had a good power of explanation and
were not over-fitted or over-trained. Compared with the ML
method forMSW prediction developed in the earlier studies, our
results were significantly better in prediction accuracy. For
example (Niu et al., 2021), developed LSTM and ANN
models for predicting MSW generation and during the
testing phase, the R2 value were 0.92 and 0.74, respectively
(Table 5). In addition, (Nguyen et al., 2021), reported a DNN
model with predictive performance (R2) of 0.9 for MSW
production projections in Vietnam. According to Kumar
et al. (2018) and Kannangara et al. (2018) the ANN, SVM
and other ML models for predicting MSW generation
showed R2 even lower than 0.8. Thus, the machine learning
model developed in this paper promotes the effective prediction
of MSW production.

SHAP Analysis
Overall Analysis
Figure 8 shows the SHAP summary plot that orders features
based on their importance to predict MSW production.

FIGURE 6 | Hyperparameter optimization results of different methods under different preprocess approaches. (A) is KNN and Raw, (B) is KNN and Scale, (C) is
KNN and Range, (D) is XGBoost and Raw, (E) is XGBoost and Scale, (F) is XGBoost and Range, (G) is DNN and Raw, (H) is DNN and Scale, (I) is DNN and Range.

TABLE 4 | Hyper-parameter selection result for each algorithm.

Algorithm Raw Scale Range

SVR (4000,Scaled,202) (1.019,Auto, 0.0001) (4.049,Auto, 0.0001)
KNN 7 3 6
RF (92,2) (78,1) (67,1)
XGBoost 110 110 170
DNN (208,104) (208,104) (48,24)
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Specifically, a higher SHAP value of a feature indicates higher-
ranked importance to theMSWproduction volume. For example,
the difference in the region’s GDP has the greatest impact on the
model’s prediction of MSW production. It is likely because waste
production is highly related to the household wealth that directly
influences one’s daily consumption and potential production of
MSW (Malinauskaite et al., 2017). Moreover, higher value of this
feature result in higher SHAP values, which correspond to a
higher output amount of MSW.

In addition, the industry structure presents a great influence
on MSW production because of its indirect impacts on the
citizens’ consumption. For instance, a higher degree of the
added value of wholesale and retail trade indicates higher

FIGURE 7 | Comparisons of algorithms predicts performance under different preprocess methods. (A) is Raw, (B) is Scale, (C) is Range.

TABLE 5 | Comparison of model performance for prediction of MSW generation.

Method MAE RMSE R2 References

DNN 861.03 1288.80 0.97 This study
RF 774.30 1348.63 0.91
XGBoost 1219.91 1706.78 0.90
LSTM N/A 935.08 0.92 Niu et al. (2021)
ANN N/A 547.14 0.74
DNN 177.6 294.6 0.91 Nguyen et al. (2021)
ANN N/A 9.53 0.75 Kumar et al. (2018)
SVM N/A 9.88 0.74
RF N/A 9.88 0.66
Decision Trees N/A 23 0.54 Kannangara et al. (2018)
Neural Networks N/A 16 0.72

FIGURE 8 | SHAP summary plot.
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production of MSW compared with other industries (e.g.,
transportation, warehousing, and postal services industries).
Some studies have argued that consumption patterns and
population increase are important factors that contribute to
MSW production in developing countries (Liu et al., 2019;
Nguyen et al., 2021). Besides, the urban population also shows
a significant impact on MSW production, because of its
functioning on the total amount of MSW production. In
contrast, other socio-economic features have a relatively
insignificant impact on MSW in China. In the following
paper, we will continue to analyze the dependency among
these three features to discover the generation mode of MSW
in China.

Dependence Analysis
Figure 9 plots the relationship between a feature and its SHAP
value dependent on another feature in the RF model. We select
Nup and InWAR as the features to discuss and identify their
variation as changes of InGDP. As shown in Figures 9A,B, the
red points represent a higher value of InGDP, and the blue points
represent the lower one.

Figure 9A plots the moderating effects of GDP on the impacts
of urban population onMSW production. It shows that under the
condition of a low Nup and a low InGDP, the SHAP value of
Nup is below zero, which indicates that the impact ofNupwould
negatively impact the MSW production under these
circumstances. In other words, the less developed region might
undermine the impact of the urban population on MSW
production, although the local urban population increases. In
contrast, with the economic growth, the increase of the urban
population will promote the production of MSW. It could be
recognized by the red color of the SHAP value in this figure.

Figure 9B reflects the interaction between GDP and the added
value of wholesale and retail industries on MSW production. For
example, before InWAR reached 600 billion, its SHAP value is
always negative. However, if InWAR exceeds 600 billion yuan as
the increase of total GDP, the increase of the added value of
wholesale and retail trade plays a positive role in promoting the
production of MSW. It means that if the added value of the

wholesale and retail industry remains at a low level (less than
6,000 billion yuan), these industries have little effect on MSW
production. However, if the added value is more than the
threshold of 6000 billion yuan, the regional GDP would
promote the impact of the WAR industry added value.
Correspondingly, the SHAP value of InWAR indicates a
significant promotion on MSW production.

CONCLUSION

To address the prediction in the production of municipal solid
waste and support the WtE system design, we mainly
constructed the MSW prediction method in China by using
machine learning algorithms. In the comparisons of six ML
models, we concentrated our attention on the predictive
performances of each algorithm, particularly, by introducing
three preprocessing strategies. As a result, SVR had the lowest
hyperparameter consistency under different preprocessing
strategies. Among the six ML methods established in this
study, DNN has the best predictive ability, with an R-square
of over 0.97 under all three data preprocessing strategies. The
prediction performance of the machine learning methods
developed in this paper is also significantly higher than the
current standard (MLR) in China.

In addition, we find that the form of input hyper-parameter
had a great influence on the models’ performances. Specifically,
the explanatory indicators of the regional GDP, urban
population, the added values of wholesale and retail industries,
are the most important variables that affect MSW production in
different provinces of China. With the development of the urban
economy, the urban population increase will promote the
generation of municipal solid waste. Inversely, in less
developed regions, the increase of the urban population will
reduce the generation of MSW. Besides, the different stages of
the development of the wholesale and retail industries also impact
the production of MSW. It means that in the less developed
regions, a less added value of the wholesale and retail industries
indicates a weak impact on MSW production, and vice versa.

FIGURE 9 | Feature dependence analysis. (A) is Nup and InGDP. (B) is InWAR and InGDP
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Our findings provide a reliable forecasting method for
stakeholders. By increasing the prediction capability of MSW
production, national and local policymakers could effectively
conduct a series of governance policies to promote a friendly
residential environment and urban sustainability. However, if
given data from lower administrative, we can build even more
powerful predictive models. Future studies can make effort on
this to achieve more reliable and accurate results.
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